The invention relates generally to traveling water screens and, more particularly, to water screens that travel in a generally horizontal direction across a flowing stream of water.
Water is diverted from rivers, lakes, and other bodies of water for municipal, irrigation, and industrial purposes. Fish or water screens serve as filters to prevent fish or debris from entering a water diversion. These screens range in size from a few square feet to several thousand and come in many shapes.
Rotary drum screens consist of a screen mesh wrapped around a cylinder rotating on a generally horizontal axis. The top of the cylindrical screen is above the surface of the water. Debris is carried over the screen as it rotates and is washed off on the downstream side. Because of their fixed diameters, rotary drum screens are restricted in how deep they can be submerged and do not accommodate varying water levels. If the water level is too high, fish and debris are carried over the top of the rotary drum. If the water level drops too low, the screen clogs and water flow is restricted.
Fixed plate screens are also widely used. These stationary plate screens consist of fixed perforated metal sheets or wedge wire panels, usually oriented vertically in a flowing stream of water. Although the fixed plate screens are themselves simple, they require an external cleaning system to prevent clogging. External cleaning systems for plate screens are high maintenance and often not effective. And, if the cleaning system fails, the clogged screen can collapse. External brush cleaners, which are often used, can injure or kill fish.
Another kind of frequently used screen is a vertical traveling screen, which consists of a vertically advancing mesh driven by rotating shaft-mounted sprockets. The axes of the shafts are oriented generally horizontally. The screen may be inclined in the direction of water flow to aid in debris removal. To screen wide diversions, several side-by-side vertical traveling screens have to be used because individual wide vertical traveling screens are expensive to build, support, and drive.
Thus, there is a need for a water screen that is easy to clean and useful in filtering debris from wide diversions.
This need and other needs are satisfied by a traveling water screen embodying features of the invention. In one version, a traveling water screen comprises a foraminous belt arranged in an endless loop. The belt is disposed in a flowing stream of water generally broadside to the flow. The foraminous belt advances across the stream of water in a generally horizontal direction.
According to another aspect of the invention, a traveling water screen comprises a screen arranged in an endless loop having an outer surface and an inner surface. Openings extend through the thickness of the screen between the outer surface and the inner surface. Means are provided for advancing the screen generally horizontally across a flowing stream of water with the outer surface of the endless loop oriented transverse to the flow.
According to yet another aspect of the invention, a traveling water screen comprises a screen that extends in width from a first side edge to a second side edge. The screen is arranged in an endless loop. Means are provided for advancing the screen through a stream of water. The first side edge of the screen is at a first depth in the stream and the second side edge is elevated above the stream or is at a second depth less than the first depth.
Another version of a traveling water screen comprises a drive wheel below the surface of a body of water with a motor coupled to the drive wheel to rotate the drive wheel about a generally vertical axis of rotation. The traveling water screen also comprises an idle wheel arranged to rotate below the surface of the body of water about a generally vertical axis parallel to the axis of rotation of the drive wheel. A screen in the form of an endless loop is trained about the drive wheel and the idle wheel for advancement in a generally horizontal direction.
According to another aspect of the invention, a traveling water screen comprises a frame, a drive shaft supported in the frame for axial rotation on a generally vertical first axis, and an idle shaft supported in the frame for axial rotation on a generally vertical second axis. A drive sprocket is mounted on the drive shaft for rotation on the first axis, and an idle sprocket is mounted on the idle shaft for rotation on the second axis. A modular belt, trained around and engaging the drive and idle sprockets, has openings through its thickness. The belt is disposed at least partly submerged in a stream of water. A motor coupled to the drive shaft rotates the shaft and the drive sprocket to advance the modular belt through the stream of water.
These features and aspects of the invention, as well as its advantages, are better understood by reference to the following description, appended claims, and accompanying drawings, in which:
A horizontally traveling water screen embodying features of the invention is shown in
Further details of the horizontal traveling screen system are shown in
As shown in
The horizontal traveling screen or curtain may be realized in many ways. For example, it may be constructed of a number of metal or plastic panels held together by hinge rods between roller chains at opposite edges of the screen. As another example, the screen may be realized as a metal mesh chain. Preferably, however, the screen is constructed of a series of rows of modular plastic belt modules as in
Thus, the invention provides a horizontal traveling water screen especially useful for filtering wide flows.
Although the invention has been described in detail with respect to a preferred version, other versions are possible. For example, there are means to prevent the screen from sagging other than or in addition to the use of hold down tabs and associated tab guides. Stiffer hinge rods made of stainless steel, for instance, can be used to join screen modules. Or stiffer modules with greater beam strength can be used to reduce sag between the sprockets. As another example, the preferred version uses two idle shafts, but it would be possible to use a single idle shaft or more than two idle shafts. The screen is shown driven by sprockets, but could be driven by drums or pulleys or any means capable of advancing the belt across the flow. The details of the take-up mechanism described represent one example of such a mechanism. So, as the few examples suggest, the scope of the claims is not meant to be limited to the preferred versions described in detail.