1. Field of the Invention
The present invention relates to fishing apparatus, and, more particularly, to a hook-setting device that may also function as a strike indicator.
2. Related Art
Most recreational fishing apparatus and techniques currently being used may be classified into two general categories: 1) bait or lure fishing, using a rod and “spin” or “cast” reel, fishing line, and bait on a hook or a lure with a hook; and 2) fly fishing, using a fly rod and reel, line, leader, and a fly having a hook. Bait or lure fishing is done by the vast majority of anglers, and is the traditional way for young people to learn how to fish. Fly fishing, which has a reputation for being difficult but rewarding, is done by a smaller segment of anglers, but is growing in popularity.
Fly-fishing techniques require apparatus and methods that are very different from those of conventional bait/lure fishing, especially in view of the significant differences between fly-casting (
Therefore, the aerodynamics for the equipment used in the two types of fishing are different. In a fly cast, the side facing away from the fly is the side of an object attached to the fly leader that leads during the cast (
Halterman, Jr. (U.S. Pat. No. 5,216,831) discloses a strike indicator which is reported to be “useful in fly fishing, ice fishing and light bait fishing, which provides slippage resistant attachment along a static fishing line.” The Halterman, Jr. strike indicator comprises a bifurcated strike indicator body with a stretchable tab slightly shorter than the strike indicator. The fishing line passes through a longitudinal slit and is held therein by the stretchable tab.
Calvin (U.S. Pat. No. 5,042,190) discloses a fly-fishing strike indicator that is moveable on a fishing leader but at the same time can maintain its position on the leader when a fly is cast. A knot of surgical tubing is made on the leader and a cover of thermoplastic, heat shrinkable tubing is slid over the knot to surround the leader and knot. The ends of the cover are then heated to constrict the ends loosely about the leader to form an air pocket between the leader and cover.
Constantin (U.S. Pat. No. 6,421,950) discloses a strike-indicating fly line with a plurality of spaced apart bands along a section of the line visible to an angler. The bands and the spacing between the bands is such that they can be discerned in use by the angler, so that the angler can “see when the line stops drifting or changes direction, indicating a fish strike.”
Wolfe (U.S. Pat. No. 5,758,451) discloses a two-floatation-unit bobber system for bait/lure fishing, wherein an inner bobber is pulled by the fish strike out from the larger bobber. In order for the Wolfe bobber system to work, the inner bobber must distance itself from the outer bobber, and this is done by the inner bobber pulling the line through the outer bobber, with the outer bobber sliding along the line, as the inner bobber is pulled deeper into the water. The two bobbers becoming separated is a visual signal to the angler that a strike has occurred. The Wolfe bobber system floats “face-down” in the water, as is typical of bait/lure bobbers and floats.
Kramer (U.S. Pat. No. 2,591,558) discloses a bait/lure fishing float that aims at limiting the drifting action of the float by providing a chambered body with fins and a closure member for the chamber. Kramer discloses a finned, substantially closed bell-shaped float, which “faces down” in the water and partially fills with water via a tubular member that opens only a small portion of the flat face of the float.
Teegarden (U.S. Publication US2002/0095853) discloses a wobble device that slides freely along a fishing line and provides a cup-shape facing away from the hook. The cup-shape is reported to “impart a life-like wiggling motion to the natural and artificial fishing baits and lures, including flies, real and plastic worms, rubber baits, and other lures.”
There is still a need for an improved apparatus for setting a hook and indicating a strike in fishing. There is especially a need for such a device that is effective in fly fishing.
The present invention comprises a flange that is fixed, and generally transverse, to a fishing line or leader, and that is adapted to resist the force of a fish strike on a hook or fly. The flange preferably floats at or near the top of the water, by virtue of the lightness of the line or leader to which it is connected, the lightness of the flange itself, and/or a float that may be used with or that is integral with the flange. In the preferred, partially-submerged position of the flange in use, the surface of the flange facing the hook or fly has contact with the water sufficient to resist the fish strike, and yet a portion of the flange, and/or all or part of the optional float, may be visible to the angler for strike indication.
The flange surface facing the hook or fly preferably is generally concave and forms an open cup-shape that, immediately upon layout on the water, tends to enter a position wherein the cup opening faces upstream, the cup outer perimeter is generally vertical in the water, and the cup partially or completely fills with water. In this position, the preferred flange provides resistance to the flange being pulled through the water in a direction the concave surface is facing. The open cup-shape resists the force of a fish strike on the hook or fly and helps to set the hook/fly in the fish's mouth.
The preferred flange for fly-fishing applications also features a generally convex surface facing away from the hook or fly. This generally convex surface is the leading surface of the preferred flange during fly-casting, reducing air resistance during the cast and contributing to proper laying-out of the fly at the end of the cast.
In an alternative embodiment, the flange may be configured to sink into the water, immediately upon layout, to an extent wherein it is entirely below the water. Such a flange would completely fill with water, but otherwise would act generally the same as the partially submerged versions, entering a position in the water wherein the cup opening faces generally upstream and the cup outer perimeter is generally vertical in the water. In the submerged position, the submerged flange would also provide resistance to the flange being pulled through the water in a direction the concave surface is facing, resisting the force of a fish strike on the hook or fly and helping to set the hook/fly in the fish's mouth.
Therefore, an object of the present invention is to provide a device that provides a hook-setting function and preferably also a strike indication function. A further object is to provide an apparatus that is sufficiently light-weight so as to limit its interference with casting, and that has a shape that is effective for fly-casting.
Referring to the figures, there are shown several, but not the only, embodiments of the invented hook-setting device for fishing. The embodiments may have applications in all types of fishing, but are particularly well-adapted for fly fishing. Therefore, the following detailed description focuses on applications of the preferred apparatus in fly fishing, but is not necessarily intended to limit the invention to fly fishing.
Two of the most difficult techniques for inexperienced fly fishermen/women are knowing when a fish has struck the fly and setting the hook. The fish often ejects the fly from its mouth before the person realizes that the fish has struck and can take action to set the hook in the fish. The preferred embodiments of the invention are particularly well-adapted for improving the problematic areas of hook-setting and strike indication, without interfering with proper fly-casting techniques.
As discussed in the Related Art section above, fly-fishing techniques are very sensitive to the type, size, shape, and weight of the apparatus being used. An object attached to a fly-fishing leader should be very lightweight, so that it does not interfere with proper fly-casting, including not interfering with the weight balance between the relatively heavy fly line and the relatively light fly leader and fly assembly. Therefore, the inventor believes that it is very important that a hook-setting device and/or strike indicator attached to a fly-fishing leader be specially designed to meet the important aerodynamic and weight considerations that may result in successful fly fishing.
The preferred embodiment of the hook-setting device 10, 110, 210, 310, 410 comprises a flange 11, 111, 211, 311, 411, that is fixed to a fly-fishing leader 3 at a distance from the fly 4. The flange extends generally transverse to the leader, and preferably extends all the way around the leader 3, or at least substantially all the way around the leader 3. In the embodiment 10 of
In the embodiment 110 of
In the embodiment 210 of
The enlarged, crossed sectional views in
As an adaptation to balance the entire hook-setting device during the casting process, and/or to provide the desired balance and orientation, buoyancy, partial sinking (partly below water and partly above water), or sinking (entirely under the water) during use in the water, the thickness and material of the flange and/or the size, shape, and material of the float (or of other elements that may be attached/connected to the rear of the flange in addition to or instead of the float) may be adjusted to provide the desired balance, orientation, buoyancy, and/or sinking effects. One may note that the portrayed preferred floats preferably extend around an elastic member (which typically is received in a bore), so that the floats may broadly be described as “ring members.” Later in this Description, floats are portrayed that extend around a protrusion from the rear of the flange (the protrusion typically being received in a bore), so that such floats may also broadly be described as “ring members.” Therefore, the preferred floats, and also alternative members that may extend around the elastic members and/or the protrusions (preferably having bores that receive said elastic members or protrusions) may be referred to as ring members and may have various density, shape, size, and material characteristics.
As may be seen from the drawings, each of the flanges 11, 111, 211 is curved on a single radius (in which case the flange could be called a “spherical cap”) or curved on multiple radii that are very close to each other (in which case the flange could be called “generally a spherical cap”). Other shapes and wall thicknesses may be used. For example, a flange with a non-circular perimeter and non-spherical wall may be used, such as the wavy or undulating flange 310 illustrated in
Disc walls other than those having a generally constant thickness may be used, especially if a varying or uneven wall thickness assists in achieving the desired strength and low-weight characteristics of the disc. For example, a disc wall may be thicker near the center and thinner near the outer perimeter, or may have thicker radial portions, between relatively thinner portions, reinforcing the wall.
However, whether the flange is a spherical or generally spherical cap with a circular perimeter, or whether it is a non-spherical disc with a non-circular perimeter, or even another overall shape, it is preferred to provide the flange with a rear surface that has a convex portion or, more preferably, that is substantially or entirely convex, for optimizing fly casting. Also, whatever the overall flange shape, it is preferred to provide the flange with a front surface that has a concave portion or, more preferably, that is substantially or entirely concave, for optimizing hook-setting.
The inventor has found that a rear surface with a convex portion, or that is substantially or entirely convex, is particularly effective for providing the desired aerodynamics of casting and layout of the fly and leader upstream of the strike indicator, with the leader between the fly and the indicator and preferably fully extended in a generally straight line. On the other hand, flanges with a flat or substantially flat rear surface do not properly lay out the fly and instead allow the leader and fly to “pile up” generally on top of, or near, the flange on the water. The inventor believes that the ineffective cast with devices having a flat or substantially flat rear surface is due to the air resistance offered by the flat or substantially flat surface moving forward during a cast.
The inventor has found that a front surface that has a concave portion, or that is substantially or entirely concave, exhibits superior hook-setting and strike indicating capabilities. The hook-setting device is fixed to the leader, at a distance preferably in the range of 2-8 feet from the fly. Once the fly is properly laid out upstream, with the leader and the hook-setting device downstream of the fly, the strike indicator remains generally that distance from the fly while the hook-setting device, leader, and fly travel downstream. This distance from the fly helps prevent the hook-setting device from being too close to the fly and giving the fly an unnatural appearance.
As illustrated in
The nearly instantaneous (less than 1 second, and more typically less than 0.5 seconds) positioning of the preferred embodiments in the substantially-water-filled, generally vertical orientation is important because the most effective casts deliver the fly only about 3-4 feet upstream of a fish. Fish tend to face upstream, waiting for an insect to float downstream, and tend to strike upstream. Therefore, a fly that is properly positioned nearly instantaneously, and that appears natural (at least in part because the hook-setting device is “out of the fish's view”), will more likely be struck by the fish, and will be struck quickly. Because of the orientation and the substantially-water-filled or completely-water-filled condition of the flange, and because the flange is fixed and immovable along the line/leader, the resistance occurs instantaneously, or nearly instantaneously (less than 1 second, and, more typically less than 0.5 seconds).
As the preferred hook-setting device is carried downstream by the flowing water, the force of the water against the concave surface will result in significant resistance to a fish strike. As most fish strike a fly in an upstream direction, this upstream force on the fly/hook will be strongly opposed by the downstream force of the water against the concave surface of the flange. This causes the hook to be set in the fish's mouth as soon as, or soon after, the fish strikes the fly, without requiring action by the angler.
Generally concurrent with the fish strike being resisted by the preferred flange, the hook-setting device will exhibit some movement that is inconsistent with the previous downstream travel of the device—clearly signaling the fly-fisherman of the strike, so that the fisherman may then sharply raise the fly-rod, contributing additional hook-setting force to the fly. Thus, the preferred concave flange surface facing the fly 4, 4′ is particularly well-adapted for both hook-setting and indication functions, as it provides substantial resistance and yet allows some movement to indicate a strike, especially upon a strike upstream.
In general, the diameter across the opening of the flange (diameter of the outer perimeter “DP”) is selected to provide sufficient resistance in the water for hook-setting, but not too much resistance in the air during casting. The depth of the cup-shape (“DTH”) is selected to provide the preferred rear face curvature for proper casting and the preferred front face curvature for hook-setting. The preferred flanges have a diameter DP that is preferably equal to or greater than ¾ inch, more preferably between ¾ inch and 1¾ inches, and most preferably between 1⅛ and 1⅜ inches. The depth DTH preferably ranges from about 0.2 inch to about 0.6 inch, and more preferably from about 0.3 inch to 0.6 inch. The radius R preferably ranges from about ½ inch to about 1 inch.
As explained earlier in the Description, other flange shapes, sizes, and curvatures may be used besides the “partial sphere” shapes illustrated by the “generally spherical caps” of
The present inventor has tested multiple flanges according to various embodiments of the invention for proper casting, lay-out, and hook-setting. These include:
For example, from the above table column A, one will note that four flanges with a spherical curvature of approximately 1 1/16 inches (R) were made with different outer perimeter diameters DP (1 inch through 1⅜ inches). This resulted in flange depths DTH ranging from 0.309-0.425 inches. In column B, four flanges with a curvature (R) of 13/16 inches were made with the same DP's, resulting in DTH's ranging from 0.272-0.374 inches. In column C, four flanges with a curvature of 15/16 inches (R) were made with the same DP's, resulting in DTH's ranging from 0.241-0.3315, and so forth in columns D-G. All flanges had wall thicknesses of about 20 thousandths of an inch, which resulted in all being less than 20 grains in weight.
The inventor's testing, by fly-casting and -fishing with the flanges, indicated that the flanges in columns A-C were highly effective in good casting, good layout, instant positioning in water, and excellent hook setting. The flanges in column D were marginal in performance, and the flanges in columns E-G were poor in performance, probably due to their “flatness.”
Flanges that are “shallow” or “flat” by virtue of having a large radius R and small depth DTH are less preferred because they tend not to cast well, either because they provide too much air resistance during the cast and/or they do not lay out the fly properly. For example, the flanges in columns E-G of the above Table are less preferred or entirely ineffective, and the shapes in
Many of the preferred flanges have protrusions or other non-concave portions in their front surfaces, for example, the recesses of the flanges 10, 110, 210, and 310, which are recesses when viewed from the rear of the flange but are protrusions when viewed from the front of the flanges. Also, the flange shown in
In addition to, or instead of, a protrusion in the front surface of a flange, some flanges may also have protrusions extending from their rear surfaces. For example, a buoyant portion may be integrally formed and protrude from the rear surface of the flange, or other protrusion(s) may extend from the rear surface to give the flange additional structure for attachment to the leader, for receiving a float or other ring member, and/or to otherwise affect its position in the water, for example. Optionally, a flange with a protrusion from its rear surface may include a recess(es) in its front surface. Optionally, a flange may have no protrusion in its front surface or its rear surface, and other methods of attachment of the flange to the leader may be used, such as integral molding, adhesives, or fasteners or grippers that do not require significant axial structure on the flange.
As illustrated in
Referring specifically to the embodiment in
The float 50 has an axial slit 52 from its outer side surface 54 to its center axis, all along the length of the float, and a removable grip member 60 that extends axially through the slit 52 to extend from both ends 62, 64 of the float. A first end 68 of the grip member 60 extends through the slot 39 in the bottom wall, and is held there by the enlarged “arrow” shape of the end 68. The grip member 60 holds the flange 11 and float 50 together, by the elasticity of the grip member 60 and its first end 68 abutting against the front surface 37′ of the bottom wall and its second end 66 abutting against the outer end 64 of the float. Alternatively or additionally, the float 50 may frictionally grip the wall(s) of the recess 16, and/or be adhesively or otherwise fastened or connected to the flange 11.
The device 10 is attached to the fly-fishing leader by inserting the leader 3 through the slit 118 in the flange and along side or inside the slit 52 in the float. With the float 50 inserted into the recess 16, the user may grasp the leader 3 in a few fingers of each hand (typically the ring and little finger of hand). The user then grasps the flange 11, which holds the first end 68 of the grip member, with one hand (typically thumb and first finger), and grasps the float 50 with the other hand (typically thumb and first finger). The user pulls the flange 11 and float 50 apart slightly, which stretches the grip member 60 and narrow its width, leaving room in the slit 52 for the leader. The user may then tighten the leader 3 between his/her hands, or otherwise manipulate the leader so that it slides radially further into the slit 52 along side the narrowed grip member 60. The user then twists the float 50 relative to the flange 11, which typically serves to twist the grip member around the leader to further grip and capture the leader 3 inside the float 50. The inventor has found that by following this procedure, and by keeping track of how many times he/she twists the float 50 relative to the flange 11 (preferably 3-4), he/she may more easily remove the leader 3 from the float 50 by twisting the float in the opposite direction that same number of times.
After following the above preferred procedure or other procedures, the leader passes through the float and the flange, and is gripped/captured inside the float by the twisting/circling of the resilient and rubbery grip member preferably more than once around the leader. The hook-setting device 10 will be unable to slide, or extremely unlikely to slide, along the leader and is therefore, fixed to the leader 3.
The grip used in the float and flange may be of the type known to anglers as a rubber grommet. Other elastic and/or rubbery grip members may be used, for example, a length of elastic tubing or other resilient material, with or without caps or other enlarged ends. Elastic tubing without caps or enlarged ends may be generally as effective as the preferred rubber grommet, and such elastic tubing may typically be used without twisting it around the leader, by simply letting it expand to take up space and “plug” the slit of the float and/or flange so that the leader is blocked from exiting the slit(s).
While the arrow-ended grip members are shown with flanges that have slits all the way from the outer perimeter to the center of the flange, and also with flanges that do not have such slits, such grip members are preferred with flanges that do have the slits due to the thickness of the grip members and the size of their arrow-ends. In embodiments with slits all the way from the outer perimeter to the center, the grip member may be stretched and slid “sideways” through the slit for easy initial installation. Elastic tubing without caps or enlarged ends may be especially useful for flanges without slits from outer perimeter to flange center, as the ends of such tubing may be installed axially through an aperture with less resistance than the larger arrow-ends.
Also, while the generally flat, arrow-ended grip members may be shown in the Figures as being orientated in the float and/or flange so that their planes are parallel to the slit of the flange and the slit of the float, the user will typically turn the grip member, after installation, about 90 degrees in the flange and float relative to its position shown in the figures. This way, the plane of the grip member will be transverse to the flange slit and float slit, and, hence, the grip member will be unlikely to slide out “sideways” from the float or flange.
The float shape shown in the Figures is preferred, but other shapes and sizes may be used, with the goal of providing a device total weight of less than or equal to 30 grains, and more preferably, less than or equal to 20 grains (for example, comprising a flange weight of preferably less than 10-15 grains, a float weight of about 2-8 grains, and a rubber grip member of about 1-2 grains). The float 50 gives sufficient buoyancy to the device to keep the device at or near the top surface of the water, with preferably about a ⅓ or less portion of the flange 11 above water and about a ½ portion of the float 50 above water, so that at least these portions are visible to the angler. If the flange 11 is made of a fairly clear and/or colorless material, even the portion above water may not be very visible, but preferably the float 50 is made of a closed-cell foam or other white or colored buoyant material, so that especially the portion above water will be visible. In some embodiments, a flange may be to sink further into the water than is shown in
In the embodiment of
The float 50′ of the device 110 in
The device 210 in
The hook-setting device 310 in
The embodiments portrayed in
The flange 411 in
An embodiment having a protrusion extending from the rear surface is portrayed in
A float 550 may be added to the device, for example, by sliding the float axially onto the tubular protrusion 512, so that the float surrounds and is generally coaxial with the tubular protrusion 512. Typically this is done before the grip member 560 is installed; with the float 550 in place, the preferably resilient grip member 560 may be stretched and slid sideways through slit 518, through a longitudinal/axial slit along the entire length of the float and aligned with slits 518, 513 (not shown in
The embodiment in
Other techniques may be used to attach a flange, with or without a float or other members, to a leader or line. Tying techniques other than those shown in
The preferred embodiments of the invented hook-setting device have been found to provide excellent casting, with sufficiently low weight and sufficiently low air resistance that a fly cast is not significantly interfered with. The preferred hook-setting device is fixed to the leader and does not move along the leader, after it is installed on the leader, and therefore does not move on the leader during the cast, after the cast, during or after a fish strike, or otherwise during use. Therefore, there is no movement of the device on the leader during casting and lay-out, which movement could interfere with accuracy and distance. Further, the curvature (R), the outer perimeter diameter (DP), and the flange depth (DTH) cooperate to provide excellent lay-out and water capture, which result in a high probability of a successful fish strike and of successful setting of the hook. Typically, this resistance to the fish strike and consequent hook-setting occurs within less than 1 second, and more typically within less than about 0.5 seconds, of the fish strike, because the flange is substantially filled with water as soon as it is laid-out, and there is no movement of the flange on the leader. It may take a fraction of a second to pull taught the leader (if the flowing water has momentarily caused less than a perfectly taught leader between the flange and the fly), but, because there is no movement of the flange on the line, resistance is offered immediately after that.
The preferred flange, with or without a float or other member attached to the rear of the flange, is preferably the only structure on the leader within about 8 feet of the fly. Preferably there is no structure on the leader between the front surface of the flange and the fly, and there is preferably no structure (except the leader or line) that resides in, or slides into or out of, the interior space of the cup-shaped flange, at any time during use of the apparatus. Optionally, there may be a small weight near the fly, typically within about 1 ft. of the fly, if the fly is to be a “wet fly”, or there may occasionally be a second fly on the leader, but the fly fishing setup more frequently consists only of the leader on the end of the fly line, a fly with a hook on the end of the leader, and the invented flange on the leader (with or without an attached float or other ring member fixed to the rear surface of the flange), wherein this set-up is “operated” by a conventional fly rod and reel. There is preferably no bobber or float (other than an optional float or ring member on/in the rear surface of the flange), no structure that slides in one or more directions along the leader, and no structure that is near the cup-shaped flange at any time to interfere with it capturing water and resisting the strike to set the hook. Because the preferred flanges are positioned within 2-8 feet of the fly, and there is typically nothing between the fly and the flange, except perhaps for a weight up to about 1 ft. from the fly, one may describe many preferred fishing setups as having nothing on the fly fishing leader in front of the generally concave surface of the flange within at least 1 ft. of the front surface of the flange. A protrusion in the front surface of the flange, such as described earlier in this Description and which is preferably integral with or fixed to the flange, is part of the “generally concave front surface” of the flange and not considered to be separate or additional structure between the flange and the fly; preferably a protrusion in the front surface, if present, covers less than ¼, and more preferably less than ⅙, of the total generally concave front surface area of the flange. A protrusion in the rear surface of the flange, as discussed earlier in this Description and which is preferably integral with or fixed to the flange, is part of the “generally convex rear surface”; preferably a protrusion in the rear surface, if present, covers less than ¼ and more preferably less than ⅙, of the total generally convex rear surface area of the flange. Also, if a float is attached to the rear protrusion or rear surface of the flange, the float covers preferably less than ¼, and more preferably less than ⅙, of the total generally convex rear surface area of the flange. In preferred embodiments, the entire hook-setting and strike-indicating device is fixed so that no part of the hook-setting and strike-indicating device moves along the line or leader during or after casting into water or before, during, or after a fish strike.
To illustrate the excellent hook-setting resistance that may be obtained with embodiments of the invention, despite their extremely light weight, various structures were tested for resistance in flowing water (10 foot/7 seconds flowrate) by means of a conventional fly line scale by Umpqua™. A generally cup-shaped flange according to the invention, was fixed to the leader at 6 feet from the scale and placed in the flowing water. The test operator stood in the water holding the scale upstream of the flange, so that the resistance in the water caused by the flange could be read as the “weight” reading of the scale. The cup-shaped flange had about a 1 7/16 inch radius, 1⅜ inch DP, weighed 27 grains, and exhibited 15-25 grams (averaging 20 grams) resistance (pull or “weight”) on the scale. On the other hand, spherical shapes attached to the leader at 8 feet from the fly exhibited the following: ¾ inch diameter sphere, weighing 33.1 grains exhibited 2-4 grams resistance (avg. 3 grams); a 1 inch diameter sphere weighing 60.3 grains exhibited 2-4 grams resistance (avg. 3 grams); a 1⅝ inch diameter sphere weighing 109.4 grains exhibited 7-10 grams resistance (avg. 8.5 grams); and a 2 3/16 inch diameter sphere weighing 206.2 grains exhibited 7-12 grams resistance (avg. 9-10 grams). Thus, the cup-shaped flange exhibited much greater resistance than a sphere, even though it might be much lighter in weight. In these experiments, the cup-shaped flange weighed less than any of the spheres, but exhibited 2 or more times, and up to more than 5 times, the resistance of the spheres. The preferred embodiments allow the user to obtain a large resistance in the water for excellent hook-setting, with a minimum of weight.
Although this invention has been described above with reference to particular means, materials and embodiments, it is to be understood that the invention is not limited to these disclosed particulars, but extends instead to all equivalents within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2510718 | Jun 2005 | CA | national |
This application is a continuation-in-part application of Non-Provisional application Ser. No. 11/211,847, filed Aug. 24, 2005, entitled “hook-Setting Device for Fishing,” the entire disclosure of which is incorporated herein by this reference, which is a continuation-in-part application of application Ser. No. 10/329,106, filed Dec. 23, 2002, and entitled “Improved Fly Fishing Strike Indicator,” and claims priority of Canadian Application Serial Number 2,510,718, filed Jun. 27, 2005, and entitled “Hook-Setting Device for Fishing.”
Number | Date | Country | |
---|---|---|---|
Parent | 11211847 | Aug 2005 | US |
Child | 12264366 | US | |
Parent | 10329106 | Dec 2002 | US |
Child | 11211847 | US |