Field of the Invention
The present invention is directed to a separator for gas under pressure, and more particularly to a horizontal gas coalescing filter.
Description of Related Art
During fracking, such as in the Marcellus/Utica Shale industry, wet gas exiting the well head is often fed into one or more gas coalescing filters to separate the gas from the liquid condensates or natural gas liquids (NGLs). These liquid condensates can include hydrocarbons, such as ethane (C2H6) and/or water. Coalescing is the process where liquid aerosols in a compressed gas/air system are forced to join together into large droplets. These combined droplets then can be drained away by gravity. These gas coalescing filters are typically positioned in such a manner as to have one positioned above another, however, a drawback to this arrangement is that the liquids drop down onto the gas coalescing filters positioned below.
Another type of coalescer includes a 2-phase or 3-phase deliquidizer coalescer which is vertically oriented. In these types of coalescers, the wet gas enters into a vertical tower that houses at least one vane separator and a coalescing filter element. The vane separator can remove all liquids down to approximately 10 microns. The almost dry gas then moves into the gas coalescing chamber where it is supplied through the coalescing filter element through a pleated filter element. One example of a high pressure filter/separator gas chamber is disclosed in U.S. Pat. No. 7,332,010, owned by TM Industrial Supply, Inc., the assignees of the present invention, the entirety of which is hereby incorporated in the present application. The high-pressure filter/separator utilizes Gas Flow Membrane Technology (GFM Technology®) which employs a reverse flow design through a multi-stage filtration vessel utilizing amount-to-in flow through a pleated filter.
While the 2-phase or 3-phase vertically oriented deliquidizer coalescer is extremely efficient in terms of removal of the liquid condensates from the gas, the coalescer unit can be very tall, requiring large vertical space requirements for housing the coalescer unit. Thus, a need exists which combines the efficiency of the vertically oriented coalescer while reducing the overall height requirements for the filter unit and, thus, reducing its vertical footprint.
In accordance with one aspect, the present disclosure is directed to a horizontal gas coalescing filter unit for separating liquid condensates from a gas wherein the filter unit has a reduced overall height requirement and a reduced vertical footprint. The gas coalescing filter unit comprises a first housing positioned in a first orientation, such as a substantially horizontal orientation. The first housing including an inlet and an outlet. The inlet is configured for receiving a gas under pressure wherein the gas includes the liquid condensates. The filter unit can include an impingement head and a tuyere located within the first housing. The impingement head changes the flow direction of the gas and the tuyere forces the gas outwardly in a centrifugal manner. The filter unit can also include a vane separator located within the first housing and positioned inline with the inlet and the impingement head. The vane separator can include wall portions defining a tortuous path through which the gas flows. The vane separator is configured for removing the liquid condensates from the gas. A reservoir can be provided in fluid communication with the first housing for receiving the separated liquid condensates. A second housing is in fluid communication with the first housing. The second housing is positioned in a second orientation that is different than the first orientation of the first housing, such as in a substantially vertical orientation. A coalescing filter is located within the second housing for receiving the gas exiting the vane separator and for further removing the liquid condensates from the gas. According to one embodiment, the coalescing filter can include a pleated filter and the coalescing filter can be configured to cause the gas to flow from an exterior of the pleated filter to a hollow interior of the pleated filter. According to this design, any liquid condensates separated out of the gas by the pleated filter flow out of a bottom portion of the vertical coalescing filter. A gas outlet is associated with the second housing for allowing the separated gas to exit the filter unit. According to one embodiment, the filter unit can have an overall height of approximately 72″ or less, however, it can be appreciated that some units can have an overall height that exceeds 72″. According to some designs, a lower portion of the coalescing filter can be contained within the first housing.
In accordance with another aspect of the invention, a method for filtering liquid condensates from a gas under pressure includes providing a horizontal gas coalescing filter unit having a first or horizontally oriented housing including an inlet and an outlet, the inlet being configured for receiving the gas under pressure; a vane separator located within the horizontal housing and positioned inline with the inlet, the vane separator being configured for removing the liquid condensates from the gas; a second or vertically oriented housing in fluid communication with the first housing, at least one vertical coalescing filter located within the second housing for receiving the gas exiting the vane separator and for further removing the liquid condensates from the gas; and a gas outlet associated with the second housing for allowing the separated gas to exit the filter unit. The method further includes supplying the gas under pressure into the inlet of the first housing and collecting the separated gas from the gas outlet associated with the second housing. The vane separator includes wall portions defining a tortuous path through which the gas flows. The filter unit includes a reservoir in fluid communication with the first housing for receiving the separated liquid condensates. The filter unit can also include an impingement head within the first housing positioned inline between the inlet and the vane separator. The filter unit can also include a tuyere located between the impingement head and the vane separator. The tuyere can be configured for forcing the gas outwardly in a centrifugal direction. The coalescing filter located within the second housing can include a pleated filter and the coalescing filter can be configured to cause the gas to flow from an exterior of the pleated filter to a hollow interior of the pleated filter so that any liquid condensates separated out of the gas by the pleated filter flow out of a bottom portion of the coalescing filter. According to one embodiment, the filter unit can be designed to have an overall height of approximately 72″ or less and a lower portion of the coalescing filter is contained within the first housing. According to an embodiment, the first orientation of the first housing can be substantially horizontal and the second orientation of the second housing can be substantially vertical.
In accordance with another aspect of the invention, a horizontal gas coalescing filter unit comprises a first housing including an inlet and an outlet. The first housing being positioned in a first orientation. The inlet is configured for receiving a gas under pressure wherein the gas includes liquid. The filter unit further includes a vane separator located within the first housing and positioned inline with the inlet. The vane separator is configured for removing liquid condensates from the gas. The filter unit further includes a reservoir in fluid communication with the first housing for receiving the separated liquid condensates and a second housing in fluid communication with the first housing. The second housing is positioned in a second orientation that is different from the first orientation of the first housing. The coalescing filter is located within the second housing for receiving the gas exiting the vane separator and for further removing the liquid condensates from the gas. The coalescing filter comprises a pleated filter and the coalescing filter is configured to cause the gas to flow from an exterior of the pleated filter to a hollow interior of the pleated filter wherein the liquid condensates exit through the bottom portion of the coalescing filter. A gas outlet is associated with the second housing for allowing the separated gas to exit the filter unit. The vane separator includes wall portions defining a tortuous path through which the gas flows. A reservoir can be provided in fluid communication with the first housing for receiving the separated liquid condensates. An impingement head and a tuyere can be located within the first housing where the impingement head and tuyere are positioned inline between the inlet and vane separator. The first orientation of the first housing can be substantially horizontal and the second orientation of the second housing can be substantially vertical.
These and other features and characteristics of the present invention, as well as the methods of operation and functions of the related elements of structures, and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following description with reference to the accompanying drawings, all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various figures.
For purposes of the description hereinafter, spatial orientation terms, as used, shall relate to the referenced embodiment as it is oriented in the accompanying drawing figures or otherwise described in the following detailed description. However, it is to be understood that the embodiments described hereinafter may assume many alternative variations and configurations. It is also to be understood that the specific components, devices, and features illustrated in the accompanying drawing figures and described herein are simply exemplary and should not be considered as limiting.
Reference is now made to
With continuing reference to
In stage 5, the gas stream 16 enters into the final point of separation where it is fed in a second or vertical direction into a second or vertical housing 50 that is in fluid communication with the first or horizontal housing 20. The second housing can be positioned in a second orientation that is different than the first orientation of the first housing 20. In accordance with one embodiment, the second orientation can be a substantially vertical orientation. The vertical housing includes a wall portion 52 and a vent 54 associated with the wall portion 52. According to one embodiment, the vertical housing 50 can employ a closure 53, such as disclosed in U.S. Pat. No. 7,332,010 and/or 7,850,751, both of which are owned by TM Industrial Supply, Inc., and wherein the entirety of the disclosures of these patents being hereby incorporated by reference. One or more vertical coalescing filters 60, one of which is shown in
A reservoir 70 is provided in fluid communication with the horizontal housing 20 for receiving the separated liquid condensates, as indicated by arrow 33, via the sump area that includes a series of drains, pipes, and/or valves 72, 74, 76. The reservoir 70 can be filled via gravity.
The filter unit 10 of the present invention can have an overall height of approximately 72″ or less, which is significantly less than gas coalescing chambers and/or gas separating chambers currently in use. However, it can be appreciated that the filter unit 10 can exceed 72″ depending on the size of the horizontal gas coalescing filter.
With continuing reference to
According to one embodiment, a first or lower portion L of the coalescing filter 60 can be contained within the horizontal chamber 26. A second or upper portion U can extend vertically away from chamber 26. Some of the advantages achieved by this is that when the filter 60 becomes wet and the liquid is pulled down to the bottom of the filter 60 to drip downward towards the reservoir 70, there is no upward gas flow that could pick the smaller droplets back up and re-saturate the filter 60. If the filter 60 was completely contained within the vertical housing 50 then that possibility exists. This also allows for a slower gas 16 velocity around the filter 60 since the filter 60 is not solely contained within the vertical housing 50.
While embodiments of the horizontal gas coalescing filter unit are provided in the foregoing description, those skilled in the art may make modifications and alterations to these embodiments without departing from the scope and spirit of the invention. Accordingly, the foregoing description is intended to be illustrative rather than restrictive.
This application claims priority to provisional U.S. application Ser. No. 62/184,317, filed Jun. 25, 2015, entitled “Horizontal Coalescing Filter”, the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1923598 | Walker | Aug 1933 | A |
1952281 | Ranque | Mar 1934 | A |
3010537 | Baker | Nov 1961 | A |
3364658 | Walker | Jan 1968 | A |
3618980 | Leising | Nov 1971 | A |
4187088 | Hodgson | Feb 1980 | A |
4187089 | Hodgson | Feb 1980 | A |
5282881 | Baldock | Feb 1994 | A |
5510017 | Abdullayev | Apr 1996 | A |
6080228 | Okada | Jun 2000 | A |
6083291 | Okada | Jul 2000 | A |
6168647 | Perry, Jr. | Jan 2001 | B1 |
6190438 | Parks | Feb 2001 | B1 |
6350299 | Dekker | Feb 2002 | B1 |
7332010 | Steiner | Feb 2008 | B2 |
7503950 | Håland | Mar 2009 | B2 |
7833298 | Larnholm | Nov 2010 | B2 |
7850751 | Steiner | Dec 2010 | B2 |
8066844 | Duesel, Jr. | Nov 2011 | B2 |
8721771 | Duesel, Jr. | May 2014 | B2 |
8741100 | Duesel, Jr. | Jun 2014 | B2 |
8790496 | Duesel, Jr. | Jul 2014 | B2 |
8801897 | Duesel, Jr. | Aug 2014 | B2 |
9005328 | Steiner | Apr 2015 | B2 |
9192884 | Steiner et al. | Nov 2015 | B2 |
9199861 | Duesel, Jr. | Dec 2015 | B2 |
9296624 | Duesel, Jr. | Mar 2016 | B2 |
10005678 | Duesel, Jr. | Jun 2018 | B2 |
20030115843 | Haland | Jun 2003 | A1 |
20030150324 | West | Aug 2003 | A1 |
20040065110 | Barratt | Apr 2004 | A1 |
20070044437 | Larnholm | Mar 2007 | A1 |
20080168753 | Christiansen | Jul 2008 | A1 |
20080290532 | Kooijman | Nov 2008 | A1 |
20120210688 | Burns | Aug 2012 | A1 |
20130139689 | Schook | Jun 2013 | A1 |
20150041071 | Zimmer | Feb 2015 | A1 |
20160375389 | Steiner | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
2426752 | Oct 2003 | CA |
Entry |
---|
Dragon Products LTD “Non-Heated Production Separators”, Apr. 15, 2019, pp. 2-3 https://web.archive.org/web/20190415121714/https://dragonproductsltd.corn/production-separators-2/ (Year: 2019). |
Number | Date | Country | |
---|---|---|---|
20160375390 A1 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
62184317 | Jun 2015 | US |