1. Field of the Invention
The present invention relates to horizontal sidewall fire protection sprinklers, including those having a deflector with a rearwardly positioned horizontal shelf, which reduces the overall length of the sprinkler to provide a low-profile configuration. Such sprinklers may also be mounted in a supporting cup having a raised platform, with an escutcheon and cover, to provide a concealed configuration with improved sensitivity.
2. Related Art
Fire protection sprinklers conventionally are connected to a conduit to receive pressurized fire-extinguishing fluid, such as water. A typical sprinkler has a base with a threaded portion for connection to the conduit and an output orifice to output the fluid to provide fire control and/or suppression. The output orifice is sealed by a seal cap, which is held in place by a release mechanism. The release mechanism is designed to release the cap under predetermined conditions, thereby initiating the flow of fire-extinguishing fluid. A typical release mechanism includes a thermally-responsive element, e.g., a frangible bulb, and may include a latching mechanism.
Certain conventional sprinklers have a pair of arms that extend from the base portion and meet at a hub portion to form a frame. The hub portion is spaced apart from the output orifice of the base portion and is aligned with a longitudinal axis thereof. The hub portion may have a set-screw configured to apply a pre-tension force to the thermally-responsive element and latching mechanism. A deflector may be mounted on the hub, transverse to the output orifice, to provide dispersion of the output fluid.
Fire protection sprinklers may be mounted on a fluid conduit running along a ceiling and may either depend downward from the conduit, which is referred to as a “pendent” configuration, or may extend upward, which is referred to as an “upright” configuration. Alternatively, a sprinkler may be mounted on a wall, a certain distance below the ceiling, which is referred to as a “horizontal sidewall” configuration. Horizontal sidewall sprinklers have an output orifice that is oriented so that the fluid is output horizontally and sprays onto an area to be protected in front of the sprinkler. The area to be protected may extend across an entire room, in which case the relevant fire protection standards, e.g., Underwriters' Laboratories® Standard 1626, require the fluid flow to reach a particular height on the four walls surrounding the coverage area, among other require sidewall sprinklers are particularly useful in applications in which overhead piping is not easily installed, e.g., in residential applications.
U.S. Pat. No. 6,374,919 shows a horizontal sidewall sprinkler having a deflector with a horizontal shelf. The forwardly-extended portion of the shelf (approximately 0.6 inches) is greater than half the total length (approximately 1.0 inches) thereof. The sprinkler is mounted in a cup with a cover. The cup is mounted in a cavity in the wall such that the flange of the cup is flush with the wall surface. A cover is mounted on the flange so as to leave a gap therebetween to allow air flow to enter.
Technical bulletin “Series LFII Residential Horizontal Sidewall Sprinklers 4.2 K-factor” (Tyco Fire Products, Lansdale, Penn., Apr. 2004) shows a horizontal sidewall sprinkler having a deflector with a horizontal shelf. The shelf is perpendicular to the frame arms and is approximately 0.7 inches in length, as measured from front edge to back edge near the center (the front edge faces away from the output orifice). The shelf appears to extend at a slightly upward angle with respect to the horizontal axis and has a protrusion in the center of the forward edge. The shelf extends approximately 0.43 inches beyond the major vertical surface of the deflector (i.e., the surface transverse to the fluid flow). Thus, the forwardly-extended portion of the shelf is approximately 61% of the total length thereof.
Technical bulletin “Series TY-L-5.6 K-factor Horizontal Sidewall Sprinklers, Standard Response, Standard Coverage” (Tyco Fire Products, Lansdale, Penn., Jan. 2003) shows a horizontal sidewall sprinkler having a deflector with a horizontal shelf. The shelf is parallel to the frame arms and is approximately 0.66 inches in length, as measured from front edge to back edge near the center (the front edge facing away from the output orifice). The shelf extends approximately 0.37 inches beyond the major vertical surface of the deflector (i.e., the surface transverse to the fluid flow). Thus, the forwardly-extended portion of the shelf is approximately 56% of the total length thereof.
Technical bulletin “Model CHEC-8.0 K-factor Concealed Horizontal Extended Coverage Quick Response Light Hazard, Sidewall Sprinklers” (Tyco Fire Products, Lansdale, Penn., Apr. 2004) shows a horizontal sidewall sprinkler having a deflector with a horizontal shelf. The shelf is perpendicular to the frame arms and is approximately 0.880 inches in length, as measured from front edge to back edge near the center (the front edge facing away from the output orifice). The shelf has a protrusion in the center of the forward edge. The shelf extends approximately 0.56 inches beyond the major vertical surface of the deflector (i.e., the surface transverse to the fluid flow). Thus, the forwardly-extended portion of the shelf is approximately 63.6% of the total length thereof. This document also shows the sprinkler mounted in a support cup assembly with a cover. The sprinkler is positioned in the support cup such that a frangible glass bulb is completely enclosed within the support cup and does not extend beyond the wall surface (i.e., the “retainer flange mounting surface”). The hub at which the frame arms meet is positioned so that a portion of the hub falls within the gap between the flange and the cover (i.e., within the “preset gap).
Some conventional horizontal sidewall sprinklers extend from the wall such that their structure is visible, which is not aesthetically pleasing. Moreover, the extended structure tends to invite improper use of the sprinkler, for example to hang clothing or other items. Such improper use is undesirable, as it may render the sprinkler inoperable or cause unintended activation. Some conventional horizontal sidewall sprinklers are mounted in a support cup with a cover, such that the thermally-responsive element is positioned completely within the support cup. This arrangement tends to reduce air flow across the thermally-responsive element and correspondingly reduces the sensitivity of the sprinkler. Moreover, such configurations often include deflector shelves that extend significantly beyond the vertical surface of the deflector and require covers that extend further from the wall.
In one aspect, the present invention provides a horizontal sidewall fire protection sprinkler including a body having an output orifice, a seal cap to seal a flow of fluid from the output orifice, and a thermally-responsive element positioned to releasably retain the seal cap. The sprinkler also includes a deflector having a substantially vertical face that is transverse to a direction of fluid flow from the output orifice, and a substantially horizontal shelf positioned above and substantially perpendicular to the vertical face. A portion of the horizontal shelf extends in the direction of fluid flow by a first length, with respect to the vertical face, and this first length is less than about half of a total length of the horizontal shelf in the fluid flow direction.
Embodiments of the present invention may include one or more of the following features. The first length may be about 35% or less of the total length of the horizontal shelf. The horizontal shelf may include an inclined portion on a forward edge thereof, which may extend across a majority of a width of the horizontal shelf. The inclined portion may be substantially planar.
The vertical face of the deflector may have notches that are oriented about an opening formed in the deflector, between the vertical face and an underside of the horizontal shelf. The vertical face of the deflector may include a folded portion at a bottom edge thereof. The folded portion may form an angle of about 2° with respect to the vertical face. The vertical face of the deflector may have a substantially rectangular opening near a bottom edge thereof.
The horizontal sidewall fire protection sprinkler also may include a support cup having a substantially cylindrical outer surface, a front edge in the direction of fluid flow, and a back edge. The support cup may have a raised mounting platform in which the body is mounted. The mounting platform may be closer to the front edge of the support cup in an axial direction thereof than to the back edge. A distance between the mounting platform and the back edge of the support cup in the axial direction may be at least about twice a distance between the mounting platform and the front edge of the support cup. The sprinkler also may include an escutcheon having a substantially cylindrical outer surface configured to fit inside the outer surface of the support cup. A cover may be attached to a mounting flange of the escutcheon.
In other embodiments, the sprinkler may include a support cup in which the sprinkler body is mounted. The support cup may have an outer surface configured to be positioned within a cavity in a wall, and an escutcheon with an outer surface configured to fit inside the outer surface of the support cup and a flange on a front edge of the outer surface (the flange being configured to mount against a surface of the wall).
In another aspect, the present invention provides a fire protection sprinkler including a body with an output orifice sealed with a seal cap, a thermally-responsive element positioned to releasably retain the seal cap, and a deflector positioned a distance from the output orifice in a direction of fluid flow. The sprinkler further includes a support cup having a raised mounting platform configured to receive the body. The support cup has a substantially cylindrical outer surface, a front edge in the fluid flow direction, and a back edge. The mounting platform is closer to the front edge of the support cup in an axial direction thereof than to the back edge of the support cup.
Embodiments of the present invention may include one or more of the following features. An escutcheon may be provided having a substantially cylindrical outer surface configured to fit inside the outer surface of the support cup. A cover may be attached to a mounting flange of the escutcheon. A distance between the mounting platform and the back edge of the support cup in the axial direction may be at least about twice a distance between the mounting platform and the front edge of the support cup.
These and other objects, features and advantages will be apparent from the following description of the preferred embodiments of the present invention.
The present invention will be more readily understood from a detailed description of the preferred embodiments taken in conjunction with the following figures.
As shown in
As shown in the top view of
The sprinkler 100 also has a thermally-responsive element, such as for example a frangible bulb 235, positioned between the hub 215 and a seal cap 240 to hold the seal cap in place over the output orifice 245. The bulb 235 is designed to break at a predetermined temperature, thereby releasing the seal cap 240 (due to the pressure of the fluid in the conduit) and allowing the fluid to be output from the orifice 245. The output orifice may have a diameter of, for example, ½ NPT (national pipe thread). The sprinkler may have a K-factor of, for example, 4.4, which is defined by K=Q/√{square root over (p)}, where Q is the flow rate in gallons per minute and p is the residual pressure at the inlet of the sprinkler in pounds per square inch. Of course, other types of thermally-responsive elements may be used, including but not limited to, for example, a fusible link assembly, or a sensor, strut, and lever assembly.
The deflector shelf 225 has an upwardly-angled, inclined portion 250 on the front edge, i.e., the edge facing away from the output orifice 245. The inclined portion 250 provides an upward vertical deflection to the fluid flow, which in turn imparts an upward trajectory to a portion of the fluid flow. This upward trajectory results in the fluid reaching a higher point on the opposite wall, which helps the sprinkler meet opposite wall wetting height requirements. The incline 250 is substantially planar and extends across a large portion of the width of the shelf 225. This configuration helps provide a uniform upward deflection to a significant portion of the output stream without imparting substantial additional horizontal deflection.
As shown in
The deflector 220, as shown in
The vertical face 230 also has a lower portion 540 extending below the fastener opening 255. The lower portion 540 is generally rectangular with notches 550 formed on the sides and a rectangular window 560 formed near the bottom of the lower portion 540 that allows a portion of the output fluid to pass through. The bottom edge of the lower portion 540 has a folded portion 570 below the window 560 that provides a thicker, more rounded bottom edge 580 to the lower portion 540. The folded portion 570 is formed, for example, by folding a tab provided in the flat blank. This configuration helps reduce the dispersive edge effects of the bottom edge 580, which may cause fluid to spray back toward the sprinkler. Thus, the window 560 and folded portion 570 help to project more fluid in front of the plane of the vertical face 230 and also help to create a more uniform spray pattern on the floor. This in turn helps the sprinkler meet floor collection (i.e., density) requirements.
Two arm portions 590 of the deflector, which extend from the sides of the fastener opening 255, are formed in the fabrication process discussed above by cutting out an opening 530 in the flat blank between the shelf 225 and the vertical face 230. The arm portions 590 extend in the plane of the vertical face 230 and then, as shown in the side view of
The shorter shelf 225 results in less bending stress and greater stability for the deflector 220, while maintaining the required spray pattern. The shorter shelf also results a shorter overall length for the sprinkler 100, which helps reduce the risk of damage to installed units and improves the aesthetic characteristics of the sprinkler. In addition, as discussed below, the shorter shelf allows for the use of a lower-profile cover in the concealed configuration (i.e., a cover that is narrower and/or does not extend as far from the wall surface).
In an alternative embodiment, as shown in
A portion of the sprinkler 100 is surrounded by a cylindrical escutcheon 730. As shown in
The escutcheon flange 1010 includes raised portions 1030 around its periphery that act as mounting points for the cover 735. The cover 735 is connected to these raised portions 1030, resulting in a gap 1040 (see
The forwardly-extended mounting platform 720 arrangement results in the sprinkler 100 being positioned so that the thermally-responsive element 235 extends beyond the wall plane, i.e., beyond the rim 1010 of the escutcheon 730. In other words, the thermally-responsive element 235 extends into the gap 1040 between the escutcheon 730 and the cover 735 (see
The support cup/cover assembly described above also may be used in conjunction with pendent sprinklers. For example, a pendent sprinkler may be mounted in the support cup installed in a ceiling. The escutcheon/cover assembly is inserted into the support cup so that the flange of the escutcheon is flush with the ceiling. The pendent sprinkler may have arms that meet at a hub, to which a deflector is attached. Alternatively, the pendent sprinkler may be a “frameless” sprinkler, which does not have arms and a hub, but instead has a thermally-responsive element releasably mounted on the sprinkler body to hold the seal cap in place and a drop-down deflector.
In addition, the support cup described above may be used with other types of escutcheons and covers, or without a cover, in either a horizontal or pendent configuration. For example, a pendent sprinkler may be mounted in the support cup, as described above, mounted in a ceiling. In such a case, the sprinkler would be positioned so that its thermally-responsive element would be more exposed to air flow, due to the forwardly-extended mounting platform in the support cup.
While the present invention has been described with respect to what is presently considered to be the preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. To the contrary, the invention is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
This application is a division of U.S. patent application Ser. No. 10/974,397, filed Oct. 26, 2004.
Number | Name | Date | Kind |
---|---|---|---|
1778994 | Allen | Oct 1930 | A |
1943073 | Heverly et al. | Jan 1934 | A |
2101694 | Tyden | Dec 1937 | A |
2465420 | Barnett | Mar 1949 | A |
2481363 | Strock | Sep 1949 | A |
3146823 | Loveland | Sep 1964 | A |
3880239 | Vorkapich | Apr 1975 | A |
3904126 | Allard | Sep 1975 | A |
4296815 | Mears | Oct 1981 | A |
4296816 | Fischer | Oct 1981 | A |
4585069 | Whitaker | Apr 1986 | A |
4987957 | Galaszewski | Jan 1991 | A |
5447338 | Kikuchi | Sep 1995 | A |
5669449 | Polan et al. | Sep 1997 | A |
5722599 | Fries | Mar 1998 | A |
5727737 | Bosio et al. | Mar 1998 | A |
5810263 | Tramm | Sep 1998 | A |
6076746 | Kantor et al. | Jun 2000 | A |
6098718 | Sato | Aug 2000 | A |
6367559 | Winebrenner | Apr 2002 | B1 |
6374919 | Neill | Apr 2002 | B1 |
6374920 | Philips et al. | Apr 2002 | B1 |
6520265 | Winebrenner | Feb 2003 | B2 |
6540261 | Painter et al. | Apr 2003 | B1 |
6799639 | Sato et al. | Oct 2004 | B2 |
6805203 | Retzloff et al. | Oct 2004 | B2 |
6889774 | Multer et al. | May 2005 | B2 |
6920937 | Neil et al. | Jul 2005 | B2 |
7137455 | Green | Nov 2006 | B2 |
20020129946 | Retzloff et al. | Sep 2002 | A1 |
20030222155 | Neil et al. | Dec 2003 | A1 |
20050045739 | Multer et al. | Mar 2005 | A1 |
Number | Date | Country |
---|---|---|
2103481 | Feb 1983 | GB |
2206043 | Dec 1988 | GB |
2003180862 | Jul 2003 | JP |
2003275336 | Sep 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20070034391 A1 | Feb 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10974397 | Oct 2004 | US |
Child | 11470937 | US |