This application is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 2004-338540, filed on Nov. 24, 2004, the entire contents of which are incorporated herein by reference.
The disclosure relates to a horizontal rotary hook for a sewing machine which includes an inner bobbin case holder for accommodating a bobbin and an outer rotating hook for accommodating the bobbin case holder, and more particularly to such a horizontal rotary hook in which the rotating hook includes a peripheral wall having an end defining a needle-thread passing opening.
A horizontal rotary hook providing an easy replacement of a bobbin has conventionally been used in sewing machines. The horizontal rotary hook comprises an outer rotating hook having a sliding surface and an inner bobbin case holder accommodating a thread bobbin therein and supported in the rotating hook so as to be rotatable relative to the sliding surface. The rotating hook is formed into a cylindrical container with an upper opening. The rotating hook includes a peripheral wall on which a loop seizing beak is provided for seizing a loop of needle thread and which has a needle-thread passing opening through which a needle thread seized by the beak passes. The rotating hook is rotated in a predetermined direction by a sewing machine motor.
The bobbin case holder is made of a synthetic resin so that a reduction is achieved in the weight and production cost thereof. Furthermore, the rotating hook has also been made of a synthetic resin recently. For example, JP-U-S60-149388 discloses a horizontal rotary hook in which a beak member necessitating durability is made of a metal and mounted on the rotating hook so as to be laid on an inner surface of the peripheral wall of the rotating hook. Furthermore, JP-A-S58-97390 discloses a horizontal rotary hook in which a separate hook beak and a separate needle guard (a beak member) are disposed in an opening defined in the peripheral wall of the rotating hook to be mounted to the peripheral wall by small screws. The document discloses nothing about a material for the rotating hook.
However, the peripheral wall of the rotating hook is made of a synthetic resin in the horizontal rotary hook disclosed by the former reference, JP-U-S60-149388. Accordingly, an end of the rotating hook defining the needle-thread passing opening particularly has a low strength, so that there is a possibility that the end may be deformed or broken. On the other hand, in the horizontal rotary hook disclosed by the latter reference, JP-A-S58-97390, a part of the peripheral wall near the opening has an excessively large thickness, whereupon a predetermined strength is ensured. However, this results in another problem that a size of the rotating hook is increased.
Therefore, an object of the disclosure is to provide a horizontal rotary hook for a sewing machine, in which the rotating hook is made of a synthetic resin and the strength of the peripheral wall of the rotating hook can be increased while an increase in the size of the rotating hook can be limited.
In one aspect, the disclosure provides a horizontal rotary hook for a sewing machine, comprising a bobbin case holder accommodating a bobbin, a rotating hook made of a synthetic resin, and accommodating the bobbin case holder and rotated in a predetermined direction, the rotating hook including a peripheral wall and a peripheral end, a needle-thread passing opening formed in the peripheral wall of the rotating hook so as to be defined at least by a peripheral end of the peripheral wall, and a reinforcing rib provided on the peripheral wall of the rotating hook so as to be located in the vicinity of the peripheral end defining the needle-thread passing opening.
Since the reinforcing rib is formed in the vicinity of the peripheral end defining the needle-thread passing opening of the rotating hook, the strength of the end of the peripheral wall facing the opening can be increased while an increase in the thickness of the peripheral wall of the rotating hook is limited. Furthermore, the entire size of the horizontal rotary hook can be prevented from being increased and accordingly, the production cost can be reduced.
In another aspect, the disclosure provides a horizontal rotary hook for a sewing machine, comprising a bobbin case holder accommodating a bobbin, a rotating hook made of a synthetic resin, and accommodating the bobbin case holder and rotated in a predetermined direction, the rotating hook including a peripheral wall and a peripheral end, a needle-thread passing opening formed in the peripheral wall of the rotating hook so as to be defined at least by a first peripheral end of the peripheral wall, an enlarged opening formed in the peripheral wall of the rotating hook so as to be defined at least by a second peripheral end of the peripheral wall of the rotating hook and so as to be continuous to the needle-thread passing opening, a beak member separate from the rotating hook and mounted on the rotating hook so as to close the enlarged opening, and a reinforcing rib provided on the peripheral wall of the rotating hook so as to be located in the vicinity of at least one of the first peripheral end defining the needle-thread passing opening and the second peripheral end defining the enlarged opening.
The beak member is mounted on the rotating hook so as to close the enlarged opening although the beak member is separate from the rotating hook. Accordingly, since the peripheral wall and the beak member are avoided being laid on each other, the size of the rotating hook can be prevented from being increased. Furthermore, provision of the reinforcing rib can increase the strength of the end of the peripheral wall facing the needle-thread passing opening and the enlarged opening while an increase in the thickness of the peripheral wall of the rotating hook is limited.
Furthermore, the aforesaid reinforcing rib may be provided on an inner surface of the peripheral wall. As a result, an outward force applied to the peripheral wall, namely, a tensile stress applied to the reinforcing rib can sufficiently be coped with, whereupon high reinforcing effect can be achieved. Furthermore, the reinforcing rib may be formed into a generally triangular shape. Additionally, when being sized so that a gap is defined between a sewing needle and the reinforcing rib in sewing, the reinforcing rib can be prevented from interference with the sewing needle.
Other objects, features and advantages of the present invention will become clear upon reviewing the following description of the illustrative aspects with reference to the accompanying drawings, in which:
Several embodiments of the invention will be described with reference to the accompanying drawings.
Firstly, an overall construction of a sewing machine provided with the horizontal full rotary hook of the first embodiment will be described. The sewing machine comprises a body 51 including a sewing bed 52 and a sewing arm 53 formed integrally with the bed so as to be mounted over the bed as shown in
A cloth feed mechanism (not shown) is provided inside the bed 52 for driving the feed dog in synchronization with the vertical movement of the needle bar 55. Further, a horizontal full rotary hook 1 of the embodiment is located below the bobbin-accommodating hole 57. The horizontal full rotary hook 1 includes a beak member 5 and an outer rotating hook 3 (see
In the sewing machine thus constructed, when the rotating hook 3 is rotated counterclockwise in synchronization with the vertical movement of the needle bar 55, a loop of needle thread (not shown) formed by a sewing needle 54 below an eye 56a of the sewing needle is caught by a loop seizing beak member 5. This direction of rotation will hereinafter be referred to as “hook rotating direction A.” The thread loop is then entangled with the bobbin thread 59 while being passed outside the bobbin case holder 2, whereby a stitch is formed.
The horizontal full rotary hook 1 will now be described in detail with reference to
Referring to
Next, the rotating hook 3 will be described. Referring to
Referring now to
Referring now to
The beak member 5 is a component separate from the hook body 4 and is detachably attached to the hook body 4 in the embodiment. A mounting structure for the beak member 5 will be described in detail. The construction of the beak member 5 will firstly be described. The beak member 5 has a height equal to that of the outer circumferential wall 20 and is formed into the shape of a plate curved at the same curvature as the wall 20 as viewed from above, as shown in
The beak peripheral wall 32 has an upper face including a forward side with respect to a rotation direction A of the rotating hook as shown in
The beak peripheral wall 32 also has an inner periphery including a horizontal thin plate-shaped beak body 33 formed integrally with the wall 32 so as to be located near to the lower side of the lace 24 (the side lower than the chain line K) as shown in
A fixing block 34 is integrally formed on the inner periphery of the support wall 31 as shown in
On the other hand, the hook body 4 is provided with a fitting holder 43 for holding the beak member 5. The fitting holder 43 includes a reinforcing peripheral wall 41 protruding outward from the peripheral wall 20 of the hook body 4 and supporting a lower outer face of the beak member 5 as shown in
On the other hand, the reinforcing bottom 40 continuous to the bottom 21 is formed into a generally T-shape as viewed on a plane so as to be located slightly lower than the bottom 21. The reinforcing bottom 40 has a screw hole 40a formed an inner part thereof so that the screw hole 40a corresponds to the screw hole 36a of the fixing block 34 of the beak member 5. The reinforcing bottom 40 further has a circular pin hole 40b for positioning the beak member 5 and an elongate circular pin hole 40c which is slightly longer laterally than the pin hole 40b. Accordingly, even if the distance between the positioning pins 37 has a dimensional error, the error can be absorbed by the elongate pin hole 40c. Consequently, the beak member 5 can be mounted on the rotating hook 3 reliably and accurately.
The beak member 5 is fitted into a fitting holder 43 provided on the hook body 4 from above thereby to be mounted on the hook body 4, as shown in
The fixing screw 38 is inserted through the screw hole 40a from below and screwed into the screw hole 36a of the fixing block 34 (see
Furthermore, since the beak member 5 is mounted on the hook body 4 so as to close the enlarged opening 23, the thickness of the peripheral wall 20 need not be increased. Accordingly, the beak member 5 can be constituted as a member separate from the hook body 4 while an increase in the size of the rotating hook 3 is limited. Additionally, since the beak member 5 can be replaced individually, a replacing work can be simplified and accordingly, the maintenance cost can be reduced.
A plurality of inclined surfaces 32a, 33a, 20a and 20b are adapted to be formed on the beak member 5 and the peripheral wall 20 of the hook body 4 in the injection molding in the embodiment. More specifically, as shown in
On the other hand, the third inclined face 20a is formed on an inner peripheral edge of the peripheral wall 20 fronting to the enlarged opening 23 and the beak member 5 as shown in
The rotating hook 3 is formed with first and second reinforcing ribs 25 and 26 both located at an inner surface of the peripheral wall 20 of the hook body 4 and extending longitudinally as shown in
An operation and effect of the horizontal full rotary hook 1 constructed above will now be described. In the embodiment, the first reinforcing rib 25 is provided integrally on the end of the peripheral wall 20 of the hook body 4 facing the enlarged opening 23, and the second reinforcing rib 26 is provided integrally on the end of the peripheral wall 20 facing the needle-thread passing opening 22. Consequently, the strength of each of the ends facing the openings 22 and 23 of the peripheral wall 20 of the hook body 4 can be increased without an increase in the thickness of each end.
According to the horizontal full rotary hook 1 of the embodiment, in the construction that the rotating hook 3 (hook body 4) is made of the synthetic resin, the strength of the peripheral wall 20 of the hook body 4 can be improved while the size of the rotating hook 3 is prevented from being increased and accordingly, occurrence of deformation or breakage can be prevented even when the peripheral wall 20 is subjected to an external force.
The rotating hook 3A in the second embodiment includes the beak member 5 provided integrally on the hook body 4 by the injection molding, for example. More specifically, portions corresponding to the beak peripheral wall 32 and the support wall 31 are continuous integrally to the peripheral wall 20. Furthermore, the peripheral wall 20 is formed with the needle-thread passing opening 22. In this case, the reinforcing ribs 25A and 26 are provided on the inside of the peripheral wall 20 so as to be located in the vicinity of the peripheral ends defining the opening 22 respectively. As a result, the first reinforcing rib 25A is located below the beak body 33.
According to the embodiment, the production cost of the horizontal rotary hook can be reduced since the rotating hook 3 with the beak can be made by a single injection molding. As a result, the production cost can be reduced. Additionally, the strength of each of the ends of the peripheral wall 20 defining the needle-thread passing opening 22 can be increased in the rotating hook 3 formed with the needle-thread passing opening 22 in the peripheral wall 20 while an increase in the thickness of the peripheral wall 20 is limited.
In the third embodiment, a third reinforcing rib 44 is provided on the outside of the peripheral wall 20 of the rotating hook 3B in addition to the above-described reinforcing ribs 25 and 26, as shown in
According to the third embodiment, the strength of the ends of the peripheral wall can further be increased since the rotating hook 3B is provided with the third reinforcing rib 44 as well as the reinforcing ribs 25 and 26. Furthermore, the third reinforcing rib 44 can be prevented from interfering with external during rotation of the rotating hook 3 since the dimension of outward protrusion of the third reinforcing rib 44 is relatively smaller. Accordingly, since the longitudinal rib 47 can be formed so as to extend substantially to the upper end, the strength of the peripheral wall 20 can effectively be increased.
Modified forms of the foregoing embodiments will now be described. The second reinforcing rib 26 may be eliminated with provision of the first and third reinforcing ribs 25 and 44 in the third embodiment. Furthermore, the beak member 5 may be made of a metal. The first reinforcing rib 25A in the second embodiment may be located at the same position as the first reinforcing rib 25 in the first embodiment. Additionally, the reinforcing ribs 25 and 26 should not be limited to the triangular shape but may be formed into a prismatic shape with a rectangular section, a columnar shape with a circular or elliptic section or the like.
The invention may be various types of horizontal rotary hooks such as half rotary hooks.
The foregoing description and drawings are merely illustrative of the principles of the present invention and are not to be construed in a limiting sense. Various changes and modifications will become apparent to those of ordinary skill in the art. All such changes and modifications are seen to fall within the scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2004-338540 | Nov 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3016033 | Harbst | Jan 1962 | A |
3140681 | Corey | Jul 1964 | A |
3223060 | Corey | Dec 1965 | A |
3390653 | Ketterer | Jul 1968 | A |
4638750 | Mikuni | Jan 1987 | A |
4660487 | Mikuni | Apr 1987 | A |
4966088 | Badillo | Oct 1990 | A |
5015034 | Kindig et al. | May 1991 | A |
5427042 | Yamasaki | Jun 1995 | A |
5517775 | Kurtz | May 1996 | A |
5617803 | Badillo | Apr 1997 | A |
6807918 | Chang | Oct 2004 | B2 |
Number | Date | Country |
---|---|---|
A-S58-97390 | Jun 1983 | JP |
U-S60-149388 | Oct 1985 | JP |
Number | Date | Country | |
---|---|---|---|
20060150878 A1 | Jul 2006 | US |