1. Field of the Invention
This invention relates to a horizontal hotpress system for hot-pressing boards.
2. Description of the Related Art
Regarding a horizontal hotpress system (hotpress) for hot-pressing boards (boards-to-be-processed) such as plywood, decorative sheets and veneers, so as to form them to have a predetermined thickness, the horizontal system is known, which sends a plurality of boards in a standing state between a plurality of hot plates disposed, and hot-presses them by driving at least one of press plates disposed at the both outer sides. This horizontal system (horizontal hotpress) has an advantage of less likely causing unevenness by forming (unevenness of thickness) influenced by the weight of the boards or hot plates themselves, compared to the vertical method (vertical hotpress) which vertically and alternately piles up boards and hot plates held horizontally to be hot-pressed.
Further, this horizontal hotpress generally sends the boards to a press system, having one long side (lower side) of the rectangular boards as a conveying reference plane, and orients the pressing positions of two press cylinders (hydraulic cylinders) disposed in a long side direction of the rectangular boards (horizontally) to a center position of a short side (vertically) of the boards, so as to be hot-pressed. In this regard, the pressing process is conducted, based on supposition (assumption) that “by pressing an object-to-be-processed of boards and hot plates stacked in layers with a predetermined driven pressure, the entire thickness of the object-to-be-processed (consequently, thicknesses of the respective laminated boards which are hot-pressed boards) after hot-pressing can be finished within an allowable size range (setting range) according to the driven pressure”. (Referred to Patent Document 1).
However, the boards have different characteristics depending on its material (wood material). For example, regarding tree species being hard and having relatively high elasticity and repulsive force (hard board) such as zelkova, lauan or the like, the laminated boards after hot-pressing can become easily thicker than specified (can easily exceed the upper limit of the setting range), due to bounce phenomenon (spring-back) by repulsion. On the other hand, regarding tree species being soft and having relatively low elasticity and repulsive force (soft board) such as cedar, paulownia or the like, its thickness can be easily decreased by pressing, and
the laminated boards after hot-pressing can become easily thinner than specified (can easily go below the lower limit of the setting range). Also, even with the same tree species, sometimes they have different characteristics according to the tree's growing environment (production area) or the boards' region (e.g. the knar region is hard).
Therefore, according to the Patent Document 1, it cannot deal with these differences by the board materials (tree species, production areas, regions or the like) only by pressing the object-to-be-pressed with a specified driven pressure, and thus there are possibilities that the thickness of the laminated boards after hot-pressing can be out of specification. They become irregular products, can easily degrade the product (boards) yield ratio, and increase the board production costs. Of course, this irregular product occurrence can be suppressed to some extent by setting a target value (standard value) and a target range (allowable range) of the driven pressure according to the board material in details. However, in order to conduct such setting, not only a great deal of knowledge of the raw woods (tree species and production areas) and a great deal of proficiency of the pressing operation are required, but also change of the hot-press or the control method could be required according to soft boards or hard boards.
The problem of this invention is to provide a horizontal hotpress system which comprises an opening-closing cylinder for opening and closing the press plates other than a plurality of the press cylinders for pressing the press plates, so as to easily improve yield ratio of the boards (laminated boards) after hot-pressing by measuring thickness size of the object-to-be-processed while hot-pressed, according to an operation distance of the opening-closing cylinder. Alternatively, it is to provide a horizontal hotpress system which can maintain thickness of the boards (laminated boards) after hot-pressing within the allowable size range, for example, regardless of the board material to be sent in, by controlling drive of a plurality of the pressing cylinders according to an operation distance of the opening-closing cylinder and driven pressures of the press cylinders.
In order to solve the above problems, a horizontal hotpress system of this invention manufactures a plurality of wooden laminated boards all at once, by
constructing an object-to-be-processed by sending stacked boards of veneers applied adhesive on bonding surfaces respectively in a standing position between a plurality of hot plates disposed, so as to be superposed in a thickness direction, and hot-pressing the boards by driving at least one of press plates disposed on both outer sides in a superposition direction of the object-to-be-processed,
and further comprising;
thickness size at a center region of the entire object-to-be-processed while hot-pressed can be measured, according to the operation distance of the opening-closing cylinder detected by the distance detecting means.
The horizontal hotpress system comprises not only a plurality of the press cylinders (e.g. four hydraulic cylinders (fluid pressure cylinders)) for pressing the press plates, but also the opening-closing cylinder (e.g. one hydraulic cylinder (fluid pressure cylinder)) for opening and closing the press plates. Also, the yield ratio of the boards (laminated boards) after hot-pressing can be easily improved by measuring thickness size of the object-to-be-processed while hot-pressed, according to an operation distance of the opening-closing cylinder.
Further, it comprises;
In this way, drive of a plurality of the press cylinders are controlled (jointly or individually) according to the operation distance of the opening-closing cylinder (e.g. a ram displacement of the opening-closing cylinder) and the driven pressures of the press cylinders (e.g. inner pressures of the press cylinders), and thus thickness of the boards (laminated boards) after hot-pressed can remain within the allowable size range, for example, regardless of the board material to be sent in. In this regard, drive of the respective press cylinders can be immediately controlled (jointly or individually) according to the detected values (operation distance and driven pressures) obtained from the opening-closing cylinder and the press cylinders, and thus the control can be simplified and accelerated. Also, as a pressure detecting means which detects driven pressures applied to the press cylinders, for example, a pressure sensor, which detects inner pressures of the press cylinders, can be used. Also, as a distance detecting means which detects an operation distance of the opening-closing cylinder, for example, a linear encoder, which detects a ram displacement of the opening-closing cylinder, can be used. Further, the above pressure detecting means can be provided to only any one of the press cylinders, and drive of the respective press cylinders can be controlled jointly. Whereas, when a plurality of the opening-closing cylinders are disposed, the above distance detecting means can be provided to any one of the opening-closing cylinders.
Further, the hotpress or control method does not have to be changed according to the board material (e.g. hard boards or soft boards), thus proficiency of the hot-pressing operation is not required and the control can be simplified and accelerated. Also, Not thickness of each board (laminated boards) after hot-pressing, but entire thickness of the object-to-be-processed (the boards and the hot plates) is detected as the operation distance of the opening-closing cylinder, and then time consumed for the detection can be reduced. Accordingly, it can be prevented to have thickness of the boards (laminated boards) after hot-pressing out of the specification (e.g. too thin), due to delay of control (e.g. delay of arrest of the press cylinders).
Moreover, when a opening-closing cylinder exclusively for opening and closing the press plates is provided other than the press cylinders, and thus the opening-closing cylinder, which requires high speed shifting in a long span, and the press cylinders, which requires fine shifting in a short span, can be used selectively. Therefore, acceleration of opening-closing movement of the press plates improves operation efficiency of the hot-press, and also drive control of the press cylinders can be conducted highly accurately without influence of opening-closing movement of the press plates.
Also, a plurality of the press cylinders may be fixed styled having fixed pressing positions, mobile styled being able to shift (elevate) a pressing position to a direction intersecting (orthogonal) the sending direction of the boards (e.g. vertically), or combined styled of combining the both. In this regard, when a plurality of the cylinders are fixed styled partially or entirely, the pressing position control-to-shift features of the pressing cylinders can be simplified.
When a plurality of the press cylinders press the object-to-be-pressed, under a condition of having the driven pressures detected by the pressure detecting means within a predetermined target range, drive of a plurality of the press cylinders can be controlled so as to have the operation distance detected by the distance detecting means within a predetermined setting range.
The consistent hot-pressing process can be conducted regardless of the board material being sent in, and thus the thickness of the boards (laminated boards) after hot-pressed can be easily remain within the allowable size range. That means, the hot-pressing process or control method does not have to be changed according to the board material (e.g. hard boards or soft boards), thus proficiency of the hot-pressing operation is not required, and the control can be simplified and accelerated. Also, the opening-closing cylinder shifts further to a closing direction of the press plates (however, hardy any driven pressure occurs), while a plurality of the press cylinders press the object-to-be-processed, and at that time the distance detecting means can detect an operation distance (e.g. a ram displacement of the opening-closing cylinder).
By the way, a plurality of the press cylinders can be disposed (radially so as to surround the opening-closing cylinder as a center, and also) so as to have pressing positions to the pressing surfaces of the press plates equally distanced from the opening-closing cylinder respectively. Herewith, a plurality of the press cylinders are driven to press the press plates concurrently, and then the respective driven pressures of the press cylinders acts concurrently and equally on the press plates.
For example, a plurality of the press cylinders can be constructed an even number of fixed press cylinders having fixed pressing positions to the pressing surfaces of the press plates, and also the fixed pressing positions can be disposed to be point-symmetrical as well as line-symmetrical to each other to the opening-closing cylinder.
In this way, further simplification can be achieved, as no pressing position control-to-shift feature of the pressing cylinder needs to be provided, by having all the pressing cylinders as fixed ones. Also, when the respective pressing positions are disposed point-symmetrically as well as line-symmetrically to each other to the opening-closing cylinder, driven pressures of the relative press cylinders can act on the press plates concurrently and equally.
Specifically, when the four press cylinders are disposed to be point-symmetrical to each other to the opening-closing cylinder,
the opening-closing cylinder is disposed at an intersection of a pair of straight lines intersecting on the pressing surface, whereas
Also, when the above four press cylinders are disposed to be point-symmetrical as well as line-symmetrical to each other to the opening-closing cylinder, it can be described that,
supposed a pair of straight lines intersecting at a fixed point by connecting two points equally distanced from the fixed point being set on the pressing surface and each point point-cymmetrical to the fixed point,
the opening-closing cylinder is disposed at an intersection of a pair of the straight lines which is the fixed point being set on the pressing surface, whereas
a plurality of the press cylinders are respectively disposed at each point so as to be point-symmetrical to the two points and the fixed point.
Alternatively, the boards are sent in having one long side of a rectangle shape as a conveying reference plane, and a press cylinder, disposed at least closer to the conveying reference plane than the opening-closing cylinder, of a plurality of the press cylinders can be constructed as a fixed press cylinder having a fixed pressing position.
In this way, some (e.g. two of the four) or all of a plurality of the press cylinders are fixed press cylinders, and so that the pressing position control-to-shift features of the pressing cylinders can be simplified. Further, a plurality of the press cylinders can be disposed dispersively to be aligned to a plurality of lines (e.g. two lines), having the pressing positions along the conveying reference plane. In this way, by aligning a plurality of the press cylinders to a plurality of lines along the conveying reference plane, driven pressures of the press cylinders can be set commonly for the press cylinder group aligned on the same line having the same distance from the conveying reference plane, and thus the pressing control can be achieved smoothly.
Specifically, a plurality of the press cylinders can include;
a plurality of fixed press cylinders disposed on a region closer (lower side) to the conveying reference plane than the opening-closing cylinder, and also having fixed pressing positions; and
similarly a plurality of mobile press cylinders disposed on a region farther (upper side) from the conveying reference plane, and also having pressing positions shiftable (vertically) to the pressing positions of the fixed press cylinders.
In this way, the pressing position control-to-shift feature of the press cylinders can be simplified by having some of the press cylinders as fixed press cylinders (e.g. two of the four). Also, as having the press cylinders on a farther side from the conveying reference plane (e.g. the other two) being position-shiftable as mobile press cylinders, even if the board size changes and then a relative positional relation with the boards (the conveying reference plane and the opposite long side) changes, the pressing positions of the mobile press cylinders can be shifted. Further, for example, an elevator hydraulic cylinder (fluid pressure cylinder) can be used as the pressing position control-to-shift feature for the mobile press cylinders. In this way, when the board size changes, this can suppress an adjusted width of the driven pressures of the press cylinders (allowable difference of the target value) and an adjusted width of the operation distance of the opening-closing cylinder (allowable difference of the setting value) to a small width.
Hereinafter, embodiments of this invention will be explained, referring to embodiments shown in the attached drawings.
The hotpress 100 comprises a pair of fixed frames 103F, 103B disposed over an upper pair and a lower pair of cross beams 101L, 101R, 102L, 102R disposed vertically (in a standing direction) and horizontally (in a sending direction; in a feeding direction) being spaced at respective predetermined intervals (referred to
On the bottom of the hot plates 130, a roller conveyer 160 (conveying member) is disposed, by which the boards-to-be-processed W1 are supported in a standing state from the bottom, and sent-in from the loader 200 to the hotpress 100. In order to send in the boards-to-be-processed W1, the roller conveyer 160 comprises a plurality (e.g. four) of claw rollers 161 having a width of the longitudinal direction so as to reach an entire sending-in route K (referred to
The loader 200 is disposed on the sending-in side (upstream of the sending direction (back side)) of the hotpress 100. The loader 200 is provided with a pair of chain conveyers 202L, 202R (endless members) spaced at a predetermined interval at left and right on a mounting 201. The chain conveyers 202L, 202R are provided with a loader shelf 203. A sending-in conveyer 210 (sending-in member) is disposed on the mounting 201, in order to pass the boards-to-be-processed W1 in a standing state to the roller conveyer 160 of the hotpress 100. The sending-in conveyer 210 comprises a plurality (e.g. four) of claw rollers 211 having width of the longitudinal direction so as to reach the entire boards-to-be-processed W1 (the sending-in route K, referred to
The unloader 300 is disposed on the sending-out side (downstream of the sending direction (front side)) of the hotpress 100. The unloader 300 is disposed with a pair of chain conveyers 302L, 302R (endless members) spaced at an predetermined interval at left and right on a mounting 301. The chain conveyers 302L, 302R are provided with a loader shelf 303. A sending-out conveyer 310 (sending-out member) is disposed on the mounting 301, in order to receive the processed boards W2 in a standing state from the roller conveyer 160 of the hotpress 100. The sending-out conveyer 310 comprises a plurality (e.g. four) of claw rollers 311 having a width of the longitudinal direction so as to reach the entire processed boards W2.
Next,
In order to heat the boards-to-be-processed W1 standing vertically being sandwiched, when the press is closed, the respective transfer rollers 105L, 105R are connected to a top side of the hot plates 130, and a plurality of these hot plates 130 are suspended anteroposteriorly in a parallel state, so as to make up a hot plate group. Also, when the press is open, in order to insert the boards-to-be-processed W1 between the hot plates 130, the contiguous hot plates 130 are positioned parallel in a sending direction, maintaining predetermined intervals. Further, steam, hot oils or the like are filled in the hot plates 130, and the temperature is maintained according to the kind of the boards-to-be-processed W1.
Also, a pair of the press plates 140F, 140B at front and back are provided, which connect to the hot plates 130 of the hot plate group, and move the hot plates 130 back and forth, in order to conduct press-closing and press-opening. The press plates 140F, 140B are disposed, being opposed to the respective hot plates 130 positioned on both front and back sides of the hot plate group, and suspended being mobile freely to back and forth, having the transfer rollers 105L, 105R connected to a top side of the press plates 140F, 140B. Also, the press plates 140F, 140B connect to the rams 153L, 153R of the press cylinders 150L, 150R provided on the fixed frames 103L, 103B, so as to be able to travel back and forth freely by the rams 153L, 153R. Further, the press plates 140F, 140B in
In this embodiment, the rams 153L, 153R of the press cylinders 150L, 150R are fixed to the press plates 140F, 140B respectively, so as to fix pressing positions to the pressing surfaces 141 of the press plates 140F, 140B. Then, around centers (center areas) of the pressing surfaces 141, and at both outer sides of the press plates 140F, 140B, a ram 183 of an opening-closing cylinder 180 (hydraulic cylinders; fluid pressure cylinders) is disposed (fixed), which moves the press plates 140F, 140B closer to and away from each other for closing and opening (referred to
Accordingly, the boards-to-be-processed W1 in a standing state are sent between the hot plates 130, having one long side (bottom side) of the rectangle as a conveying reference plane B (referred to
Next,
As shown on the alignment relation view of
The opening-closing cylinder 180 comprises a opening-closing linear encoder 181 (displacement detecting means; distance detecting means), which detects a decreased amount D1−D2 of the entire thickness of the object-to-be-processed W as a displacement (operation distance) of the ram 183, when the object-to-be-processed W is hot-pressed by the press cylinders 150L, 150R from a closed state of the press plates 140F, 140B (the size of the entire thickness size D1; referred to
As shown on a schematic circuit diagram of the hydraulic pressure of
An electromagnetic switching valve 185, which is a 4-port and 3-position switching type, is disposed between a opening-closing cylinder hydraulic pressure pump 184, which is a variable capacity driven by the electrical motor 108, and the opening-closing cylinder 180. The electromagnetic switching valve 185 connects the hydraulic pump 184 and the opening-closing cylinder 180 to a closing direction of the press plates 140F, 140B when switched from the neutral position a to the position b, and connects to a opening direction of the press plates 140F, 140B when switched to the position c. Also, in order to control drive of the opening-closing cylinder 180 highly accurately, it is desirable to apply PWM control based on duty ratio (so called duty control) or the like to the electromagnetic switching valve 185.
In this way, the press cylinders 150L, 150R are configured as two fixed ones having fixed pressing positions to the pressing surfaces 141 of the press places 140F, 140B, and thus configuration of the hot-press 100 can be simplified. Also, drive of the respective press cylinders 150L, 150R is not controlled individually (controlled jointly), and thus the hydraulic pressure circuit can be simplified.
As shown in a block chart of
As shown in
Size selecting switch 10: switching signals when manually inputting selections by pressing a button or the like or inputting data for size of the boards-to-be-processed W1;
Material selecting switch 11: switching signals when manually inputting selections by pressing a button or the like or inputting data for material (hard board, soft board) of the boards-to-be-processed W1;
Opening-closing cylinder linear encoder 181: detection signals of displacement of the ram 183 of the opening-closing cylinder 180; and
Pressure sensors for press cylinders 151L, 151R: detection signals of cylinder inner pressures of the press cylinders 150L, 150R.
Similarly, the following signals are output from the control board 20 to respective devices of the hotpress 100 through the input-output interface 24.
Opening-closing cylinder 180: Control output signals for opening and closing by moving the press plates 140f, 140b (the pressing surfaces 141) closer to and away from each other.
Press cylinders 150L, 150R: Control output signals for pressing the press plates 140F, 140B (the pressing surfaces 141) concurrently and hot-pressing the object-to-be-processed W (the boards-to-be-processed W1);
Next, by using the flow chart on
On the pressing process shown in
Specifically, firstly on S1, size (6-shaku board, 8-shaku board, 10-shaku board or the like) and material (hard board, soft board, or the like) of the boards-to-be-processed W1 is input manually with the size selecting switch 10 and the material selecting switch 11. According the inputs, fine adjustment is conducted, referring to the selecting tables 23b, 23c of the ROM 23 (
When a press starting switch (not shown) is turned to ON (YES on S4), the electromagnetic switching valve 185 is turned to the position b on S5, the opening-closing cylinder 180 is driven to close the press plates 140F, 140B, and then the drive is temporarily stopped by detection of the linear encoder 181. After that, on S6, the press cylinders 150L, 150R are concurrently driven to press the press plates 140F, 140B (the opening-closing cylinder 180 concurrently restarts drive to close the press plates 140F, 140B, however hardly any driven pressure occurs).
When the cylinder inner pressures of all the press cylinders 150L, 150R reach to the lower limit P−ΔP (6.7 MPa here) of the target range P+−ΔP or more (Yes on S7), it is determined if the cylinder inner pressures are the upper limit P+ΔP (7.3 MPa here) of the target range P+−ΔP or less on S8. As shown in
Also, when any inner pressure of the press cylinder 150L, 150R exceeds the upper limit P+ΔP (NO on S8), and also when the ram displacement of the opening-closing cylinder 180 is out of the setting range S+−ΔS (No on S9), alarm for this matter is set off so as to terminate the process on S12, because of large possibility of irregular products.
As described above, the yield ratio of the processed boards W2 can be improved easily by measuring the entire thickness size of the object-to-be-processed W while hot-pressing based on the ram displacement of the opening-closing cylinder 180. Moreover, even when size or material of the processed boards-to-be-processed W1 changes, by controlling drive of the press cylinders 150L, 150R jointly, the thickness of the processed board W2 can be maintained within the allowable size range. Accordingly the press cylinders 150L, 150R, having a rigid and heavy structure, do not have to be provided with a pressing position control-to-shift feature for aligning the pressing position, and thus the structure can be simplified, and the manufacturing cost required for assembling and installation and the running cost required for operation and repair can be reduced.
Operations of the respective press cylinders 150L, 150R can be controlled immediately based on the detected value of the ram displacement obtained from the opening-closing cylinder 180 and the detected values of the cylinder inner pressures obtained from the respective press cylinders 150L, 150R, so as to achieve simplification and acceleration of the system. Further, Not individual thicknesses of the processed boards W2 but the decreased amount D1−D2 of the entire thickness of the object-to-be-processed W (the boards-to-be-processed W1+the hot plates 130) is detected as the ram displacements, and then time consumed for the detection can be reduced. Accordingly, it can be prevented that uneven thickness of the processed boards W2 is caused by inclination of the press plates 140F, 140 B or irregular thickness is caused by delay of stopping the press cylinders 150L, 150R due to delay of the control.
Moreover, the opening-closing cylinder 180 exclusively for opening and closing the press plates 140F, 140B is provided other than the press cylinders 150L, 150R, and then the opening-closing cylinder 180, which requires high speed shifting in a long span, and the press cylinders 150L, 150R, which requires fine shifting in a short span, can be used selectively. Therefore, acceleration of opening-closing movement of the press plates 140F, 140B improves operation efficiency of the hotpress, and also the drive control of the press cylinders 150L, 150R can be conducted highly accurately without influence of opening-closing movement of the press plates 140F, 140B.
Also, the structure can be simplified further by omitting the pressure sensors for press cylinders 151L, 151R and showing the ram displacement (or the entire thickness size of the object-to-be-processed W) detected with the opening-closing cylinder linear encoder 181 on the ram displacement display 106 or storing it on the RAM 23. Also, a pressure sensor for press cylinder can be provided only at one of the press cylinders 150L, 150R, and drive of the press cylinders 150L, 150R may be controlled jointly. Alternatively, drive of the press cylinder 150L, 150R can be controlled individually, based on the detected values of the cylinder inner pressures by the pressure sensors for press cylinders 151L, 151R and the detected value of the ram displacement by the opening-closing cylinder linear encoder 181. In this case, on the flow chart of
Then, elevator cylinders 170L, 170R (hydraulic cylinders; fluid pressure cylinders) are provided as pressing position control-to-shift features of the press cylinders 150L, 150R. Also, the elevator cylinders 170L, 170R comprise photoelectric sensors for elevator cylinders 171L, 171R (shift detecting means), which detect positions of the press cylinders 150L, 150R shifting up or down.
As shown on the schematic circuit diagram of the hydraulic pressure of
As shown on the block chart of
Accordingly, the flow chart of the pressing process explained for the embodiment 1 (
Regarding the pressing process shown in
In this way, the press cylinders 150L, 150R are constructed as two mobile styled (elevating styled) ones being able to shift pressing positions up and down to the pressing surfaces 141 of the press plates 140F,140B, and thus even when the relative positional relation with the boards-to-be-processed W1 (the long side opposed to the conveying reference plane B) changes due to size change of the boards-to-be-processed W1, the pressing positions of the mobile press cylinders 150L, 150R can be shifted. Accordingly, when the size of the boards-to-be-processed W1 changes, adjusted ranges (allowable difference ΔP of the target value P) of the cylinder inner pressures of the press cylinder 150L, 150R and an adjusted range (allowable difference ΔS of the setting value S) of the ram displacement of the opening-closing cylinder 180 can be kept small.
Regarding the hotpress 100 (hot-pressing member; press structure) shown on the alignment view of
More specifically, the opening-closing cylinder 180 is disposed at an intersection O′ of a pair of straight lines which intersect on the pressing surface 141, and the respective press cylinders 150RH, 150LH, 150LL, 150RL are disposed, having the intersection O′ therebetween, on the respective straight lines so that all the intervals L′ to the intersection O′ are equal. Alternatively, it could be described that, supposed a pair of straight lines which intersect at a fixed point O′ by connecting two points having an equal distance L′ from the fixed point O′ set on the pressing surface 141 and each point which is point-symmetrical to the fixed point O′, the opening-closing cylinder 180 is disposed at an intersection of a pair of two lines, which is the fixed point O′ on the pressing surface 141, and the respective press cylinders 150RH, 150LH, 150LL, 150RL are disposed at respective points which are point-symmetrical to the two points and the fixed point O′.
Also, the four press cylinders 150LH, 150RH, 150LL, 150RL are disposed dispersively so as to have the pressing positions to the pressing surfaces 141 of the press plates 140F, 140B to be aligned on two top and bottom lines along the conveying reference plane B (the roller conveyer 160). That means, the upper-left press cylinder 150 LH and the upper-right press cylinder 150 RH disposed in an upper area farther from the conveying reference plane B than the opening-closing cylinder 180 are on the upper line, and the lower-left press cylinder 150 LL and the lower-right press cylinder 150 RL disposed in a lower area closer to the conveying reference plane B are on the lower line. In this way, inclination of the boards-to-be-processed W1 less likely occurs during hot-pressing by disposing the press cylinders 150LH, 150RH, 150LL, 150RL evenly to the pressing surfaces 141 of the press plates 140F, 140B.
The respective press cylinders 150LH, 150RH, 150LL, 150RL comprise pressure sensors for press cylinders 151LH, 151RH, 151LL, 151RL (pressure detecting means) detecting pressing pressure of the press plates 140F, 140B as cylinder inner pressures (driven pressures). Also, ram displacement displays 106 and cylinder inner pressure displays 107LH, 107RH, 107LL, 107RL are provided to display detected values of the opening-closing cylinder linear encoder 181 (displacement detecting means; distance detecting means) and the pressure sensors 151LH, 151RH, 151LL, 151RL through a transmitter (sending device) or the like.
As shown on a schematic circuit diagram of the hydraulic pressure of
In this way, the press cylinders 150LH, 150RH, 150LL, 150RL are constructed as four fixed ones which have fixed pressing positions to the pressing surfaces 141 of the press plates 140F, 140B, and thus the structure of the hotpress 100 can be simplified further. Also, the block chart of
Regarding this embodiment, the flow chart for the pressing process explained for the embodiment 1 (
As shown on the schematic circuit diagram of the hydraulic pressure of
As shown on the block chart of
Regarding this embodiment, the flow chart for the pressing process explained for the embodiment 2 (
In this embodiment, the upper lined press cylinders 150LH, 150RH are constructed as mobile styled (elevating styled) ones being able to shift pressing positions up and down. Thus even when the height position of the upper side of the boards-to-be-processed W1 changes due to size change of the boards-to-be-processed W1, the pressing positions of the upper lined press cylinders 150LH, 150RH can be adjusted. Accordingly, when the size of the boards-to-be-processed W1 changes, adjusted ranges (allowable difference ΔP of the target value P) of the cylinder inner pressures of the press cylinders 150LH, 150RH and an adjusted range (allowable difference ΔS of the setting value S) of the ram displacement of the opening-closing cylinder 180 can be kept small.
As shown on the schematic circuit diagram of the hydraulic pressure of
As shown on the block chart of
Regarding this embodiment, the flow chart for the pressing process explained for the embodiment 2 (
In this embodiment, additionally to the upper lined press cylinders 150LH, 150RH, the lower lined press cylinders 150LL, 150RL are also constructed as two mobile styled (elevating styled) ones being able to shift pressing positions up and down. Thus even when the height position of the upper side of the boards-to-be-processed W1 changes due to size change of the boards-to-be-processed W1, the pressing positions of the upper lined press cylinders 150LH, 150RH as well as the lower lined press cylinders 150LL, 150RL can be adjusted. Accordingly, when the size of the boards-to-be-processed W1 changes, adjusted ranges (allowable difference ΔP of the target value P) of the cylinder inner pressures of the press cylinders 150LH, 150RH 150LL, 150RL and an adjusted range (allowable difference ΔS of the setting value S) of the ram displacement of the opening-closing cylinder 180 can be kept small.
Number | Date | Country | Kind |
---|---|---|---|
2008-207950 | Aug 2008 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/063331 | 7/27/2009 | WO | 00 | 12/20/2010 |