The present invention relates to a mechanical horological movement.
Generally, mechanical horological movements notably comprise a barrel which houses a motor spring, a wheelwork driven by the barrel, a regulating device such as a sprung balance, and between the wheelwork and the regulating device an escapement for maintaining the oscillations of the regulating device. The arbors of certain wheels of the wheelwork bear indicator hands. The escapement comprises an escape wheel driven by the wheelwork as well as an element such as an anchor situated between the escape wheel and the regulating device.
The horological movements that currently exist on the market usually have a regulating device oscillating at a frequency of 4 Hz and an escape wheel having 20 teeth. There has also been commercialized under the trademark Zenith EI Primero a movement whose regulating device oscillates at a frequency of 5 Hz and whose escape wheel to applicant's knowledge has 21 teeth.
It is known in the horological field that the higher the frequency of the regulating device the more precise time measurement is. However, an increase in frequency causes an increase in the angular speed of rotation of the escape wheel thus necessitating a modification of the wheelwork and more precisely of the gear ratios so that the indicator hands turn at the right speed. An increase in the speed of rotation of the escape wheel has the further effect of reducing the power reserve, since the motor spring will then be released more rapidly.
The present invention aims at proposing an horological movement that can function at a high frequency without having the disadvantages mentioned above.
To this end, an horological movement is provided that comprises a regulating device having an oscillation frequency f and an escapement for maintaining the oscillations of the regulating device, the escapement comprising an escape wheel with N teeth, wherein the frequency f is at least equal to about 5 Hz and the ratio between the number N of teeth and the frequency f is substantially equal to 5.
The frequency f is preferably at least equal to about 6 Hz, more preferably at least equal to about 8 Hz, and still more preferably at least equal to about 10 Hz.
Thus, in the present invention the frequency of the regulating device is increased without modifying the ratio between the number N of teeth of the escape wheel and the frequency f, this ratio having a usual value. The angular speed of rotation of the escape wheel thus remains unchanged, so that the wheelwork and more generally the entire movement except the regulating device and the escapement may remain unchanged. The power reserve is preserved as well.
To the same end as indicated above, the present invention also provides for at least two horological movements, one comprising a regulating device having an oscillation frequency f1 and an escapement for maintaining the oscillations of the regulating device, the escapement comprising an escape wheel having N1 teeth, the other comprising a regulating device having an oscillation frequency f2 and an escapement for maintaining the oscillations of the regulating device, the escapement comprising an escape wheel having N2 teeth, wherein the numbers N1 and N2 of teeth are different, the frequencies f1 and f2 are different, and the ratio between N1 and f1 is substantially equal to the ratio between N2 and f2.
Both movements typically further comprise respective wheelworks with which the escape wheels respectively cooperate. Advantageously, the wheelworks are substantially identical.
The escapement in each movement typically further comprises an anchor located between the escape wheel and the regulating device. Advantageously, the distance between the centers of rotation of the escape wheel and of the anchor is substantially the same in both movements, and the distance between the centers of rotation of the anchor and of the regulating device is substantially the same in both movements. In this way the plates and bridges supporting the various elements may be the same in both movements.
Both movements may even be substantially entirely identical, except for their escapement and their regulating device.
Said ratios between N1 and f1 and between N2 and f2 are typically substantially equal to 5. Preferably, at least one of the frequencies f1 and f2 is at least equal to about 5 Hz, preferably at least equal to about 6 Hz, more preferably at least equal to about 8 Hz, and still more preferably at least equal to about 10 Hz.
It will be noted that the present invention makes it possible to design sets of regulating device and escapement that are different and interchangeable so that horological movements having a same design may function at different frequencies. In other words, a common base may be designed for a number of movements, and for each of them a regulating device—escapement set may then be selected to make it work at a desired frequency.
Thus, the present invention also proposes a method for changing the oscillation frequency in an horological movement comprising a first regulating device having an oscillation frequency f1 and a first escapement for maintaining the oscillations of the first regulating device, the first escapement comprising a first escape wheel having N1 teeth, wherein the first regulating device and the first escapement are replaced by a second regulating device having an oscillation frequency f2 and a second escapement, the second escapement comprising a second escape wheel having N2 teeth, and wherein the frequencies f1 and f2 are different and the ratio between N1 and f1 is substantially equal to the ratio between N2 and f2.
The horological movement typically further comprises a wheelwork with which the first escape wheel cooperates. Advantageously, this wheelwork is kept unchanged so that it cooperates with the second escape wheel after the first regulating device and the first escapement have been replaced by the second regulating device and the second escapement.
Typically, the first escapement further comprises a first anchor located between the first escape wheel and the first regulating device and the second escapement further comprises a second anchor located between the second escape wheel and the second regulating device. Advantageously, the distance between the centers of rotation of the first escape wheel and of the first anchor is substantially equal to the distance between the centers of rotation of the second escape wheel and of the second anchor, and the distance between the centers of rotation of the first anchor and of the first regulating device is substantially equal to the distance between the centers of rotation of the second anchor and of the second regulating device.
In an advantageous embodiment of the method according to the invention, only the regulating device and the escapement are changed in the horological movement.
Other characteristics and advantages of the present invention wilt become apparent when reading the following detailed description given while referring to the annexed drawings where:
Within the framework of the present invention, by “tooth” is meant a tooth of the escape wheel that is functional, i.e. that cooperates with the anchor pallets in the case of a Swiss anchor (lever) escapement.
Referring to
A known way to increase the oscillation frequency of a sprung balance consists in increasing the stiffness of the balance spring and/or reducing the moment of inertia of the balance. The stiffness of the balance spring may be increased for instance by shortening it or by increasing its cross section. The reduction of the moment of inertia is achieved for instance by making the balance lighter and/or by reducing its radius of gyration.
In the present invention, the increase in frequency of the sprung balance is attended by an increase in the number of teeth of the escape wheel. Current manufacturing techniques allow wheels having a large number of teeth to be realized.
It is possible to shape the teeth of the escape wheels so that a same anchor can be used with several of these escape wheels. Thus, anchors 12 and 14 illustrated in
It is seen that in the above examples, the ratio between the number of teeth of the escape wheel and the frequency of the sprung balance is equal to 5, which is the value that is usually found in current movements. Thus, the angular speed of rotation of the escape wheel is the same as in common movements. It follows that a movement including one of the above escapements and the corresponding sprung balance can have a conventional wheelwork, for example wheelwork 3 illustrated in
Preferably, the distances of centers of the escapement, that is, the distances between the center of rotation of the escape wheel and the center of rotation of the anchor and between the center of rotation of the anchor and the center of rotation of the balance are preserved from one escapement to another and have conventional values. Thus, in particular, the distance of centers d3 between escape wheel 11 and anchor 12 is equal to the distance of centers d5 between escape wheel 13 and anchor 14 and to the distance of centers d1 between the conventional escape wheel 6 and the conventional anchor 9. Similarly, the distance of centers d4 between anchor 12 and the corresponding balance is equal to the distance of centers d6 between anchor 14 and the corresponding balance and to the distance of centers d2 between the conventional anchor 9 and the conventional balance 4. By preserving the distances of centers from one escapement to another, one facilitates the interchangeability of the escapement—regulating device set in a given movement, and one allows movements including respectively escapements such as those described above and the corresponding sprung balances to have identical plates and bridges.
More generally, it is possible to realize movements that are entirely identical except for their escapement and sprung balance, and regulated by oscillations of different frequencies. The fact that the whole portion of the movement other than the escapement and the sprung balance does not change from one movement to another considerably lowers the costs of development, production, and logistics It is for example possible to take up an existing movement and to change therein only the escapement and the sprung balance to increase its regulation frequency.
In the illustrated examples, the escapement according to the invention is a Swiss anchor escapement. However, the present invention could be applied to other types of anchor escapement, and more generally to other types of escapement.
Number | Date | Country | Kind |
---|---|---|---|
2018/07 | Dec 2007 | CH | national |
Number | Name | Date | Kind |
---|---|---|---|
3599423 | Beguin et al. | Aug 1971 | A |
3805513 | Theurillat | Apr 1974 | A |
4363553 | Thomi et al. | Dec 1982 | A |
7905665 | Moriarty et al. | Mar 2011 | B2 |
20100002548 | Hessler et al. | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
174391 | Jan 1935 | CH |
358036 | Jun 1956 | CH |
408786 | Nov 1965 | CH |
547 516 | Oct 1973 | CH |
1736838 | Dec 2006 | EP |
892533 | Apr 1944 | FR |
1496479 | Oct 1966 | FR |
2162504 | Jul 1973 | FR |
Number | Date | Country | |
---|---|---|---|
20090168610 A1 | Jul 2009 | US |