The present invention relates in general to methods for plugging honeycomb extrusion monoliths to form reactors suitable for fluid-based or fluid-borne reactions and other processes, and particularly to use of particular plugging methods, for sealing channels in monolith-based chemical reactors.
Techniques for fabricating low-cost continuous flow chemical reactors based on honeycomb extrusion technology have been presented previously by the present inventors and/or their colleagues, for example, as disclosed in EP publication No. 2098285, assigned to the present assignee.
The present disclosure describes a method by which robust, pressure resistant plugs may be formed reliably and repeatably for reactors 10 of the type in
One embodiment includes a method for plugging selected cells of a honeycomb monolith so as to form a fluidic reactor, the method comprising contacting selected cells of a honeycomb monolith with a melted or softened plug material, the material comprising at least one sinterable particulate and a binder, the binder comprising at least one thermo-setting component and at least one UV-radiation curable polymer, the contacting performed such that a portion of the material remains in contact with the selected cells and plugs the selected cells; cooling the melted or softened plug material such that the thermo-setting component sets; after cooling, irradiating the portion of the material so as to at least partially cure the radiation curable polymer; and after irradiating, sintering the portion of the material so as to remove the binder and so as to sinter the at least one sinterable particulate.
A further embodiment includes method for plugging selected cells of a honeycomb monolith so as to form a fluidic reactor, the method comprising providing a honeycomb monolith having a plurality of cells; masking selected ones of the cells of the monolith not to be plugged; contacting unmasked cells of the honeycomb monolith with a melted or softened plug material resting on a non-stick film supported on a refractory substrate having a volumetric heat capacity of not more than 1.55 J/(cm3·K) and a thermal conductivity of not more than 1.2 W/(m·K); and after contacting for sufficient time to push the plug material into the unmasked cells, immediately removing the refractory substrate.
A still further embodiment includes a method for plugging selected cells of a honeycomb monolith so as to form a fluidic reactor, the method comprising contacting selected cells of a honeycomb monolith with a melted or softened plug material, the material comprising at least one sinterable particulate and a binder, the binder comprising at least one thermo-setting component and at least one UV-radiation curable polymer, the contacting performed such that a portion of the material remains in contact with the selected cells and plugs the selected cells; cooling the melted or softened plug material such that the thermo-setting component sets; after cooling, irradiating the portion of the material so as to at least partially cure the radiation curable polymer; and after irradiating, debinding or debinding and sintering the portion of the material so as to remove the binder or s as to debind and sinter the at least one sinterable particulate, wherein the step of debinding or debinding and sintering is performed with the cells of the monolith in a vertical orientation resting on a flat surface with a compatible ceramic or other refractory material felt covering the openings below and above and with a weight resting on the upper face, with optional shims defining the distance between the felt and the end faces.
Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments as described herein, including the detailed description which follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description are merely exemplary, and are intended to provide an overview or framework to understanding the nature and character of the claims. The accompanying drawings are included to provide a further understanding, and are incorporated in and constitute a part of this specification. The drawings illustrate one or more embodiment(s), and together with the description serve to explain principles and operation of the various embodiments.
Reference will now be made in detail to the accompanying drawings which illustrate certain instances of the methods and devices described generally herein. Whenever possible, the same reference numerals will be used throughout the drawings to refer to the same or like parts.
With respect to
Without intending to be bound by any particular theory, it is thought that heating of air within internal channels during substrate sintering produces a pressure build-up P that forces the plugs 26 outward. This pressure build-up P appears even though the internal typically serpentine channel 28 is not closed at each end, but is open to external ambient pressure via openings, typically in the form of side port holes (not shown). In a 2″ diameter 200/12 alumina substrate, internal channels can be up to 30 m long, so the distance to the open side port hole can be as much as 15 m through an approximately 1 mm square channel. Resistance to air flow down the pat 28 during substrate sintering results in a pressure increase at interior locations within the path 28. Since the softened plugs 26 are unable to resist this local pressure build-up they are displaced out of substrate channels. Experiments have shown that plugs 26 are more likely to be pushed out toward the center of the substrate end face in regions, farthest away from open side port holes. Additional experiments show that the pistoning can be reduced by slowing the rate of substrate heating, but that it can not be eliminated for practical minimum heating rates (such as 25° C./hour, for example).
Since extensively long sintering times are undesirable, the plug pistoning problem makes it difficult to fabricate reactor substrates with plugs of uniform depth. This plug depth uniformity variation produces changes in channel geometry that induce reactant or heat exchange pressure and flow variations. Resulting variations in reactant temperature and residence time can affect reactor performance, reducing product yield and/or selectivity.
The present inventors have also found, through experiments performed and/or directed by them, that when plugging the second end face of a substrate 20, the high thermal conductivity of the (typically alumina) substrate 20 allows heat from the melted or softened plug material (and a hot plate used to heat it) to be rapidly transferred to air trapped in internal channels 24. The increase in air temperature results in a local pressure build-up that exists even though the internal channel is not closed at each end. The pressure drop along the channel is large enough to create a local pressure that tends to push the heated plug material out of substrate end face channels. As a result, the plug material across the end face becomes loaded with trapped air bubbles that are undesirable. These problems recognized by the present inventors may be solved by the methods described below.
With reference to
With reference to
The hot plate 54 is heated to 100-125° C., causing the plug material 50 to melt into a disk on the surface of the non-stick film 52. A doctor blade (not shown) may be used to redistribute the plug material 50 into a thin sheet of uniform thickness. The masked end of the substrate 20 is then lowered onto the melted plug material 50, as seen in the cross section of
With further reference to
With reference to
Plug material 50 in substrate channels 24 generally cools and solidifies rapidly after removal from the hotplate 54. The time required for solidification can be reduced by placing the substrate 20 and non-stick film 52 on a flat surface that is at or near room temperature (not shown). After the plug material 50 solidifies the non-stick film 52 is removed from the substrate end face, as seen in the cross-section of
With reference to
With reference to
With reference to
After the plug material cools the non-stick film 52 is removed from the substrate end face. With excess plug material around the perimeter of the substrate 20 removed, and after mask removal, the plugged substrate appears in cross-section as shown in
As mentioned above, a major challenge in sintering of plugged substrates with long internal channels is prevention of plug pistoning. Plug pistoning may be eliminated by the UV-curable material in the glass frit polymer binder. An example plug material composition useful for alumina substrates is as follows: (1) 82 wt % glass powder as disclosed in EP 2065347 (with range 82 to 85 wt % dependent on particle size distribution [PSD]); (2) 15.3wt % wax binder (MX4462) (with range 12 to 16 wt % dependent on PSD); (3) 2.7 wt % UV-curable binder (with range 2 to 5 wt %, dependent on PSD).
With further reference to
With reference to
With reference to
With reference to
In either vertical or horizontal debinding or debinding and sintering, any refractory material felt incorporated into the plugs may be polished off, if desired.
The methods and/or devices disclosed herein are generally useful in performing any process that involves mixing, separation, extraction, crystallization, precipitation, or otherwise processing fluids or mixtures of fluids, including multiphase mixtures of fluids—and including fluids or mixtures of fluids including multiphase mixtures of fluids that also contain solids—within a microstructure. The processing may include a physical process, a chemical reaction defined as a process that results in the interconversion of organic, inorganic, or both organic and inorganic species, a biochemical process, or any other form of processing. The following non-limiting list of reactions may be performed with the disclosed methods and/or devices: oxidation; reduction; substitution; elimination; addition; ligand exchange; metal exchange; and ion exchange. More specifically, reactions of any of the following non-limiting list may be performed with the disclosed methods and/or devices: polymerisation; alkylation; dealkylation; nitration; peroxidation; sulfoxidation; epoxidation; ammoxidation; hydrogenation; dehydrogenation; organometallic reactions; precious metal chemistry/homogeneous catalyst reactions; carbonylation; thiocarbonylation; alkoxylation; halogenation; dehydrohalogenation; dehalogenation; hydroformylation; carboxylation; decarboxylation; amination; arylation; peptide coupling; aldol condensation; cyclocondensation; dehydrocyclization; esterification; amidation; heterocyclic synthesis; dehydration; alcoholysis; hydrolysis; ammonolysis; etherification; enzymatic synthesis; ketalization; saponification; isomerisation; quaternization; formylation; phase transfer reactions; silylations; nitrile synthesis; phosphorylation; ozonolysis; azide chemistry; metathesis; hydrosilylation; coupling reactions; and enzymatic reactions.
It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit or scope of the invention.
This application claims the benefit of priority of U.S. Provisional Application Ser. No. 61/308,986 filed on Feb. 28, 2010.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US11/26397 | 2/28/2011 | WO | 00 | 8/16/2012 |
Number | Date | Country | |
---|---|---|---|
61308986 | Feb 2010 | US |