The present invention relates generally to sprinklers and systems for the protection of windows. In particular, the present invention relates to horizontal sidewall sprinklers and their system installation to protect multiple glass panes joined together forming a window arrangement.
The design and installation of fire protection sprinkler systems is dependent upon several factors including: the area to be protected, the occupants or items to be protected in the area being protected, the manner in which a fire is to be addressed. One particular area of interest is fire protection systems for the use on and protection of windows. Fire protection sprinklers are generally subject to industry accepted fire code requirements and the approval of the “authority having jurisdiction” (AHJ) to ensure compliance with the applicable codes and requirements. For example, one applicable standard is “NFPA 13: Standard for the installation of Sprinkler Systems” (2016) (“NFPA 13”) from the National Fire Protection Association (NFPA). NFPA 13 provides minimum requirements for the design and installation of fire protection sprinkler systems based upon the area to be protected, the anticipated hazard and the type of protection performance to be provided.
One manner of satisfying the applicable requirements, is by identification of fire protection sprinklers capable of providing water on the surface of a window in a suitable manner. To facilitate the AHJ approval process, fire protection equipment can be “listed,” which as defined by NFPA 13, means that the equipment is included in a list by an organization that is acceptable to the AHJ and whose list states that the equipment “meets appropriate designated standards or has been tested and found suitable for a specified purpose.” One such listing organization includes, Underwriters Laboratories Inc. (“UL”), which publishes UL Standard for Safety for Automatic Sprinklers for Fire-Protection Service UL 199(11th ed. 2005, rev. 2008) (“UL 199”) and UL Standard 199J: “Outline of Investigation for Fire Testing of Specific Application Sprinklers for Use on Windows” Issue No. 2 (Jul. 17, 2017) to provide various operational testing for fire protection sprinklers. Another listing organization is Underwriters' Laboratories of Canada (ULC) which publishes ULC/ORD-C263,1-99 “Sprinkler-Protected Window Systems” that provides the testing performance requirements to assess performance, under controlled the exposure conditions, of a sprinkler protected window system.
Known sprinkler systems for protection of a window arrangements include sprinklers that are positioned to wet and cool the glass panes of the window arrangement. A window arrangement generally includes glass panes affixed between an upper window frame and a lower window frame. In arrangements having multiple glass panes, the glass panes may be separated from one another by vertical barriers or mullions that extend between the upper and lower window frames. Alternatively, the individual glass panes can abut one another in a butt joint formation. Fire protection sprinklers for the protection of windows can be automatic or non-automatic. Generally, automatic fire protection sprinklers include a solid metal body and some type of fluid deflector or deflecting member to distribute fluid supplied to and discharged from the body in a defined spray distribution pattern. Fluid discharge from an automatic fire protection sprinkler is automatically controlled by operation of a heat-responsive actuator or trigger that maintains a fluid tight seal at the discharge orifice by exertion of pressure on a cap (button or disc) or other sealing assembly. When the temperature surrounding the sprinkler is elevated to a pre-selected value indicative of a fire, the actuator operates thereby permitting ejection and release of the cap by the discharge of the supplied fluid through the unsealed sprinkler. In the case of non-automatic sprinklers used in manual or automatic deluge systems, there is neither heat-responsive actuator or trigger nor is there a sealing assembly. Instead the non-automatic sprinkler is always open to discharge fluid upon fluid delivery from a fluid supply that is controlled and initiated either manually or through an automatic fluid control system.
Automatic sprinklers can be characterized by: its discharge characteristics, its installation orientation (pendent, upright or sidewall), and its fluid distribution and coverage. The discharge or flow characteristics from the sprinkler body is defined by the internal geometry of the sprinkler including its internal passageway, fluid inlet and discharge outlet (the orifice). As is known in the art, the K-factor of a sprinkler is defined as K=Q/P1/2, where Q represents the flow rate (in gallons/min GPM) of water from the outlet of the internal passage through the sprinkler body and P represents the pressure (in pounds per square inch (psi.)) of water or firefighting fluid fed into the inlet end of the internal passageway though the sprinkler body. The spray pattern or distribution of a firefighting fluid from a sprinkler defines sprinkler performance. Several factors can influence the water distribution patterns of a sprinkler including, for example, the shape of the sprinkler frame, the sprinkler orifice size or discharge coefficient (K-factor), the installation orientation and the geometry of the deflector.
The known window fire protection sprinklers include a circular fluid deflecting member of uniform thickness for distributing water over the glass panes. More particularly, the known fluid deflecting member is defined by a peripheral edge of a constant radius circumscribing a continuous planar impact surface that confronts the discharge outlet of the sprinkler body. Accordingly, the known fluid deflecting member does not present any discontinuities in the form of slots, through holes or channels. The sprinklers are installed and coupled to a fluid supply pipe in a manner that orients the fluid deflecting member to confront the glass pane below the upper window frame with a circular continuous planar surface opposite the impact surface. In the known system, the sprinklers are located at a distance of four inches to twelve inches (4-12 in.) from the glass panes. Moreover, the known sprinklers are spaced from one another at a sprinkler-to-sprinkler spacing that can extend up to a maximum of eight feet (8 ft.). At the installation spacings, the sprinklers require a minimum supply of fluid flow that ranges from 15-20 gallons per minute (GPM). For window arrangements without vertical barriers, the known sprinklers have a maximum fluid operating pressure that is limited to 70 pounds per square inch (psi.) in order to prevent “cold soldering” between adjacent sprinklers. As used herein, “cold soldering” is a condition in which the spray from one operating sprinkler onto an adjacent sprinkler prevents proper activation of the adjacent sprinkler. With vertical barriers, there is little to no structure to prevent spray from one sprinkler impacting an adjacent sprinkler. This 70 psi. per sprinkler maximum operating pressure limit places a hydraulic design on the overall system that can add complexity to a system that may be large in which higher pressure in the piping system may be required to ensure proper pressure delivery at hydraulic remote sprinklers. Accordingly, there is a need for higher per sprinkler maximum operating pressures and/or maximum operating pressures limits that are independent of window construction.
Preferred systems and methods of window fire protection include a preferred horizontal sidewall window sprinkler capable of providing water on the surface of a window to limit the transmission of heat from a fire to the glazing material and maintain the integrity of the window. The preferred embodiments of the horizontal sidewall window sprinkler define a maximum operating pressure of at least 100 psi. per sprinkler and more preferably up to 175 psi per sprinkler, at a minimum sprinkler-to-sprinkler spacing, independent of the window arrangement construction. More preferably, preferred embodiments of the horizontal sidewall window sprinkler and systems provide for higher operating pressures per sprinkler than was previously available for protection of window arrangements without vertical barriers or mullions joining the vertically abutting windows. For such a window arrangement, preferred embodiments of the sprinkler define a maximum operating of at least 100 psi., and more preferably 175 psi., at a sprinkler-to-sprinkler spacing as small as six feet. For window arrangements in which the windows are vertically joined to one another by vertically extending mullions or barriers, the preferred sprinkler defines a maximum operating pressure of 175 psi.
The preferred embodiments of the horizontal sidewall window sprinkler include a fluid deflection member geometry to facilitate window fire protection system installations with a maximum operating pressure for window arrangement constructions not previously available. The preferred fluid deflection member geometry is defined by one or more of the following features: a perimeter with a variable radius and/or a surface with one or more discontinuities. In preferred embodiments of the sprinkler, the preferred fluid deflection member includes a face for confronting a window that is asymmetrical with respect to a first plane. The face is also bisected and symmetrical with respect to a second plane that intersects and is perpendicular to the first plane at the sprinkler axis. The face preferably includes a planar portion disposed perpendicular to the first and second plane, and a concave portion defined by a constant radius of curvature having a center located along the sprinkler axis. The deflection member also includes two radially extending slots extending between the planar portion and the concave portion.
In one preferred embodiment of horizontal sidewall window sprinkler includes a frame having a body with an inlet, an outlet with an internal passageway extending between the inlet and the outlet along a sprinkler axis. A preferred fluid deflection member located at a fixed distance from the outlet consists of three radially extending slots with each slot having a slot width and a maximum slot length. Two of the slots are diametrically opposed about the sprinkler axis and the third slot is centered between the two diametrically opposed slots with the third slot defining a minimum slot width that is greater than any maximum slot length of the three slots. Another preferred embodiment of the fluid deflection member includes a first planar portion disposed perpendicular to the first and second plane, and a second portion with a convex surface confronting the sprinkler outlet and a concave surface for confronting a window. The preferred deflection member includes two radially extending slots extending between the first portion and the second portion.
In a preferred embodiment of a window sprinkler system for protection of a window arrangement including a plurality of glass panes extending vertically between an upper window frame and a lower window frame with each pane having a face, the system preferably includes a firefighting fluid supply pipe; and a plurality of horizontal window sprinklers coupled to the fluid supply pipe and confronting the glass panes below the upper window frame. Each sprinkler preferably includes a frame including a body having an inlet, an outlet with an internal passageway extending between the inlet and the outlet along a sprinkler axis. A fluid deflector is coupled to the frame for distributing firefighting fluid over the face of a glass pane for wetting and cooling the glass pane to address a fire. each of the plurality of sprinklers preferably has a maximum operating pressure of at least 100 psi.
independent of window arrangement construction.
An alternate embodiment of a horizontal sidewall window sprinkler includes a frame having a body having an inlet, an outlet with an internal passageway extending between the inlet and the outlet along a sprinkler axis. A fluid deflector is located at a fixed distance from the outlet. The deflector has a face for confronting a window. The face is preferably asymmetrical with respect to a first plane, bisected and symmetrical with respect to a second plane that intersects and is perpendicular to the first plane at the sprinkler axis. The face preferably includes a planar portion disposed perpendicular to the first and second planes and a concave portion defined by a constant radius of curvature having a center located along the sprinkler axis; and with two radially extending slots extending between the planar portion and the concave portion.
In yet another embodiment of a horizontal sidewall window sprinkler, the sprinkler includes a frame including a body having an inlet, an outlet with an internal passageway extending between the inlet and the outlet along a sprinkler axis and a fluid deflector located at a fixed distance from the outlet. The preferred deflector consists of three radially extending slots with each slot having a slot width and a maximum slot length, two of the slots being diametrically opposed about the sprinkler axis and the third slot being centered between the two diametrically opposed slots. The third slot defines a minimum slot width that is greater than any maximum slot length.
Preferred embodiments of a method of window fire protection are also provided. One preferred method includes obtaining a plurality of window sprinklers each having a deflector; and providing the window sprinklers for installation in a horizontal orientation with each deflector oriented to confront a glass pane and discharge fluid toward the glass pane and laterally to define a maximum operating pressure of at least 100 psi. for each of the plurality of sprinklers independent of window arrangement construction. Preferred embodiments of the method include defining a maximum operating pressure per sprinkler of 175 psi. for installation in the protection of windows separated by vertical barriers and/or in the protection of windows joined to one another by butt joints without vertical barriers therebetween.
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate exemplary embodiments of the invention, and together, with the general description given above and the detailed description given below, serve to explain the features of the invention. It should be understood that the preferred embodiments are some examples of the invention as provided by the appended claims.
Shown in
A fluid deflection member or deflector 100 is axially spaced from the outlet 18 for distribution of a firefighting fluid. Fluid supplied to the sprinkler inlet 16 flows through the internal passageway 20 and is discharged from the outlet 18 to impact the deflection member 100 to wet and cool a window arrangement in a preferred manner as described herein. Preferred embodiments of the sprinkler 10 are configured for installation in a horizontal orientation in which the sprinkler is suspended from a fluid supply pipe with the sprinkler axis X-X generally parallel to the flat ground or floor and perpendicular to the window arrangement. With the inlet 16 coupled to the pipe and the deflector 100 aligned axially with the body 14, water discharged from the outlet 18 is discharged in the horizontal direction to impact the deflection member 100. Accordingly, the frame body 14 is preferably configured for fastening to a pipe fitting using, for example, an appropriate external pipe thread for engagement with a complimentary thread of a pipe fitting. In the preferred embodiment of the frame 12, the external thread is preferably 1/2-14 NPT thread. Alternatively, the external surface of the body can be configured for other forms of mechanical connection to the supply piping such as for example, grooved for a groove-type coupling or otherwise shaped for an interference fit type coupling.
The frame 12 also preferably includes a pair of spaced apart frame arms 22 extending axially from the body 14 to define a frame window in between. In the preferred frame 12, the frame arms 22 extending axially from the body and converging toward the sprinkler axis to define a frame boss 24 axially spaced from the outlet 18 to which the deflector 100 is preferably affixed. As seen in
The sprinkler 10 is preferably configured as an automatic sprinkler for installation in an interior sprinkler system for protection of an internal face of a window arrangement. As seen in
The fluid deflection member 100 is defined by a preferred geometry to provide for preferred fluid impact or deflecting surfaces that independently or in combination with the frame 12 provide the fluid distribution described herein. Generally, the preferred fluid deflector geometry is defined by a peripheral edge that borders the fluid impact or deflecting surfaces of the deflector and is defined by a variable radius with respect to the center of the deflection member. Accordingly, preferred embodiments of the deflection member 100 and its periphery are non-circular. Additionally or alternatively, the preferred fluid deflection member 100 preferably includes one or more discontinuities along its peripheral edge and/or between its peripheral edge and center. Thus, a fluid deflection member 100 in the sprinkler 10 can include one or more slots, through holes or channels through which fluid flows.
Shown in
With reference to
With reference to
In the embodiment shown in
A preferred third radially extending slot 106c, is formed along the peripheral edge of the 104 of the second portion 102b of the deflector 100 as seen in
In addition to defining the various slot geometries, the peripheral edge 104 of the deflector 100 defines the radial outermost periphery of the deflector 100 that extends between slot openings. These portions of the peripheral edge can be linear, arcuate or a combination thereof provided the deflector 100 distributes fluid in a preferred manner as described herein. More preferably, the peripheral edge 104 includes and more preferably consists of three arcuate portions that extend between the slots 106a, 106b, 106c. In the preferred embodiment of the deflector shown in
Preferred embodiments of the window sprinkler can be installed in a fire protection sprinkler system for protection of a window arrangement located along the exterior of a building or within an interior room of the building. As seen in
A preferred automatic window fire protection system 300 includes a firefighting fluid supply pipe or branch line 302 disposed in the overhead ceiling 205a or structure above the window arrangement 200. A group of preferred horizontal window sprinklers 310 is coupled to the fluid supply pipe 302 in a manner that orients the sprinklers 310 to confront the glass panes 202 below the upper window frame 205a at a preferred distance of one to two inches (1-2 in.) below the frame 205a. As seen in
More preferably, the sprinklers 310 are horizontally centered with respect to each glass pane 202 to define a sprinkler-to-sprinkler spacing SS from one another as seen in
The system 300 is preferably hydraulically configured to supply at least a minimum flow of firefighting fluid, i.e., water, to each window sprinkler 310 depending upon the sprinkler-to-sprinkler spacing SS. Preferably, each window sprinkler 310 is provided with a minimum flow of fifteen to twenty gallons per minute (15-20 GPM) and more preferably provided with a minimum flow of twenty gallons per minute (20 GPM) when the sprinklers 310 are at the preferred maximum sprinkler-to-sprinkler spacing SS. In one preferred embodiment, each window sprinkler 310 is provided with a minimum flow of twenty gallons per minute (20 GPM) when the sprinklers 310 are at the preferred sprinkler-to-sprinkler spacing SS ranging from six to eight feet (6 ft.-8 ft.). The flow of each sprinkler 310 can be reduced with a reduction in the sprinkler-to-sprinkler spacing SS. Accordingly, another preferred embodiment, each window sprinkler 310 is provided with a minimum flow of fifteen gallons per minute (15 GPM) when the sprinklers 310 are at a sprinkler-to-sprinkler spacing SS of less than six feet (6 ft.).
Moreover, a preferred system 300 is preferably configured to provide a maximum operating pressure of firefighting fluid to each sprinkler 310 independent of window arrangement construction. More specifically, the preferred body 14 and deflector 110 of each sprinkler 310 define a preferred maximum operating pressure of at least 100 psi. and preferably no more than 175 psi. in the absence of vertical barriers or baffling in the window arrangement being protected. In an alternate window arrangement in which adjacent windows are separated by a vertical barrier or mullion, the maximum operating pressure provided to each sprinkler is preferably no more than 175 psi. In another preferred embodiment of the system 300 in the protection of a window arrangement in which adjacent windows abut one another with an appropriate butt joint, using an appropriate sealant such as, for example, a silicone sealant, the maximum operating pressure provided to each sprinkler is 175 psi. In yet another preferred embodiment of the system 300 in the protection of a window arrangement in which adjacent windows are separated by a vertical barrier or mullion, the maximum operating pressure provided to each sprinkler is 175 psi.
The maximum operating pressure for each sprinkler defines a limit at which sprinklers can be placed adjacent to one another without the concern of cold soldering regardless of whether there is a vertical barrier separating adjacent windows. By providing a maximum operating pressure per sprinkler of 100 psi., the system 300 can be constructed without concern for providing lower pressures at low sprinkler-to-sprinkler spacings or in constructions without vertical barriers between windows. Preferred embodiments of the sprinkler described herein were tested in a cold soldering test to verify proper thermal operation of adjacent sprinklers provided with the 100 psi. of operating fluid pressure. Two or more preferred sprinklers as described above were spaced apart from one another at a sprinkler to sprinkler spacing of no more than six feet (6 ft.) within a test room. The test sprinklers were connected to test piping to supply the test sprinklers with water at an operating fluid pressure of 100 psi. A test fire was ignited with the test fire being sufficient in size and temperature, to thermally actuate one or more of the test sprinklers. The time to thermal actuation of each sprinkler was monitored along with the temperature of the test window and surrounding frame. The test sprinklers satisfactorily performed with no cold soldering resulting as adjacent test sprinklers thermally actuated as expected.
Preferred embodiments of the fluid deflection member and satisfactory cold soldering testing provide for preferred methods of fire protection. In a preferred embodiment method of window fire protection, the method includes obtaining a plurality of window sprinklers each having a deflector; and providing the window sprinklers for installation in a horizontal orientation with each deflector oriented to confront a glass pane and discharge fluid toward the glass pane and laterally to define a maximum operating pressure of at least 100 psi. for each of the plurality of sprinklers independent of window arrangement construction. Obtaining a preferred sprinkler can include any one of manufacturing or acquiring the preferred sprinklers; and providing such sprinklers can further include any one of selling, specifying, testing or supplying the preferred sprinklers for installation in a preferred manner as described herein. Providing the horizontal window sprinklers can also preferably include satisfactorily testing at least two of the window sprinklers in a cold soldering test with a fluid supply pressure of at least 100 psi.
While the present invention has been disclosed with reference to certain embodiments, numerous modifications, alterations, and changes to the described embodiments are possible without departing from the sphere and scope of the present invention, as defined in the appended claims. Accordingly, it is intended that the present invention not be limited to the described embodiments, but that it has the full scope defined by the language of the following claims, and equivalents thereof.
This application claims the benefit of U.S. Provisional Application No. 62/814,039 filed Mar. 5, 2019, which is incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US19/66423 | 12/15/2019 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62814039 | Mar 2019 | US |