The present invention generally relates to shackle locks, and more particularly, but not exclusively, to locks having a removable shackle.
Shackle-type locks are commonly used to secure a portable object such as a bicycle to a stationary object such as a rack. Such locks are sometimes referred to as U-locks, hoop locks, or bicycle locks. Some locks of this type have certain limitations, such as those relating to resistance to tampering, attack, and high pull forces. Therefore, a need remains for further improvements in this technological field.
An exemplary hoop lock includes a shackle, a crossbar, and a locking assembly operable to secure the shackle to the crossbar. The shackle may include a straight foot and a bent foot, and the locking assembly may engage the straight foot and the bent foot to secure the shackle to the crossbar. Further embodiments, forms, features, aspects, benefits, and advantages of the present application shall become apparent from the description and figures provided herewith.
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and further modifications in the described embodiments, and any further applications of the principles of the invention as described herein are contemplated as would normally occur to one skilled in the art to which the invention relates.
With reference to
The shackle 110 includes an arcuate connecting portion 111 connecting a first leg 112 having a first foot 114 to a second leg 116 having a second foot 118. In the illustrated form, the legs 112, 116 are substantially parallel to one another, and the connecting portion 111 defines a semi-circle, such that the shackle 110 is substantially U-shaped. It is also contemplated that shackle 110 may be of another shape. By way of example, the connecting portion 111 may be substantially rectilinear.
The first foot 114 is substantially coaxial with the first leg 112, while the second foot 118 is angularly offset with respect to the second leg 116. As such, the first foot 114 may be considered a straight foot, and the second foot 118 may be considered an angled or bent foot. The first foot 114 includes a first notch 115, and the second foot 118 includes a second notch 119. As described in further detail below, the notches 115, 119 are engageable with the locking assembly 200 to selectively couple the shackle 110 to the crossbar 120. The shackle 110 may further include bumpers 117 adjacent the feet 114, 118.
The crossbar 120 includes a substantially cylindrical tube 122, and a sleeve 124 operable to receive a first end portion of the tube 122 such that an end cap 125 is retained on the first end of the tube 122. The crossbar 120 also includes a tube cover 126 operable to receive a second end portion of the tube 122, and may further include a dust cover 127. The tube 122 and sleeve 124 each include a first or proximal opening 128 operable to receive the first foot 114, and the tube 122 and tube cover 126 each include a second or distal opening 129 operable to receive the second foot 118. When assembled, the housing 130 and locking assembly 200 are retained within the tube 122 between the end cap 125 and the tube cover 126. During assembly, fasteners such as assembly pins 103 may be passed through openings 104 in the various elements of the crossbar 120 to secure the elements in their proper positions.
With additional reference to
The lock cylinder 210 includes a shell 212 coupled to the housing 130, and a spindle 214 which is rotatable with respect to the shell 212 upon insertion of a proper key 202. While the illustrated lock cylinder 210 is a rotary disc tumbler lock, it is also contemplated that other forms of lock cylinders, including those which utilize sliding wafers and/or pin tumblers, may be utilized. When assembled, the lock cylinder 210 is positioned in the housing 130 such that the keyway 215 thereof is aligned with openings 123 in the tube 122 and sleeve 124. The spindle 114 also includes a spindle extension 216 configured to engage the cam 220, such that when the proper key 202 is inserted and rotated, the spindle extension 216 rotates the cam 220.
While other configurations are contemplated, in the illustrated form, the lock cylinder 210 is offset from the longitudinal center of the crossbar 120, is positioned between the feet 114, 118, and is closer to the primary foot 114 than to the secondary foot 118. As such, the opening 123 in the tube 122 is also offset from the center of the crossbar 120, and is positioned longitudinally between and radially across from the openings 128, 129. Additionally, the keyway 215 is substantially parallel to a central axis of the opening 128, such that when the shackle 110 is coupled to the crossbar 120 and the key 202 is inserted, the shank of the key 202 is substantially parallel to the legs 112, 116. In embodiments which employ the dust cover 127, the dust cover 127 may also include an opening 123 which is selectively alignable with the keyway 215, such that when the dust cover opening 123 is not aligned with the keyway 215, dirt and other contaminants are blocked from entering the keyway 215.
The cam 220 is configured to translate rotary motion of the spindle extension 216 to linear motion of the bolts 230, 240, and is rotationally coupled to the extension 216. For example, the cam 220 may include an opening 222 having a geometry corresponding to that of the extension 216. The cam 220 includes a projection or protrusion 223 operable to engage the primary bolt 230, and a cam arm 224 operable to engage the secondary bolt 240. The illustrated protrusion 223 is offset from a rotational axis 226 of the cam 220, and is provided in the form of an axial protrusion. In other words, the protrusion 220 extends in the direction of the rotational axis 226. Additionally, the illustrated cam arm 224 is a radial arm which extends away from the rotational axis 226 at least partially in the radial direction. As described in further detail below, rotation of the cam 220 in a first direction causes the bolts 230, 240 to retract toward unlocking positions, and rotation of the cam 220 in a second direction causes the bolts 230, 240 to extend toward locking positions.
The primary bolt 230 includes a channel 232 sized and configured to receive the cam protrusion 223, and an engagement end 234 operable to engage the first foot 114. More specifically, the engagement end 234 is configured to be received in the first notch 115, and may have a thickness corresponding to a width of the first notch 115. The primary bolt 230 may further include an undercut 236 having a depth corresponding to a width of the secondary bolt 240, such that a portion of the secondary bolt 240 may be positioned between the primary bolt 230 and the housing 130.
The secondary bolt 240 includes a post 242 operable to engage the cam arm 224, and an engagement end 244 operable to engage the second foot 118. More specifically, the engagement end 244 is configured to be received in the second notch 119, and may have a thickness corresponding to a width of the second notch 119. The secondary bolt 240 may further include an opening 246 and a pin 247 extending through the opening 246. A spring 248 may be positioned in a cavity 139 in the housing 130 and engaged with the pin 247 such that the secondary bolt 240 is biased toward the retracted or unlocking position.
With additional reference to
With specific reference to
In the locked state, if a person were to cut the shackle 110, for example through one of the legs 112, 116 (see cut 109,
The primary foot notch 115 has a first width, the secondary foot notch 119 has a second width, and each of the engagement ends 234, 244 has a thickness corresponding to the width of the notch 115, 119 in which the engagement end is received. The notch 119 in the angled foot 118 may have a lesser width than the notch 115 in the straight foot 114. For example, the angled foot 118 may be pre-stressed due to manufacturing processes, and providing the second notch 119 with a lesser width may improve the structural integrity of the angled foot 118 as compared to if the second notch 119 were to be provided with the same width as the first notch 115.
In the locked state, the cam protrusion 223 is positioned at an end of the primary bolt channel 232, and a radially outer surface of the cam arm 224 is engaged with the secondary bolt post 242. When no key is inserted in the lock cylinder 210, the spindle 214, and thus the cam 220, cannot be rotated. As such, the protrusion 223 and cam arm 224 retain the bolts 230, 240 in extended or locking positions, thereby deadlocking the bolts 230, 240. When a proper key 202 is used to rotate the spindle 214, the spindle extension 216 causes the cam 220 to rotate in an unlocking direction (counter-clockwise in
With specific reference to
When the key 202 is subsequently rotated to transition the locking assembly 200 to the locked state, the cam protrusion 223 travels along the arcuate path 229 in the direction opposite that which it travels during the unlocking operation. (clockwise in
As the cam arm 224 rotates toward the second foot 118, the cam arm 224 urges the secondary bolt 240 in the direction of extension, thereby moving the engagement end 244 into the second notch 119. The cam arm 224 may include a rounded corner to provide for a smoother transition as the post 242 travels along the outer surface of the cam 220. As the secondary bolt 240 extends, the spring 248 is compressed between the pin 247 and the side surface of the cavity 139. Additionally, the pin 247 may slide along the inner surface of the tube 122, thereby preventing the secondary bolt 240 from pivoting during extension or retraction. In other words, the pin 247 is positioned partially between the secondary bolt 240 and an inner surface of the tube 122, thereby preventing the secondary bolt 240 from moving toward the inner surface.
As can be seen from the foregoing, the exemplary locking assembly 200 is operable in a locking state and an unlocking state. In the locking state, the bolts 230, 240 engage the feet 114, 118 to secure the shackle 110 to the crossbar 120. In the unlocking state, the bolts 230, 240 are disengaged from the feet 114, 118, and the shackle 110 can be removed from the crossbar 120. Additionally, the state of the locking assembly 200 corresponds to the rotational position of the cam 220. In other words, the locking assembly 200 is operable in the locking state in response to a first rotational position of the cam 220, and is operable in the unlocking state in response to a second rotational position of the cam 220.
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiments have been shown and described and that all changes and modifications that come within the spirit of the inventions are desired to be protected.
It should be understood that while the use of words such as preferable, preferably, preferred or more preferred utilized in the description above indicate that the feature so described may be more desirable, it nonetheless may not be necessary and embodiments lacking the same may be contemplated as within the scope of the invention, the scope being defined by the claims that follow. In reading the claims, it is intended that when words such as “a,” “an,” “at least one,” or “at least one portion” are used there is no intention to limit the claim to only one item unless specifically stated to the contrary in the claim. When the language “at least a portion” and/or “a portion” is used the item can include a portion and/or the entire item unless specifically stated to the contrary.
The present application is a divisional of U.S. patent application Ser. No. 14/738,019 filed Jun. 12, 2015 and issued as U.S. Pat. No. 10,570,647, which claims the benefit of U.S. Provisional Patent Application No. 62/011,470 filed on Jun. 12, 2014, the contents of each application hereby incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
348521 | Hillebrand | Aug 1886 | A |
1420578 | Reichstein | Jun 1922 | A |
1580574 | Segal | Apr 1926 | A |
1886912 | Shaw | Nov 1932 | A |
2282983 | Lach | May 1942 | A |
2433114 | Gray | Dec 1947 | A |
2726531 | Vile | Dec 1955 | A |
3349584 | Russell et al. | Oct 1967 | A |
3882699 | Flack et al. | May 1975 | A |
4028916 | Pender | Jun 1977 | A |
4112715 | Uyeda | Sep 1978 | A |
4241594 | Miller et al. | Dec 1980 | A |
4290280 | Yun | Sep 1981 | A |
4345447 | Keung et al. | Aug 1982 | A |
4464915 | Moshe et al. | Aug 1984 | A |
4551997 | Huang | Nov 1985 | A |
4730470 | Zane et al. | Mar 1988 | A |
4881387 | Kortenbrede | Nov 1989 | A |
4920772 | Denison | May 1990 | A |
5010746 | Zane et al. | Apr 1991 | A |
5092142 | Zane et al. | Mar 1992 | A |
5142888 | Ling | Sep 1992 | A |
5186029 | Myers | Feb 1993 | A |
5189893 | Kortenbrede | Mar 1993 | A |
5230231 | Liou | Jul 1993 | A |
5253496 | Wang | Oct 1993 | A |
5331830 | Su | Jul 1994 | A |
5372019 | Hsiao | Dec 1994 | A |
5394712 | Chou | Mar 1995 | A |
5398529 | Goldman et al. | Mar 1995 | A |
5406812 | Jaw | Apr 1995 | A |
5417092 | Iu | May 1995 | A |
5488845 | Hsieh | Feb 1996 | A |
5706679 | Zane et al. | Jan 1998 | A |
5787736 | Ling | Aug 1998 | A |
5819560 | Grahovec et al. | Oct 1998 | A |
5823021 | Chang | Oct 1998 | A |
5832762 | McDaid | Nov 1998 | A |
5839302 | Chu | Nov 1998 | A |
5931030 | Chen | Aug 1999 | A |
5950461 | Tsai | Sep 1999 | A |
5987940 | Chang | Nov 1999 | A |
6101852 | Steinbach | Aug 2000 | A |
6212922 | Miao | Apr 2001 | B1 |
6341509 | McDaid | Jan 2002 | B1 |
6666051 | Li | Dec 2003 | B1 |
6694781 | Li | Feb 2004 | B1 |
6718802 | Vito | Apr 2004 | B2 |
6725692 | Weinraub | Apr 2004 | B2 |
6761051 | Tsai | Jul 2004 | B1 |
6923027 | Kuo | Aug 2005 | B1 |
7121121 | Wyers | Oct 2006 | B2 |
7948359 | Marcelle et al. | May 2011 | B2 |
8127577 | Buhl et al. | Mar 2012 | B2 |
9163431 | Young et al. | Oct 2015 | B2 |
10557288 | Ramakrishna | Feb 2020 | B2 |
10570647 | Kindstrand | Feb 2020 | B2 |
20020053226 | McDaid | May 2002 | A1 |
20050262904 | Ling et al. | Dec 2005 | A1 |
20090282876 | Zuraski et al. | Nov 2009 | A1 |
20120318028 | Hahn | Dec 2012 | A1 |
Number | Date | Country |
---|---|---|
102140867 | Aug 2011 | CN |
103867038 | Jun 2014 | CN |
3126035 | Jan 1983 | DE |
4312033 | Nov 1993 | DE |
29618579 | Dec 1996 | DE |
19532383 | Mar 1997 | DE |
19638188 | Mar 1998 | DE |
19706560 | Jul 1998 | DE |
19937128 | Feb 2001 | DE |
202013103393 | Aug 2013 | DE |
0476229 | Mar 1992 | EP |
2020474 | Feb 2009 | EP |
2154055 | Feb 2010 | EP |
2312468 | Oct 1997 | GB |
2001090414 | Apr 2001 | JP |
9637677 | Nov 1996 | WO |
Entry |
---|
Canadian Office Action, Canadian Intellectual Property Office, Canadian Patent Application No. 3,080,378, dated Jun. 9, 2021, 3 pages. |
Extended European Search Report; European Patent Office; European Patent Application No. 20154153.8; dated Jul. 15, 2020; 14 pages. |
International Search Report; International Searching Authority; International PCT Application No. PCT/JS2015/035575; Nov. 4, 2015; 4 pages. |
Written Opinion; International Searching Authority; International PCT Application No. PCT/US2015/035575; dated Nov. 4, 2015; 6 pages. |
Canadian Office Action; Canadian Intellectual Property Office; Canadian Patent Application No. 2,954,358; dated Mar. 19, 2019; 3 pages. |
Canadian Office Action; Canadian Intellectual Property Office; Canadian Patent Application No. 2,954,358; dated Jul. 30, 2018; 3 pages. |
Chinese Search Report; State Intellectual Property Office; Peoples Republic of China; Chinese Patent Application No. 201580038154.2; dated Jun. 14, 2018; 3 pages. |
Chinese Office Action; State Intellectual Property Office; Peoples Republic of China; Chinese Patent Application No. 201580038154.2; dated Jun. 28, 2018; 9 pages. |
Extended Supplementary European Search Report; European Patent Office; European Patent Application No. 15807117.5; dated Jan. 2, 2018; 5 pages. |
Extended Supplementary European Search Report; European Patent Office; European Patent Application No. 18215734.7; dated Apr. 23, 2019; 7 pages. |
Canadian Office Action; Canadian Intellectual Property Office; Canadian Patent Application No. 3,080,378; dated Apr. 19, 2022; 3 pages. |
Number | Date | Country | |
---|---|---|---|
20200208441 A1 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
62011470 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14738019 | Jun 2015 | US |
Child | 16800536 | US |