The invention relates to horological movements comprising an escapement equipped with a magnetic system. More particularly, the invention relates to a escapement equipped with a magnetic coupling system between an escape wheel and a pallet assembly separated from the mechanical resonator, said pallet assembly having an axis of rotation different from that of the mechanical resonator. As for a Swiss pallet assembly, the pallet assembly has a reciprocating movement that is synchronous with the periodic movement of the mechanical resonator, but different. By magnetic escapement, it is understood an escapement equipped with magnets partially arranged on the pallet assembly and partially on the escape wheel so as to generate a magnetic coupling between the pallet assembly and the escape wheel.
Various horological movements with magnetic escapement have already been proposed in patent applications. Concerning magnetic escapements comprising a pallet assembly separated from the mechanical resonator, document EP 3 208 667 can be cited, which describes a magnetic escapement with a pallet assembly mechanically coupled to the mechanical resonator and magnetically to the escape wheel, said latter having two annular magnetic tracks formed by a flat and continuous magnetised structure, which defines magnetic potential energy ramps and magnetic barriers for at least one magnetic pallet-stone of the pallet assembly that is arranged to alternately follow sections of the two magnetic tracks, said magnetic pallet-stone being formed by a magnet.
Magnetic escapements often have a problem upon starting. When the barrel is unwound and the horological movement stops, the escape wheel ceases to be driven in rotation by the barrel and the oscillation of the mechanical resonator is then significantly dampened then the mechanical resonator stops in an angular position corresponding to the rest position thereof or close thereto. Indeed, the stop position of the mechanical resonator may vary, in a certain angular area, around the rest position thereof depending on the angular position of the escape wheel when stopped given the magnetic coupling of said latter with the pallet assembly. Said angular area is limited by the two stop positions of the pallet assembly against two pins for limiting the reciprocating movement thereof, because the pin of the mechanical resonator is located in the fork of the pallet assembly when said resonator is finally immobile.
Upon starting, when the escape wheel starts to rotate again and to exert a force torque that increases as the barrel is wound, it is highly likely, in view of the magnetic system provided in some magnetic escapements, in particular in those described in document EP 3 208 667, that the escapement is not self-starting. As the mechanical resonator does not yet oscillate, it cannot therefore carry out the function thereof of unlocking the pallet assembly in order to drive it in a reciprocating movement, so that the escapement is not able to provide sufficient energy to the mechanical resonator for a normal oscillation of said latter to be established. In addition, according to the magnetic system provided, it is possible that the pallet assembly and the escape wheel mutually lock by a magnetic repulsion force at certain angular positions of the escape wheel, due to the fact that the mechanical resonator does not oscillate or not yet normally. Thus, it is necessary to find a solution to ensure effective starting of an escapement equipped with a magnetic system during a winding of the barrel after the horological movement has been stopped.
Generally, the invention relates to a horological movement comprising a mechanical resonator and an associated escapement that comprises an escape wheel having a first axis of rotation and a pallet assembly separated from the mechanical resonator and having a second axis of rotation that is different from that of the mechanical resonator. The mechanical resonator is coupled to the pallet assembly in such a way that, when said mechanical resonator has an oscillation, the pallet assembly undergoes a reciprocating movement between two rest positions wherein it alternately remains during successive time intervals. The pallet assembly comprises at least one magnetic pallet-stone formed of a magnet and the escape wheel comprises a periodic magnetised structure that defines a plurality of magnetic potential energy ascending ramps for said magnetic pallet-stone, each of said magnetic potential energy ascending ramps being provided so that said magnetic pallet-stone can climb it when the pallet assembly is in a corresponding rest position from the two rest positions and when a force torque provided to the escape wheel is equal to a nominal force torque or in a range of values that is provided for a normal operation of the horological movement. Said magnetic pallet-stone and the periodic magnetised structure are arranged in such a way that the pallet assembly undergoes a magnetic force impulse in the direction of the reciprocating movement thereof, after said magnetic pallet-stone has climbed any one of said magnetic potential energy ascending ramps, when the pallet assembly tilts from one of the two rest positions having enabled said magnetic pallet-stone to climb said any one of the magnetic potential energy ascending ramps to the other rest position.
In order to overcome the above-mentioned drawbacks and ensure an effective and rapid self-starting of an escapement equipped with a magnetic system provided in order to provide magnetic force impulses to the mechanical resonator via the pallet assembly, the escape wheel comprises at least one first distant portion relatively to the first axis of rotation and the pallet assembly comprises at least one second distant portion relatively to the second axis of rotation. Subsequently, when the mechanical resonator is at rest, the pallet assembly has for any angular position θ of the escape wheel when stopped an equilibrium angular position βER(θ) that depends on said angular position θ. According to the invention, for any angular position θ of at least one range of angular positions of the escape wheel, the first and second distant portions are in contact with one another while the mechanical resonator is at rest and the pallet assembly is in the corresponding equilibrium angular position βER(θ), the first and second distant portions being arranged in such a way that the equilibrium angular position βER(θ) of the pallet assembly is, on at least one portion of each range of angular positions from said at least one range of angular positions, a monotonic function of the angular position θ of the escape wheel that moves away from a median position of the pallet assembly with a variation of said angular position θ in the direction of rotation provided for the escape wheel, said median position defining a zero angular position for the pallet assembly at equal angular distance from the two rest positions thereof. In addition, a maximum absolute value AME of the equilibrium angular position βER(θ) of the pallet assembly on said at least one angular range is strictly less than an absolute angular value βMax of the two rest positions.
According to a first particular embodiment, each first distant portion from said at least one first distant portion has, in a polar coordinate system perpendicular to said first axis of rotation and centred thereon, a first surface inclined in such a way that each of said at least one second distant portion may slide on at least one portion of said first inclined surface while the escape wheel passes through a corresponding range of angular positions from said at least one range of angular positions and while the pallet assembly angularly follows a curve defined by the corresponding equilibrium angular positions βER(θ).
According to a second particular embodiment, which may be combined with the first particular embodiment, each second distant portion from said at least one second distant portion has, in the aforementioned polar coordinate system, a second inclined surface when the pallet assembly is in any equilibrium angular position βER(θ) corresponding to any one of the angular position of a range of angular positions, from said at least one range of angular positions, wherein said second distant portion is in contact with a first distant portion from said at least one first distant portion, the second inclined surface being configured in such a way that each first distant portion from said at least one first distant portion may slide on at least one portion of said second inclined surface while the escape wheel passes through a range of angular positions, from said at least one range of angular positions, which is relative to the first and second distant portions considered and while the pallet assembly angularly follows a curve defined by the corresponding equilibrium angular positions βER(θ).
According to a general embodiment, said at least one second distant portion of the pallet assembly is formed by two mechanical pallet-stones and the escape wheel comprises a plurality of distant portions constituting said at least one first distant portion, said plurality of distant portions being associated respectively to said plurality of magnetic potential energy ascending ramps. Subsequently, the two mechanical pallet-stones are associated respectively with two magnetic pallet-stones formed by two magnets arranged so as to each be at least periodically coupled magnetically, in repulsion, with the periodic magnetised structure of the escape wheel. In a main variant, the plurality of distant portions is formed by a plurality of teeth and the two mechanical pallet-stones are configured so as to form, in normal operation of the mechanical movement, mechanical stops for said plurality of teeth, so as to improve the operation of the escapement or to enable a step-by-step rotation of the escape wheel that is synchronised on the reciprocating movement of the pallet assembly and therefore on the oscillation of the mechanical resonator.
In an improved variant of the general embodiment, the pallet assembly and the escape wheel are arranged in such a way that, when the pallet assembly has said reciprocating movement and the force torque provided to the escape wheel is equal to said nominal force torque or in at least one upper portion of said range of values provided in normal operation and after one of the two magnetic pallet-stones has climbed any one of said magnetic potential energy ascending ramps following a tilting of the pallet assembly in the corresponding rest position thereof, the tooth of the escape wheel associated with said any one of said magnetic potential energy ascending ramps undergoes at least one first shock on one of the two mechanical pallet-stones of the pallet assembly. Said first shock momentarily prevents the rotation of the escape wheel beyond an angular abutment position, defined by said first or second mechanical pallet-stone, before a next tilting of the pallet assembly and it occurs so as to dissipate at least partially a kinetic energy of the escape wheel acquired following said tilting. In a preferred variant, the escapement is arranged so that, following the first shock and before the next tilting of the pallet assembly, the escape wheel momentarily immobilises.
The invention will be described hereafter in more detail using the appended drawings, given by way of non-limiting examples, wherein:
Using the Figures, it will be described hereafter one embodiment of a horological movement according to the invention, which is of the mechanical type and comprises a mechanical resonator 2, whereof only the arbor 4, the safety roller 6 having a notch and the pin 10 have been shown. The horological movement comprises an escapement 12 that is associated with a mechanical resonator whereof the safety roller and the pin are elements forming said escapement. The escapement 12 further comprises an escape wheel 16 and a pallet assembly 14 that is a member separated from the mechanical resonator and whereof the axis of rotation is different from that of said mechanical resonator.
The pallet assembly 14 is formed, on the one hand, of a lever 20 terminated by a fork 18, comprising two horns 19a and 19b, and by a dart 8 and, on the other hand, of two arms 24 and 26 whereof the free ends form respectively two mechanical pallet-stones 28 and 29. The two mechanical pallet-stones support respectively two magnets 30 and 32 that form two magnetic pallet-stones of the pallet assembly 14. The mechanical resonator 2 is coupled to the pallet assembly in such a way that, when the mechanical resonator oscillates normally, said pallet assembly undergoes a reciprocating movement, synchronised on the oscillation of the mechanical resonator, between two rest positions, defined by two banking pins 21 and 22, wherein the pallet assembly remains alternately during successive time intervals.
The escape wheel 16 comprises a periodic magnetised structure 36 that is arranged on a disk 34 preferably made of non-magnetic material (not leading to magnetic fields). The structure 36 has globally circular magnetised portions 38 defining magnetic potential energy ascending ramps for the two magnetic pallet-stones 30, 32, which each have an axial magnetisation with a polarity opposite to that of the axial magnetisation of the periodic magnetised structure so as to generate the magnetic repulsion between the magnetic pallet-stones and the magnetised structure. Each magnetised portion 38 has an monotonically increasing width. Particularly, the width of the magnetised portions increases, over the entire useful length thereof, in a linear manner depending on the angle at the centre. According to an advantageous variant, the periodic magnetised structure 36 is arranged so that the outer periphery thereof is circular, the arc of circle portions 38 of said magnetised structure having the same configuration and being circularly arranged about the axis of rotation of the escape wheel.
Generally, each magnetic potential energy ascending ramp is provided so that each of the two magnetic pallet-stones can climb it when the pallet assembly is in a given rest position, from the two rest positions thereof, and when a force torque provided at the escape wheel is substantially equal to a nominal force torque (case of a mechanical movement equipped with a constant force system for the driving of the escape wheel) or in a range of values provided to ensure the normal operation of the horological movement (case of a conventional mechanical movement having a variable force torque applied to the escape wheel depending on the winding level of the barrel or of the barrels if a plurality are provided in series). The magnetic potential energy ascending ramps are climbed, when the pallet assembly undergoes a reciprocating movement between the two rest positions thereof and when the force torque provided to the escape wheel is equal to said nominal force torque or in the range of values provided for said force torque in normal operation, successively by each of the first and second magnetic pallet-stones when the pallet assembly is respectively in the first and second rest positions thereof, and alternately by said first and second magnetic pallet-stones during the reciprocating movement of the pallet assembly. The two magnetic pallet-stones and the magnetic potential energy ascending ramps are arranged in such a way that the pallet assembly can undergo a magnetic force impulse in the direction of the movement thereof, after any one of the two magnetic pallet-stones has climbed any one of said magnetic potential energy ascending ramps, when the pallet assembly tilts from the rest position corresponding to said any one of the magnetic potential energy ramps to the other rest position thereof. The curve 52 shown in
The periodic magnetised structure 36 further defines for each of the two magnetic pallet-stones magnetic barriers 46 that are located respectively after the magnetic potential energy ascending ramps defined by the magnetised portions 38, said magnetic barriers in particular being formed by magnetised ranges 46 of the structure 36 whereof the radial dimension is substantially equal to or greater than the longitudinal dimension of each of the two magnets 30 and 32 forming the magnetic pallet-stones of the pallet assembly. Each magnetised range/magnetic barrier is arranged so as to exert a magnetic force torque on the escape wheel 16, having a direction opposite to that of said force torque provided to said escape wheel, when said escape wheel is in an equilibrium angular position of the forces that are exerted thereon while one or the other of the two magnetic pallet-stones is located at the top of the magnetic potential energy ramp/at the widest end of the magnetised portion 38 that precedes the magnetic barrier/the magnetised range 46 considered. The arrangement of the magnetic barriers is provided so that the magnetic force torque that is exerted on the escape wheel in each equilibrium angular position of the forces is greater than a maximum magnetic force torque generated by the magnetic potential energy ramp/the magnetised portion 38 preceding the magnetic barrier considered before the escape wheel reaches the equilibrium angular position of the forces.
The escape wheel further comprises protruding portions that are associated respectively with the magnetic potential energy ascending ramps. Said protruding portions are formed by teeth 42 extending radially from a roller 40 that is integral with the escape wheel and located above the disk 34 supporting the magnetised structure 36. Said teeth are located respectively after the magnetised portions 38, on the side of the widest end thereof, and are partially superimposed on the corresponding magnetised ranges 46. The teeth 42 are arranged to cooperate upon starting with the mechanical pallet-stones 28 and 29, as will subsequently be disclosed in more detail. The teeth and the mechanical pallet-stones are formed by a non-magnetic material.
In the advantageous variant shown, the teeth extend in a general plane wherein also extend the two mechanical pallet-stones 28, 29 of the pallet assembly. The two magnets 30, 32 are supported respectively by the two mechanical pallet-stones and are also located in said general plane. The figures only show a lower magnetised structure, located below the general plane. However, in an advantageous variant, the escape wheel further comprises an upper magnetised structure, of the same configuration as the lower magnetised structure and supported by an upper disk preferably formed of a non-magnetised material. The upper and lower magnetised structures together form the periodic magnetised structure. They have the same magnetic polarity, opposite to that of the two magnets of the pallet assembly, and are arranged on either side of the geometric plane wherein are located said two magnets forming the two magnetic pallet-stones, preferably at the same distance.
Before describing the main aim of the present invention in more detail, particular features will be described of the escapement of the advantageous embodiment considered, which makes it possible to improve the normal operation thereof (that is to say a stable operation, occurring after a starting phase, with a force torque MRE substantially provided to the escape wheel that is equal to the nominal force torque or in the range of values provided to ensure the normal operation of the horological movement, in particular a correct step-by-step rotation of the escape wheel). The pallet assembly 14 and the escape wheel 16 are arranged in such a way that, in normal operation, one of the teeth 42 of the escape wheel undergoes at least one shock on one or the other of the two mechanical pallet-stones after the corresponding magnetic pallet-stone has climbed any one of the magnetic potential energy ascending ramps following a tilting of the pallet assembly. Said shock occurs so as to dissipate at least partially a kinetic energy of the escape wheel acquired following said tilting. The teeth of the escape wheel are provided to absorb the kinetic energy of said escape wheel, at each step of the escape wheel after an accumulation of magnetic potential energy in the escapement for a next sustained impulse of the mechanical resonator, and to thus limit a terminal oscillation during each step of the step-by-step rotation thereof.
In the case of a conventional mechanical horological movement, namely without a system for driving the escape wheel at constant force, it is provided that, for the entire range of values PVM of the force torque MRE provided to the escape wheel in normal operation, at least one first shock between any one of the teeth 42 of the escape wheel and any one of the mechanical pallet-stones of the pallet assembly occurs after the corresponding magnetic pallet-stone has climbed one of the magnetic potential energy ascending ramps associated with said corresponding magnetic pallet-stone and with the tooth having undergone said at least one first shock.
In a main variant, the escapement is arranged in such a way that, following said at least one first shock of any one of the two mechanical pallet-stones against any one of the teeth of the escape wheel, said first shock momentarily stopping the rotation of the escape wheel beyond an angular abutment position, and before a next tilting of the pallet assembly, the escape wheel immobilises in an angular stop position that corresponds by definition to an equilibrium position of the forces present.
In a preferred variant, in normal operation and once the escape wheel is momentarily stopped, a tooth 42 presses against a mechanical stop of the pallet assembly formed by one or the other of the two mechanical pallet-stones. The escapement is therefore a hybrid escapement, that is to say magnetic and mechanical. For a conventional movement, it is therefore provided, in normal operation and for the entire range of values PVM of the force torque MRE, that the escape wheel momentarily immobilises, after at least one first shock of any one of the teeth thereof against any one of the two mechanical pallet-stones and before a following tilting of the pallet assembly, at an angular stop position wherein the any one of the teeth presses against the any one of the mechanical pallet-stones. Each angular stop position is thus defined by a tooth bearing against a mechanical pallet-stone.
In a general variant, for at least one upper portion of said range of values PVM of said force torque MRE provided to the escape wheel in normal operation, at least one first shock between any one of the teeth of the escape wheel and any one of the mechanical pallet-stones of the pallet assembly occurs after the corresponding magnetic pallet-stone has climbed one of the magnetic potential energy ascending ramps associated with said corresponding magnetic pallet-stone and with the tooth concerned. In a particular variant of the general variant, when the force torque MRE has a value in at least one upper area of said upper portion of the range of values PVM, it is provided that the tooth having undergone said at least one first shock presses, once momentarily immobile in the corresponding angular stop position, against the mechanical pallet-stone whereon it has abutted.
Subsequently, the aim of the invention will be described more specifically. Generally, the escape wheel comprises at least one first distant portion relative to the axis of rotation thereof, and the pallet assembly comprises at least one second distant portion relative to the axis of rotation thereof. In the embodiment shown, the escape wheel comprises a plurality of first distant portions that are formed by the teeth 42, and the pallet assembly comprises two second distant portions formed respectively by the first and second mechanical pallet-stones 28, 29. When the horological movement is stopped as a result of the unwound barrel spring, the escape wheel 16 is also stopped and the mechanical resonator 2 is rapidly at rest (that is to say it is non-oscillating and does not have any kinetic energy). Subsequently, the pallet assembly 14 is for any angular position θ (angular stop position) of the escape wheel 16 in a corresponding equilibrium angular position βER(θ) that depends on said angular position. Generally, when the mechanical resonator is at rest, it is not necessarily located in the rest position thereof (minimum mechanical energy position with the balance-spring let down), because the pallet assembly may exert thereon a certain force, due to the magnetic system of the escapement and/or of the mechanical device that is provided within the scope of the invention, and move it in angular positions where the balance-spring of said mechanical resonator is then slightly tight and therefore exerts a small restoring force. In such a case, an equilibrium position is determined generally for the assembly consisting of the escapement and of the mechanical resonator for each angular position θ of the escape wheel, and an equilibrium angular position βER(θ) is determined for the pallet assembly. The curve 50 in
When the barrel of the horological movement is unwound (that is to say that the spring of said barrel is let down so that the force torque that it provides to the escape wheel no longer enables the driving thereof), the escape wheel stops in any one of the angular positions θ and, after a period of damping of the oscillation of the mechanical resonator 2, said latter is at rest and the pallet assembly is in the corresponding angular position βER(θ). In this situation, it is provided ranges of angular positions PCP1 and PCP2 of the escape wheel 16 wherein the first and second mechanical pallet-stones 28 and 29 are respectively in contact with a corresponding tooth from the plurality of teeth 42 of the escape wheel. Subsequently, the teeth 42 and the two mechanical pallet-stones 28, 29 are arranged in such a way that the equilibrium angular position βER(θ) of the pallet assembly 14 is, on at least one first portion of each of the ranges of angular positions PCP1 and PCP2, a monotonic function of the angular position θ of the escape wheel that moves away from the median position ‘0’ of the pallet assembly with a variation of said angular position θ in the direction of rotation provided for the escape wheel, as shown in
Thanks to the aforementioned features, during a new winding of the barrel spring making it possible for the escape wheel 16 to resume rotating in the direction of rotation provided (clockwise in
Particularly, the escape wheel 16 and the pallet assembly 14 are arranged in such a way that, when the escape wheel starts to rotate, in a starting phase, from any one of the angular positions by being subjected to a starting torque less than or equal to the force torque provided in normal operation, it does not encounter any abutment of magnetic or mechanical origin that is likely to stop it before said escape wheel reaches a next range of angular positions PCP1 or PCP2, particularly said at least one first portion of said next range of angular positions having said monotonic function. In addition, the teeth 42 and the mechanical pallet-stones 28, 29 are configured so that, in said next range of angular positions, the escape wheel 16 subjected to said starting torque is not stopped by the contact between the tooth and the mechanical pallet-stone concerned but that the tooth concerned may transmit at least mostly said starting torque to the pallet assembly. It will be noted that the variant shown is particular due to the particular magnetic system of the escapement. Indeed, in the absence of teeth 42, the equilibrium angular position of the pallet assembly would remain substantially at zero over a magnetic period PRE of the escape wheel, and therefore over a complete revolution of said escape wheel. Under these conditions, it is understood that no starting of the mechanical resonator and of the associated escapement would take place without specific means to this end being provided, in order to make it possible for the mechanical resonator to once again be activated and for the pallet assembly to have a resulting reciprocating movement.
In a first advantageous variant, shown in
In a second advantageous variant, also shown in
With reference to
In
In another variant, similar to the variant shown but with a pallet assembly having longer mechanical pallet-stones, during the starting phase, the inner corner of the mechanical pallet-stone 28, respectively the outer corner of the mechanical pallet-stone 29 starts by sliding, when the escape wheel rotates clockwise, on the inclined surface SI1 of the tooth and subsequently only the rounded end portion of the tooth slides on the inclined surface SI2 of the mechanical pallet-stone, as disclosed above. It is therefore understood, the benefit of having a configuration of the escapement with the two inclined surfaces SI1 and SI2, such as shown, where the inclined surface SI1 has a slope slightly greater than that of the inclined surface SI2 while a tooth and a mechanical pallet-stone are in contact during the starting phase of the assembly formed of the escapement and of the mechanical resonator. In the aforementioned advantageous variants, during the starting phase, it is provided that each angular contact area corresponds to contact points on one and/or the other of the two inclined planes SI1 and SI2. In a general variant, only the teeth or the two pallet-stones each have an inclined surface while respectively the two pallet-stones or the teeth each have a protruding portion configured so as to be able to slide upon starting along each of said inclined surfaces in the respective angular contact areas. For the pallet assembly, in the polar coordinate system that is associated therewith, the angular contact areas upon starting, namely the angular position areas β(θ) whereon there is contact upon starting, are given substantially by the curve 50 of the equilibrium angular positions βER(θ), previously defined, on the respective angular contact areas for the escape wheel (
In
In
Number | Date | Country | Kind |
---|---|---|---|
20164021.6 | Mar 2020 | EP | regional |