The present invention is in the field of devices and methods for machine quilting, and, in particular, in the field of quilting frames and other devices and methods for the positioning and retention of fabric for sewing with a quilting machine.
Devices for machine quilting typically consist of three primary components, a frame, a sewing machine, and a machine carriage having a carriage bottom plate that travels laterally on an x-axis and a carriage top plate that travels longitudinally on a y-axis. Quilt fabric layers, which typically consist of backing fabric, batting, and top fabric, but may consist of as few as one layer of fabric or more than three layers, which single fabric layer, or multiple layers collectively, may be referred to in this application as a “quilt core”. The term “fabric layers” when used in this application, shall be defined to include a single layer of fabric. The fabric layers are rolled onto fabric layer rails and fed from the respective fabric layer rails to a take-up rail that passes through the throat of the sewing machine, suspending the fabric layers of the quilt core together to rest on the sewing machine bed. In order for the fabric layers of the quilt core to remain flat and straight, it is necessary for the fabric layer rails and the take-up rail to be longer than the quilt is wide.
For a typical quilting frame, the sewing machine is positioned on and secured to the quilting frame carriage top plate and is guided on the machine carriage to create a desired stitching pattern as the layers of fabric are quilted together. The sewing machine is guided longitudinally and laterally across the available quilting work area, which is determined by the length of the throat of the sewing machine and the width of the quilt fabric itself, the width of the quilt being limited to the width of the quilting frame. When the fabric in the work area has been sewn, the fabric is rolled forward from the fabric layer rails to the take-up rail so that the completed area is rolled onto the take-up rail which passes through the throat of the sewing machine. This also advances the fabric that has not yet been quilted into the work area and the new strip of un-quilted fabric area may then be sewn. A typical quilting frame requires that the quilt be sewed from front to back, or vice versa, with the fabric progressively being fed onto the take-up rail as each strip of the quilt core is sewed from one side of the quilt core to the other.
An alternative to machine quilting with a traditional frame is to quilt by hand, performing all the stitching without a sewing machine, simply using a needle and thread. Another alternative is to baste the three layers of fabric together using pins or small stitches later to be removed. Once the fabric is basted, the user can quilt the layers together by guiding the fabric through the machine by hand. Hoops may also used to hold small areas of the quilt flat and straight to perform the stitching. Embroidery machines, for example, use a hoop to hold the fabric and then through motor control, move the hoop while the sewing machine stitches to create the desired patterns on the fabric.
Quilting without a frame requires basting, which is time consuming. Hand quilting or quilting by using a hoop also requires basting, and moving the fabric to create the sewing patterns can be cumbersome due to the amount of fabric that has to be manipulated in a large quilt. Machine quilting on a frame is a much more convenient and expeditious way to complete a quilt. However, machine quilting on a frame requires a large frame in order to make large quilts. Many quilters do not have enough space to accommodate the large quilting frame.
An objective of the present invention is to provide an apparatus for use in machine quilting that does not incorporate a full width quilting frame.
A further objective of the present invention is to provide an apparatus for use in machine quilting that requires substantially less space than that required by a typical quilting frame.
A further objective of the present invention is to provide an apparatus for use in machine quilting that does not require basting of the fabric layers of the quilt core.
A further objective of the present invention is to provide a fabric retention and positioning apparatus for use in machine quilting that incorporates a hoop frame to hold the quilt core on all four sides of the work area to be quilted, rather than full width fabric layer rails and a full width take-up rail that passes through the throat of the sewing machine.
A further objective of the present invention is to provide an apparatus for machine quilting which incorporates a hoop frame which allows the fabric to drape around the frame instead of rolling from fabric rails onto a take-up rail.
A further objective of the present invention is to provide an apparatus for machine quilting which incorporates a hoop frame that provides for the segmented stitching of a larger size quilt while requiring a much smaller space occupied by the quilting apparatus.
A further objective of the present invention is to provide an apparatus for machine quilting which incorporates a hoop frame for which frame width is no longer a limiting factor in the size of a quilt that can be quilted.
A further objective of the present invention is to provide an apparatus for machine quilting which incorporates a hoop frame and a machine carriage.
A preferred embodiment of a hoop frame unit of the present invention is comprised of a frame support structure, a hoop frame assembly, and a machine carriage assembly. A preferred embodiment of the hoop frame assembly is comprised of a front fabric retainer, a rear fabric retainer, a first end retainer, and a second end retainer. The machine carriage assembly is supported by a front carriage track and a rear carriage track which are affixed on opposing ends to the frame support structure.
The machine carriage assembly incorporates a lateral carriage element to which carriage rollers, are affixed, which provide for the machine carriage assembly to accomplish carriage lateral movement, and a pair of longitudinal tracks, which provide for a quilting machine with an integral wheeled base, or a separate wheeled machine base to which a quilting machine may removably mounted, to provide for machine longitudinal movement on the longitudinal tracks. Whether the quilting machine itself or the quilting machine mounted on a separate wheeled machine base, is positioned on the longitudinal tracks, the quilting machine is free rolling upon the lateral carriage element, thereby providing for machine longitudinal movement concurrently with the carriage lateral movement provided by the carriage lateral element.
The front fabric retainer has a front retainer seat. The first end retainer has a first end retainer seat and the second end retainer has a second end retainer seat. A front retainer clip may be used to secure fabric to the front fabric retainer by mating with the front retainer seat after the quilt core is draped over the front fabric retainer. Likewise a first end retainer clip and a second end retainer clip may be used to mate respectively with the first end retainer seat and the second end retainer seat after the quilt core is draped over the respective end retainers.
The quilt core may be secured to the rear fabric retainer by draping the quilt core over the rear fabric retainer, and securing the quilt core in place by the rear retainer clip. The fabric loose end of the quilt core advanced into the machine throat may be rolled onto a flexible take-up spool, and, to help keep the fabric layers of the fabric loose end from interfering with the sewing of the fabric zone, the portion of the quilt core positioned between the front fabric retainer, the first end retainer, the second end retainer, and the rear fabric retainer, after the respective retainer clips are secured in place. A front retainer tightening mechanism, a first end retainer tightening mechanism, and a second end retainer tightening mechanism may be used to further tighten the fabric zone as desired for sewing by the quilting machine. The front retainer tightening mechanism, the first end retainer tightening mechanism, and the second end retainer tightening mechanism preferably have a ratchet drive.
When the quilt core is secured and the selected fabric zone is in place, the quilting machine may be operated by the user to sew the desired quilting pattern in the fabric zone. Once the sewing of the fabric zone is completed, the retainer clips are removed from the quilt core and the fabric moved and then re-secured, as desired by the user, presenting another selected fabric zone for sewing by the user. A typical quilting frame requires that the quilt be sewed from front to back, or vice versa, with the fabric progressively being fed onto a take-up rail as each strip of the quilt core is sewed from one side of the quilt core to the other. The hoop frame unit and the hoop frame assembly of the present invention, on the other hand, provide for the quilt core to be re-positioned laterally, longitudinally or diagonally, or to be rotated to any extent desired by the user. When sewing is completed on a fabric zone, the user has complete flexibility to re-position the quilt core as desired for the convenience or preference of the user as the user progresses from one fabric zone to another. The user can sequence the sewing of the fabric zones as desired and can overlap respective fabric zones on any side, in any direction, and to any extent desired.
An optional quilting machine controller with pattern matching software may also be incorporated, which allows the end points of a partially sewed pattern from a sewed fabric zone to be matched with the start points for the continued sewing of the pattern in a successive fabric zone.
Referring first to
The hoop frame assembly 5, for embodiment shown, is comprised of a front fabric retainer 11, a rear fabric retainer 41, a first end retainer 21, and a second end retainer 31. The front fabric retainer 11 is secured to the first frame end member 9 by first front retainer support member 13 and is secured to the second frame end member 10 by a second front retainer support member 15. The first end fabric retainer 21 is affixed to the first frame end member 9 by first end retainer first support member 23 and a first end retainer second support member 25. Likewise the second end fabric retainer 31 is affixed to the second frame end member 10 by second end retainer first support member 33 and a second end retainer second support member 35. The rear fabric retainer 41 is affixed to the first frame end member 9 by first rear retainer support member 43 and is affixed to the second frame end member 10 by the second rear retainer support member 45. Other variations and designs for the hoop frame assembly 5, providing for variations in the connection of the hoop frame assembly components to the frame support structure 3 and for supporting, stabilizing and positioning the frame assembly 5, will be known to persons ordinarily skilled in the art, in view of the disclosures of the specification and drawings presented.
The machine carriage assembly 6 is supported by a front carriage track 61 and a rear carriage track 55 which are affixed on opposing ends into the first frame end 9 and the second frame end 10. For the embodiment shown, front carriage rollers 63 and rear carriage rollers 57 provide for lateral carriage movement 65, and thus for the machine lateral movement 100 of a quilting machine 101 as shown in
Referring to
Referring now to
When the quilt core 103 is secured and the selected fabric zone 105 is in place as shown in
Referring now to
Referring again to
Another optional feature of the present invention may be a quilt machine controller with pattern matching software which would allow the end points of the sewing of the pattern of a fabric zone 105 to be matched with the start points for the continued sewing of the pattern in the subsequent fabric zone 105 secured in place by the user using the hoop frame assembly 5 of the present invention.
In view of the disclosures of this specification and the drawings, other embodiments and other variations and modifications of the embodiments described above will be obvious to a person skilled in the art. Therefore, the foregoing is intended to be merely illustrative of the invention and the invention is limited only by the following claims and the doctrine of equivalents.
Number | Name | Date | Kind |
---|---|---|---|
4192241 | Reed et al. | Mar 1980 | A |
4411208 | Nishida et al. | Oct 1983 | A |
4834006 | Goto | May 1989 | A |
4969410 | Brower et al. | Nov 1990 | A |
5018460 | Schilling et al. | May 1991 | A |
5040473 | Zesch | Aug 1991 | A |
5287820 | Stutznacker | Feb 1994 | A |
5540165 | Katou | Jul 1996 | A |
5860375 | Williams | Jan 1999 | A |
5913275 | Flynn | Jun 1999 | A |
6079341 | Resta | Jun 2000 | A |
6615756 | Barrus | Sep 2003 | B2 |
6792884 | Barrus | Sep 2004 | B1 |
6860211 | Valeriote | Mar 2005 | B2 |
6883446 | Koerner | Apr 2005 | B2 |
6990914 | Canan | Jan 2006 | B2 |
7011031 | Bradley | Mar 2006 | B1 |
7207281 | Kasa | Apr 2007 | B1 |
7584709 | Nakatsu et al. | Sep 2009 | B2 |
9145630 | McCoy | Sep 2015 | B2 |
20030200906 | Maag | Oct 2003 | A1 |
20120318181 | Kasa | Dec 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20150114272 A1 | Apr 2015 | US |