The present invention relates generally to a lithium-ion thin film battery, and more particularly, but not by way of limitation, to a horizontally stacked lithium-ion thin film battery and a method of manufacturing the same.
A lithium-ion battery is a member of a family of rechargeable battery types in which lithium ions move from the negative electrode to the positive electrode during a discharge state and back (i.e., from the positive electrode to the negative electrode) when in a charging state. Li-ion batteries use an intercalated lithium compound as one electrode material, compared to the metallic lithium used in a non-rechargeable lithium battery. The electrolyte, which allows for ionic movement, and the two electrodes are the constituent components of a lithium-ion battery cell.
Thin film lithium ion batteries are a leading candidate for a small battery used in miniature computer, Radio-Frequency Identification (RFID), mobile telephone, sensors, etc. Stacking lithium ion battery can provide higher density in a smaller area.
Conventional stacking techniques vertically stack the lithium-ion batteries which is difficult and expensive because of the use of non-conventional processing, such as bonding, is required.
There is a need in the art to form a lithium-ion battery that may be horizontally stacked.
In an exemplary embodiment, the present invention can provide a method of manufacturing a lithium-ion battery, the method including providing a cathode current collector, depositing a cathode on a top surface of the cathode current collector, and patterning periodic trenches in a top surface of the cathode.
One or more other exemplary embodiments include a lithium-ion battery horizontally stacked configuration.
Other details and embodiments of the invention will be described below, so that the present contribution to the art can be better appreciated. Nonetheless, the invention is not limited in its application to such details, phraseology, terminology, illustrations and/or arrangements set forth in the description or shown in the drawings. Rather, the invention is capable of embodiments in addition to those described and of being practiced and carried out in various ways and should not be regarded as limiting.
As such, those skilled in the art will appreciate that the conception upon which this disclosure is based may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
Aspects of the invention will be better understood from the following detailed description of the exemplary embodiments of the invention with reference to the drawings, in which:
The invention will now be described with reference to
With reference now to the example depicted in
In a preferred embodiment, the substrate comprises any of paper, silicon, glass, polymer, etc. with a thickness of the substrate 110 suitable for mechanical support. The substrate 110 is preferably an insulating material or at least includes an insulating material on a top surface thereof.
In a preferred embodiment, the cathode current collector 115 preferably comprises any metal such as Cu, Al, W, Ti, etc. The thickness of the cathode current collector 115 is preferably in a range of 0.1 μm and 10 μm. The thickness of the cathode current collector 115 is preferably set to reduce resistance and the thickness is a function of the size of the battery. In a more preferred embodiment, the thickness of the cathode current collector is preferably in a range of 1 μm and 2 μm.
In a preferred embodiment, the cathode 120 comprises LiCoO2, LiNbO3, carbon material, etc. A thickness of the cathode 120 is preferably in a range of 0.3 μm to 10 μm.
In one embodiment, a width of the trenches 125 is preferably in a range of 1 μm to 100 μm. In a preferred embodiment, the width of the trenches 125 is in a range of 1 μm to 50 μm. A depth of the trenches 125 in the cathode 120 is preferably in a range of 30% to 90% of a height of the cathode 120. A pitch of the trenches 125 is preferably equal to a width of the trenches 125. Preferably, the trenches 125 have a truncated V-shape.
In a preferred embodiment, a thickness of the electrolyte is in a range of 0.01 μm to 1 μm. The electrolyte 130 comprises Li3PO4 or the like.
As exemplary shown in
In some embodiments, the anode 135 comprises Li or the like and the anode current collector 140 comprises a metal such as W, Cu, Au, Ti, etc.
The lithium-ion battery 100 comprises a passivation layer 150 encapsulating the anode current collect 140, the anode 135, the electrolyte layer 130, the cathode 120, and the cathode current collector 115. The passivation layer may comprise any of SiO2, SiN, a polymer, etc. In some embodiments, a portion of the substrate 110 is exposed from the passivation layer 150. In some embodiments, an edge surface of the cathode current collector 115, the substrate 110, and the passivation layer are flush (e.g., right edge shown in
The lithium-ion battery further comprises a contact 155 patterned in the passivation layer for the anode current collector 140, and the cathode current collector 115. The contact 155 is exposed from the passivation layer.
Referring now to
Referring now to
First, as shown in
Next, as shown in
Next, as shown in
As shown in
The periodic trenches 125 are patterned such that an edge portion exists between the outermost trenches of the periodic trenches 125 and the edge surface of the cathode 120. An anneal steps can be performed to anneal the cathode if necessary.
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
The above exemplary configurations of the present invention may provide a horizontal stacking configuration to increase battery capacity and reduce the size of the battery. Also the fabrication cost will be cheaper and easier compared to vertical stacking process using bonding. It also increases the surface area of the anode which increase the charging and discharging rate of the battery.
The descriptions of the various embodiments of the present invention have been presented for purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the embodiments, the practical application or technical improvement over technologies found in the marketplace, or to enable others of ordinary skill in the art to understand the embodiments disclosed herein.
Further, Applicant's intent is to encompass the equivalents of all claim elements, and no amendment to any claim of the present application should be construed as a disclaimer of any interest in or right to an equivalent of any element or feature of the amended claim.