Honeycomb catalyst for removal of nitrogen oxides in flue and exhaust gasses and method of preparation thereof

Information

  • Patent Grant
  • 10737258
  • Patent Number
    10,737,258
  • Date Filed
    Wednesday, October 26, 2016
    8 years ago
  • Date Issued
    Tuesday, August 11, 2020
    4 years ago
Abstract
A vanadium oxide based honeycomb SCR catalyst composed of a plurality of corrugated sheets stacked upon one another to form a plurality of flow through channels, the corrugated sheets are provided with an inert inner core layer and an outermost layer containing a SCR catalyst composition.
Description

The invention relates to removal of nitrogen oxides, NOx, from exhaust gases and flue gases from stationary flue gas sources including gas turbines and power plants.


The invention is in particular directed to a honeycomb shaped selective catalytic reduction (SCR) catalyst for use in the removal of nitrogen oxides in the flue gas formed in stationary sources in the combustion of fossil fuel like natural gas, coal or oil.


Methods for removing nitrogen oxides from stationary sources by means of the SCR process are well-known in the art.


In the SCR process, the content of NOx in the flue gas can be removed or substantially reduced by conversion to free nitrogen with a reducing agent typically ammonia in the presence of a catalyst by the following reactions:

4NO+4NH3+O2-4N2+6H2O
NO+NO2+2NH3-2N2+3H2O


The most typical SCR catalyst composition employed in flue gas cleaning from stationary sources is based on vanadium oxide.


Vanadium based SCR catalysts are in particular preferred where there is a risk of exposure to high sulfur fuel to avoid high sulfate emissions. The advantage of vanadium based SCR catalyst is that these catalysts have a relatively low sulfur oxidation activity, which is particularly important when employed in the cleaning of sulfur oxide containing flue gas.


The catalytically active components of vanadium based SCR catalysts consist of vanadium pentoxide and tungsten trioxide supported on titania. For use in gas cleaning from stationary sources, the catalyst is washcoated on a monolithic substrate, typically consisting of stacked up corrugated sheets of ceramic material or non-woven glass fibers forming a honeycomb structure with a plurality of parallel flow through channels.


Even having a low sulfur oxidation activity, vanadium-based catalysts in fact oxidise SO2 to SO3. SO3 can react with NH3 to from ammonium bisulfate, which may cause fouling and plugging of the catalyst and downstream equipment.


It is well known that the SCR reaction is much faster than the NO and NH3 diffusion into the catalyst wall at typical SCR reaction conditions. The NO removal is mainly dependent on the specific surface area of the monolith. This means that reducing the wall thickness of the monolith does not negatively affect the activity of the monolith to a great extent. Theoretically, from an activity standpoint a SCR catalyst having a wall thickness of only 20% of that of the commercial SCR monoliths would have the same activity at the typical high dust conditions. Such a catalyst would however suffer from erosion and mechanical instability.


On the other hand, the SO2 oxidation reaction is much slower than the diffusion of SO2 in the catalyst wall. This means that the entire catalyst wall contributes to the oxidation of SO2 to SO3. When vanadia is the active site for this undesired reaction, it is common to reduce the amount of vanadia loaded on the catalyst for minimizing the unwanted reduction. This has, however, the effect of reducing to a lesser extent the SCR reaction rate as well.


An alternative and more effective way of reducing the conversion of SO2 to SO3 can be to reduce the thickness of the catalyst wall. However, when reducing the wall thickness, the reduced wall thickness must still retain sufficient stability of the honeycomb structure. The problem is solved by the present invention, when providing the walls of the substrate with an inner core layer of inert clay materials.


Thus, this invention provides a honeycomb SCR catalyst composed of a plurality of corrugated sheets stacked upon one another to form a plurality of flow through channels, each corrugated sheet comprising an inner core layer comprising entangled non-woven fibers coated with a clay material on both sides of each of the corrugated sheets, and an outermost layer supported on both side of the inner core layer, the outermost layer comprising an SCR catalyst composition, the inner core layer makes up between 50% and 95% of the channel walls thickness.


The catalyst according to the invention has the advantage that it shows at least as good structure stability as conventional monoliths since the overall thickness of the monolith wall is preserved due to the inner clay core layer.


The present invention reduces the catalyst load per unit volume of monolith leading to a reduced SO2 oxidation. At the same time, the reduced absolute amount of catalyst allows to increase the vanadia content in the outer layer and therefore maximizing the NO reduction activity of the catalytically outermost layer.


A further advantage is that outer layer on the inner core provides mechanical stability to the catalyst structure and low SO2 oxidation at the same time. The outer layer prevents additionally drying cracks in the surface. This may also improve the erosion wear resistance and mechanical stability of the structure in that the points of attrition where particles impact the structure at a high impaction angle are removed.


Specific features of the catalyst according to the invention are alone or in combination thereof that


the non-woven fibers are glass fibers;


the inner core layer further comprises diatomaceous earth;


the inner core layers have a layer thickness of between 0.6 mm and 1.2 mm;


the outermost layers have a layer thickness of between 0.05 mm and 0.6 mm;


the SCR catalyst composition comprises titania and vanadium pentoxide;


the SCR catalyst composition comprises titania, vanadium pentoxide and an oxide of tungsten;


the amount of vanadium pentoxide in the outermost layer is between 1 and 5% per weight;


the SCR catalyst further comprises a liner arranged on each of the corrugated sheets.


A further aspect of the present invention is a method of preparing a honeycomb SCR catalyst with a plurality of flow through channels comprising the steps of


(a) providing sheets of entangled non-woven fibers;


(b) corrugating the sheets;


(c) stacking the corrugated sheets obtained in step (b) to form a honeycomb structured substrate;


(d) coating the corrugated sheets of the honeycomb structured substrate with a clay material to obtain an inner core layer in each of the corrugated sheets and drying and/or calcining the honeycomb structured substrate;


(e) coating each side of the inner core layer of each of the corrugated sheets in the honeycomb structured substrate with a catalyst coat layer comprising an SCR catalyst composition or a precursor thereof; and


(f) calcining the coated honeycomb structured substrate of step (e) to obtain the honeycomb SCR catalyst.


Specific features of the method according to the invention are alone or in combination thereof that


each corrugated sheet obtained in step (b) is lined with a liner prior to stacking;


the non-woven fibers are glass fibers;


the inner core material further comprises diatomaceous earth;


the catalyst coat layer has a layer thickness of between 0.05 mm and 0.3 mm;


the inner core layer has a layer thickness of between 0.6 mm and 1.2 mm;


the SCR catalyst composition comprises titania and an oxide of vanadium;


the oxide of vanadium is vanadium pentoxide applied in an amount of between 1 and 5% per weight in the outermost layer; and


the SCR catalyst composition further comprises an oxide of tungsten;


In all features and aspects the clay material can be selected from the kaolin group, hydrous alumina silicates, the chlorite group, the pyrophillite group, bentonite or mixtures thereof.





EXAMPLES


FIG. 1 shows the ratio of the DeNOx activity to the activity for SO2 oxidation of a honeycomb SCR catalyst according to the invention with an inner core layer thickness of 0.7 mm and a catalyst outer layer thickness of 0.15 mm on each side of the core layer compared to the known honeycomb SCR catalyst with a full catalyst layer supported on corrugated glassfiber paper. Both ratios have been normalized to the value of the full catalyst layer. The ideal is to have as high a ratio of DeNOx activity to SO2 oxidation activity.





As apparent from FIG. 1, the inert inner core catalyst according to the invention is about 58% higher/better in terms of DeNOx: SO2 oxidation activity, compared to the full catalyst layer.

Claims
  • 1. A honeycomb SCR catalyst composed of a plurality of corrugated sheets stacked upon one another to form a plurality of flow-through channels, wherein each corrugated sheet comprises an inner core layer comprising entangled non-woven fibers coated with a clay material on both sides of each of the corrugated sheets, and an outermost layer supported on both sides of the inner core layer, the outermost layer comprising an SCR catalyst composition, the inner core layer makes up between 50% and 95% of the channel walls thickness.
  • 2. The honeycomb catalyst of claim 1, wherein the non-woven fibers are glass fibers.
  • 3. The honeycomb catalyst of claim 2, wherein the inner core layer further comprises diatomaceous earth.
  • 4. The honeycomb catalyst of claim 1, wherein the inner core layer comprises diatomaceous earth.
  • 5. The honeycomb catalyst of claim 1, wherein each outermost layer has a layer thickness of between 0.05 mm and 0.6 mm.
  • 6. The honeycomb catalyst of claim 1, wherein the inner core layer has a layer thickness of between 0.6 mm and 1.2 mm.
  • 7. The honeycomb catalyst of claim 1, wherein the SCR catalyst composition comprises titania and an oxide of vanadium.
  • 8. The honeycomb catalyst of claim 7, wherein the oxide of vanadium is vanadium pentoxide in an amount of between 1 and 5% by weight.
  • 9. The honeycomb catalyst of claim 7, further comprising an oxide of tungsten.
  • 10. The honeycomb catalyst of claim 1 further comprising a liner arranged on each of the corrugated sheets.
  • 11. A method of preparing a honeycomb SCR catalyst with a plurality of flow-through channels comprising the steps of: (a) providing sheets of entangled non-woven fibers;(b) corrugating the sheets;(c) stacking the corrugated sheets obtained in step (b) to form a honeycomb structure substrate;(d) coating the corrugated sheets of the honeycomb structured substrate with a clay material to obtain an inner core layer in each of the corrugated sheets and drying and/or calcining the honeycomb structured substrate such that the inner core layer makes up between 50% and 95% of the channel walls thickness;(e) coating each side of the inner core layer of each of the corrugated sheets in the honeycomb structured substrate with a catalyst coat layer comprising an SCR catalyst composition or a precursor thereof; and(f) calcining the honeycomb structured substrate of step (e) to obtain the honeycomb SCR catalyst.
  • 12. The method of claim 11, wherein each corrugated sheet obtained in step (b) is lined with a liner prior to stacking.
  • 13. The method of claim 11, wherein the liner is coated with a clay material.
  • 14. The method of claim 11, wherein the non-woven fibers are glass fibers.
  • 15. The method of claim 11, wherein the clay material further comprises diatomaceous earth.
  • 16. The method of claim 11, wherein the catalyst coat layer has a layer thickness of between 0.05 mm and 0.6 mm.
  • 17. The method of claim 11, wherein the inner core layer has a layer thickness of between 0.6 mm and 1.2 mm.
  • 18. The method of claim 11, wherein the SCR catalyst composition comprises titania and an oxide of vanadium.
  • 19. The method of claim 18, wherein the oxide of vanadium is vanadium pentoxide applied in an amount of between 1 and 5% by weight.
  • 20. The method of claim 18, wherein the SCR catalyst composition further comprises an oxide of tungsten.
  • 21. A method of preparing the honeycomb SCR catalyst of claim 1, the method comprising the steps of: (a) providing the sheets of entangled non-woven fibers;(b) corrugating the sheets;(c) stacking the corrugated sheets obtained in step (b) to form the honeycomb structure substrate;(d) coating the corrugated sheets of the honeycomb structured substrate with the clay material to obtain the inner core layer in each of the corrugated sheets and drying and/or calcining the honeycomb structured substrate;(e) coating each side of the inner core layer of each of the corrugated sheets in the honeycomb structured substrate with the catalyst coat layer comprising the SCR catalyst composition or a precursor thereof; and(f) calcining the honeycomb structured substrate of step (e) to obtain the honeycomb SCR catalyst.
Priority Claims (1)
Number Date Country Kind
2015 00661 Oct 2015 DK national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2016/075722 10/26/2016 WO 00
Publishing Document Publishing Date Country Kind
WO2017/072137 5/4/2017 WO A
US Referenced Citations (35)
Number Name Date Kind
3104194 Zahorski Sep 1963 A
4416800 Abe et al. Nov 1983 A
4988483 Usui Jan 1991 A
5026611 Usui Jun 1991 A
5104627 Usui Apr 1992 A
5110561 Hitachi May 1992 A
5113653 Usui May 1992 A
5153167 Saito Oct 1992 A
5194414 Kuma Mar 1993 A
5198403 Brand et al. Mar 1993 A
5336472 Toyoda Aug 1994 A
5374402 Hitachi Dec 1994 A
5431886 Rolf Jul 1995 A
5441706 Whittenberger Aug 1995 A
5464679 Maus Nov 1995 A
5554342 Hirayama Sep 1996 A
5628925 Domesle May 1997 A
5785931 Maus Jul 1998 A
5846495 Whittenberger Dec 1998 A
5853902 Usui Dec 1998 A
6602477 Sakamoto Aug 2003 B2
6841135 Matsuoka Jan 2005 B2
7011893 Hodgson Mar 2006 B2
7030059 Tanabe Apr 2006 B2
7550117 Alward Jun 2009 B2
7655064 Kato Feb 2010 B2
7709076 Maus May 2010 B2
7785544 Alward Aug 2010 B2
8337762 Vakkilainen Dec 2012 B2
8671693 Straza Mar 2014 B2
9120084 Kimura Sep 2015 B2
20020170941 Wallach Nov 2002 A1
20040180783 Nojima et al. Sep 2004 A1
20070122330 Noh May 2007 A1
20170175609 Masoudi Jun 2017 A1
Foreign Referenced Citations (1)
Number Date Country
11524024 Feb 2010 EP
Non-Patent Literature Citations (3)
Entry
International Search Report for PCT/EP2016/075722, dated Jan. 5, 2017 in English Language.
Written Opinion of the International Searching Authority for International Application No. PCT/EP2016/075722 dated Jan. 5, 2017.
Search Opinion dated Jun. 3, 2019 for Danish Patent Application No. PA 2015 00661 (6 pages).
Related Publications (1)
Number Date Country
20180243733 A1 Aug 2018 US