Homolog bi-orientation and segregation in oocyte acentrosomal meiosis

Information

  • Research Project
  • 10234823
  • ApplicationId
    10234823
  • Core Project Number
    R01GM101955
  • Full Project Number
    2R01GM101955-09
  • Serial Number
    101955
  • FOA Number
    PA-20-185
  • Sub Project Id
  • Project Start Date
    9/1/2013 - 11 years ago
  • Project End Date
    8/31/2025 - 6 months from now
  • Program Officer Name
    GINDHART, JOSEPH G
  • Budget Start Date
    9/1/2021 - 3 years ago
  • Budget End Date
    8/31/2022 - 2 years ago
  • Fiscal Year
    2021
  • Support Year
    09
  • Suffix
  • Award Notice Date
    8/23/2021 - 3 years ago

Homolog bi-orientation and segregation in oocyte acentrosomal meiosis

During the first meiotic division, homologous chromosomes linked by chiasmata attach to microtubules from opposite spindle poles (bi-orientation) and then segregate. In humans, errors in chromosome segregation in the oocyte lead to aneuploidy and are the leading cause of miscarriage, infertility and birth defects. Our long-term goal is to understand the mechanisms that promote accurate chromosome segregation, and the features of the oocyte spindle that make it susceptible to chromosome segregation errors. Our previous research using Drosophila melanogaster females has led to a model in which two types of microtubule attachment are used for bi-orientation. Lateral attachments, where the kinetochores interact with the sides of microtubules, establish bi-orientation. Then end-on attachments, where the kinetochores attach to the end of microtubules, maintain and segregate bi-orientated homologs. A prominent feature of the Drosophila oocyte is the metaphase I central spindle, which functions as a ?backbone?, organizing the microtubules into a bipolar structure in the absence of centrosomes. Our work has shown that the central spindle has an important role in bi-orientation during pro-metaphase. Studies in C. elegans and mouse oocytes indicate that the metaphase central spindle may be a conserved element required for the bi-orientation of homologous chromosomes during acentrosomal meiosis. In the previous funding period, we developed several tools to study the mechanisms of bi- orientation in oocytes. These tools include RNAi resistant transgenes in order to make germline-specific mutants of key proteins. Furthermore, we have the reagents, either transgenes or antibodies, to detect many of the important proteins that regulate chromosome segregation, including centromere, kinetochore, checkpoint and spindle proteins. With these tools, we will investigate the mechanisms by which the central spindle interacts with the kinetochores to promote bi-orientation. It is likely that premature stabilization of end-on attachments leads to bi-orientation defects. Therefore, we will investigate the mechanisms of lateral attachments and bi-orientation, and how the transition to end-on attachments is regulated. These studies will focus on two kinetochore proteins, CENP-C and SPC105R, which are required to load several other kinetochore and checkpoint proteins. We will also investigate how the central spindle interacts with the kinetochores and promotes accurate bi-orientation. These studies will include experiments to model in Drosophila, central spindle mutations that decrease fertility in human females. The Aims of this proposal are linked by a goal to understand the mechanisms of chromosome segregation important to oocytes. In completing this work, we will have gained insights into how kinetochores regulate the transition from lateral and end-on microtubule attachment.

IC Name
NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES
  • Activity
    R01
  • Administering IC
    GM
  • Application Type
    2
  • Direct Cost Amount
    259000
  • Indirect Cost Amount
    147630
  • Total Cost
    406630
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    859
  • Ed Inst. Type
    ORGANIZED RESEARCH UNITS
  • Funding ICs
    NIGMS:406630\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    RUTGERS, THE STATE UNIV OF N.J.
  • Organization Department
    NONE
  • Organization DUNS
    001912864
  • Organization City
    PISCATAWAY
  • Organization State
    NJ
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    088543925
  • Organization District
    UNITED STATES