The present application relates to the field of slide gate openers for hopper rail cars. More particularly, the described embodiments relate to a mechanized gate opener.
The present invention provides for a slide gate opener attached to a moving vehicle such as a small tractor. In one embodiment, the user sits forward on the tractor while moving on the tractor parallel to the rail line. The mechanized gate opener is attached to one end of the tractor in such as manner as to allow the gate opener to rise and fall with respect to the tractor, to tilt with respect to the tractor, and to extend away and retract back toward the tractor. In this way, the opener is able to access the pinion shaft of the slide gate of the rail car regardless of whether the tractor is elevated above or below the rail line, and regardless of whether the tractor is inclined toward or away from the rail car. When the opener has engaged the pinion shaft of the slide gate, the opener rotates so as to open or close the slide gate. In one embodiment, the gate opener is attached to the vehicle via a sturdy hinge that allows the entire opener to swivel on the hinge. Springs attached to either side of the hinge bias the opener to a center position on the hinge allowing movement in either direction at the hinge. The springs allow movement of at the hinge to compensate for misalignments between the opener shaft and the pinion shaft of the slide gate.
Hopper cars are equipped with a sliding gate (or “slide gate”) that opens and closes the discharge opening of the hopper. Typically, sliding gates operate on a rack and pinion mechanism, where a rotational motion is applied to a pinion gear, which engages a rack in order to laterally move the slide gate open and closed. Sliding gates must be open to discharge the contents of a hopper car, and closed before the hopper car is re-loaded. In addition, when rail hopper cars are to be loaded, it is often necessary to open the slide gate temporarily in order to clean some remaining product from the last shipment out of the car. This cleaning process typically takes place away from the unloading area for the hopper cars, far away from automated systems that can work only in those designated unloading areas. As a result, slide gates are usually opened and closed during cleaning via a manual process in which workers rotate the pinion gear manually with pry bars. Often the slide gates are difficult to open and close because of the age or poor maintenance of the slide gates, or because product gets trapped in the slide gate mechanism and causes the slide gate to bind or jam. Regardless of the cause, workers often find that the slide gates resist manual opening and closing, frequently causing personal injury to the workers operating the pry bars. Although automated mechanisms exist for opening and closing the slides on hopper cars, no known machine can easily do this process in remote locations such as railroad side tracks or holding yards where the cleaning operation typically takes place. Often these yards have several tracks built on loose and rough terrain that make it difficult to bring mechanized opening and closing devices to the slide gate opening mechanism. Known prior art systems that can operate a slide gate's opening mechanism will not function in this environment, as they require i) a flat, stable surface running parallel to the railroad tracks, ii) a second railroad track running parallel at a known distance from the track upon which the hopper car resides, or iii) space to approach the railroad hopper car perpendicularly which may not be possible in railroad yards with tightly spaced tracks.
Hydraulic hoses 130 run from controllers 132 positioned near the operator in order to operate the various hydraulic systems on the attachment 120. These controls 132 allow an operator to position an opener shaft 140 of the hopper gate opener 120 into the pinion portion 150 of a slide gate 152 found on a the hopper rail car 160. After positioning the opener shaft 140 to engage the pinion 150, the operator uses the controls 132 to rotate the opener shaft 140 in order to open or close the hopper slide gate 152.
As shown in
The hopper gate opener 120 is designed to turn when attached to the tractor 110, as shown schematically in
The opener 310 attaches to the tractor mount 304 of the tractor 300 via a hinge 312. The hinge 312 allows the opener 310 to swivel about a pivot point 314 with respect to the tractor 300. The hinge 312 can be made of two sections, with a first section attached to the tractor mount 304 and the second section attached to a first plate 320, with each section permanently attached to its component, such as by welding, and then connected together to form the hinge by a hinge pin. Springs 316 on either side of the hinge 312 bias the first plate 320 to a position that is relatively parallel to the front side 302 of the tractor 300.
Attached to the first plate 320 opposite to the hinge 312 and springs 316 is a turntable device or bearing 330 that is able to turn a second plate 340 with respect to the first plate 320. This turntable device 330 is available from several sources including McMaster-Carr (Elmhurst, Ill.). The turntable 330 is preferable controllable by a hydraulic cylinder 332 (see
Attached to the second plate 340 are two rails 342 extending in a vertical direction. It is upon these rails 342 that the remainder of the opener (elements 350-376) can be raised vertically with respect to the tractor 300. A third plate 350 rides along these rails 342. In one embodiment, four wheels 352 on the third plate 350 ride on or within the rails 342. The location of these four wheels 352 is shown best in
In one embodiment, the third plate 350 is elongated horizontally at portions 354. In other embodiments, the third plate 350 is attached to an extension plate (not shown) in order to form an elongated single unit. Attached at one of the horizontally elongated portions 354 are four rollers 356. In the displayed embodiment, the rollers 356 are mounted on two extension plates 357 (shown in
The fourth plate 360 rides between the four rollers 356. This plate 360 is also elongated in a horizontal direction, and is situated within the rollers 356 so as to be moveable through rotation of the rollers 356. In one embodiment, a hydraulic cylinder 358 is attached to an extension 359 of the third plate. This cylinder 358 is also attached to the fourth plate 360. One of the controls 334 located near the driver of the tractor 300 controls this cylinder, which causes the fourth plate 360 to extend and retract sideways, generally parallel to the front 302 of the tractor. This allows the controller 334 to move this fourth plate 360 toward the gate controllers of the rail cars.
Mounted on the fourth plate 360 is a hydraulic motor 372 that rotates an opener shaft 370. The motor 372 can rotate the shaft 370 in either direction, and is also controlled by one of the hydraulic controllers 334 mounted near the operator of the tractor 300. The opener shaft 370 includes a tip 374 specially configured to mate with the pinion shaft on the rail car hopper gate. In the preferred embodiment, the tip 374 is removable and replaceable, thereby allowing the opener 310 to interact with hopper gates of multiple types of rail cars. In some embodiments, a support 376 is mounted on the fourth plate 360 to support the rotating shaft 370 as it is rotated by the motor 372.
The last of the four controllers causes the motor 372 to rotate the opener shaft 370 clockwise 870 or counter-clockwise 880 to open or close the slide gate of the hopper car. As shown in
Furthermore, as shown in
At step 1230, the opener is raised or lowered so that the opener shaft is at the proper height to engage the pinion gear interface of the slide gate. At this point (step 1240), the opener shaft is extended away from the tractor and toward the pinion gear interface until the shaft tip engages with the pinion gear. Next (step 1250), the opener shaft is rotated so as to rotate the pinion gear with respect to the rack gear so as to open the slide gate of the hopper rail car. In some situations, it will be necessary to move the tractor forward or backward to keep the shaft engaged with the pinion gear if the pinion gear itself translates during the opening and closing of the slide gate.
The many features and advantages of the invention are apparent from the above description. Numerous modifications and variations will readily occur to those skilled in the art. Since such modifications are possible, the invention is not to be limited to the exact construction and operation illustrated and described. Rather, the present invention should be limited only by the following claims.
This application claims the benefit of U.S. Provisional Application No. 61/642,796, filed May 4, 2012, and U.S. Provisional Application No. 61/693,899, filed Aug. 28, 2012. Both of the above referenced patent applications are incorporated herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1374248 | Geo | Apr 1921 | A |
3409158 | Lull | Nov 1968 | A |
3444583 | Laurel | May 1969 | A |
Number | Date | Country |
---|---|---|
1193141 | Sep 1985 | CA |
Entry |
---|
Mill & Elevator Supply Co., Inc., Skidsteer Hydraulic Hopper Gate Opener, http://www.millelevatorsupply.com/product/Skidsteer—Hydraulic—Hopper—Gate—Opener-1657.html. |
The Arnold Company, Door Demon Side Shifter, Hopper Gate Door Opener, www.arnoldcompany.com. |
Number | Date | Country | |
---|---|---|---|
20130291760 A1 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
61642796 | May 2012 | US | |
61693899 | Aug 2012 | US |