Elevators are used in the oilfield industry for handling tubulars on drilling rigs. Some elevators include a body made up of two semi-circular portions that are hinged together and fitted around a tubular. A latch or connecting pin may be positioned opposite of the hinge to secure the semi-circular portions together. When disengaged, the latch or connecting pin allows for the semi-circular portions to be pivoted apart. Another type of elevator is in the shape of a horseshoe. Horseshoe-shaped elevators generally do not require disengaging a latch or connecting pin and pivoting the semi-circular portions apart to place the elevator around the tubular.
Horseshoe-shaped elevators are generally designed to support a tubular by lifting on the lower load face of a coupling that has been connected (“made up”) to the tubular. The coupling has a bore formed therethrough and female threads on an inner surface thereof. The coupling is designed to have two tubulars inserted into the bore through opposing ends of the coupling. Male threads on the tubulars may engage corresponding female threads of the coupling to join the tubulars together. As such, the outer diameter of the coupling is larger than the outer diameter of the tubulars. Thus, an upper surface of the elevator may contact a lower surface of the coupling, thereby allowing the elevator to support the weight of the tubular.
When no coupling is used, a lifting apparatus (often referred to as a “lift nubbin” or “lift plug”) is coupled to the tubular. The lifting apparatus includes a male threaded end that engages the female threads in the tubular. The lifting apparatus includes a flange portion on the outer diameter thereof that is larger than the outer diameter of the tubular. The elevator may contact a lower surface of the flange, thereby allowing the elevator to support the weight of the tubular. Attaching and removing lifting apparatuses, however, lengthens time taken to deploy each tubular into the well, as the lifting apparatus generally have to be installed and then removed before the tubular is made up to the next tubular.
As shown in
In certain applications, the spring-biased slip(s) 1911, 1912 are drawn downward into contact with the tubular 1920 to be lifted prior to the pneumatic slips 1913, 1914 being energized. When this occurs, the spring-biased slip(s) 1911, 1912 may mechanically overload and fracture a mechanical stop that is designed to stop movement of the spring-biased slip(s) 1911, 1912 at the end of their downward stroke. Once this occurs, the slip becomes separated from the clamp-type elevator 1900 and becomes a dropped object. In some instances, this may cause the tubular 1920 to be dropped. The apparatus disclosed herein actuates all slips by means of powered actuators which are connected to the slips by means of a timing ring ensuring that all slips move in unison with each other.
An apparatus for gripping a tubular is disclosed. The apparatus includes a body. A slip carrier is coupled to an inner surface of the body. The slip carrier is configured to pivot between an open position and a closed position. A tubular is configured to be introduced laterally into the body when the slip carrier is in the open position. A slip is coupled to the slip carrier. The slip is configured to move radially between a first position that is spaced apart from the tubular and a second position that contacts and grips the tubular.
In a preferred embodiment, the apparatus includes a U-shaped body. A slip carrier is coupled to an inner surface of the body. The slip carrier is configured to pivot with respect to the body between an open position and a closed position. A tubular is configured to be introduced laterally into the body when the slip carrier is in the open position. The tubular being introduced laterally into the body causes the slip carrier to pivot into the closed position. A slip carrier locking pin is configured to secure the slip carrier in the closed position. The slip carrier locking pin is configured to move through a first hole formed through the body and a second hole formed through the slip carrier. The first and second holes are aligned when the slip carrier is in the closed position. A tapered slip is coupled to the slip carrier and is also linked to the timing ring. Movement of the timing ring causes the slip to move vertically and radially between a first position in which the slip is spaced apart from the tubular and a second position in which the slip contacts and grips the tubular. A pneumatic cylinder is coupled to the body and moves a main timing ring up and down. A slip position indicator rod is configured to move downward together with the main timing ring. An indicator ramp is coupled to and configured to move together with the slip position indicator rod. A slip position indicator valve is coupled to the body. Movement of the indicator ramp past the slip position indicator valve causes a signal to be transmitted indicating that the slip is in the second position.
A method for moving one or more tubulars is disclosed. The method includes positioning an apparatus at least partially around a first tubular. The method also includes actuating the slip carrier into a closed and locked position. The method also includes actuating a slip that is coupled to the slip carrier from a first position into a second position to grip the first tubular. The method further includes lifting the first tubular into a substantially vertical orientation using a top drive that is coupled to the apparatus while the first tubular is gripped by the apparatus.
The foregoing summary is intended merely to introduce a subset of the features more fully described of the following detailed description. Accordingly, this summary should not be considered limiting.
The accompanying drawing, which is incorporated in and constitutes a part of this specification, illustrates an embodiment of the present teachings and together with the description, serves to explain the principles of the present teachings. In the figures:
It should be noted that some details of the figure have been simplified and are drawn to facilitate understanding of the embodiments rather than to maintain strict structural accuracy, detail, and scale.
Reference will now be made in detail to embodiments of the present teachings, examples of which are illustrated in the accompanying drawing. In the drawings, like reference numerals have been used throughout to designate identical elements, where convenient. In the following description, reference is made to the accompanying drawing that forms a part thereof, and in which is shown by way of illustration a specific exemplary embodiment in which the present teachings may be practiced. The following description is, therefore, merely exemplary.
The apparatus 100 may include a body 110 that is substantially U-shaped (i.e., horseshoe-shaped). The body 110 may have one or more top guides 112 coupled thereto or integral therewith. The top guides 112 may be configured to actuate between a first, open position and a second, closed position. The top guides 112 are shown in the open position in
The body 110 may have one or more bottom guides 116 coupled thereto or integral therewith. The bottom guides 116 are shown in the open position in
The apparatus 100 may also include one or more slip carriers 120. The slip carriers 120 may be or include arcuate segments. The slip carriers 120 may be pivotally coupled to the body 110 and positioned in receptacles that are defined in the body 110. The slip carriers 120 may act as doors that pivot/rotate between a first (e.g., open) position and a second (e.g., closed) position. The slip carriers 120 are shown in the open position in
The apparatus 100 may also include one or more slips 122. The slips 122 may be coupled to the slip carriers 120. For example, two slips 122 may be coupled to each slip carrier 120. The slips 122 may be wedge-shaped elements that have one or more gripping elements (e.g., provided on inserts 124 on a front/inner radial surface thereof for engaging and gripping the tubular. A back/outer radial surface of the slips 122 may be configured to mate with and slide along a tapered receptacle of the slip carriers 120. The slips 122 are shown in a first (e.g., up) position in
The apparatus 100 may also include a main timing ring 130, as shown in
The apparatus 100 may also include one or more slip carrier timing rings 132, as shown in
The slip carrier timing rings 132 may have an interlocking engagement with the main timing ring 130. When the main timing ring 130 is moved upward or downward, the slip carrier timing rings 132 may move together with the main timing ring 130 due to the interlocking engagement. In addition, the slip carrier timing rings 132 may be coupled to the slips 122 via linkages 134. Thus, as the slip carrier timing rings 132 move upward and downward with respect to the body 110 and the slip carriers 120, the slips 122 may also move upward and downward with respect to the body 110 and the slip carriers 120. The downward movement between the slips 122 and the slip carriers 120 may cause the slips 122 to move radially-inward toward the centerline of the body 110 (e.g., to grip a tubular). Conversely, as the slips 122 move upward, they move radially-outward away from the centerline of the body 110 (e.g., to release the tubular).
The apparatus 100 may also include one or more slip lift cylinders 152 (see
The apparatus 100 may also include one or more slip carrier locking pin cylinders 142, as shown in
The indicator pin 150 may be secured to the plate 148 that connects to the slip carrier locking pin cylinder 142. As such, the indicator pin 150 may move upward and downward together with the cylinder rod 144 and the slip carrier locking pin 140. When the slip carrier locking pin 140 moves downward into a “lock” position, the indicator pin 150 also moves downward, thereby activating a pneumatic indicator valve that transmits a signal to a control panel indicating that the slip carrier lock pin 140 is in the “lock” position. Alternatively, the indicator may be a hydraulic valve or an electric switch.
A logic circuit may confirm that the slip carrier locking pin 140 is in the “lock” position. The logic circuit may be located in a control panel that is separate and apart from the apparatus 100. The control panel may be where an operator interfaces with the system to send signals to open and close the slips 122. In an embodiment, the logic circuit may be at least partially pneumatic. Once the logic circuit confirms that the slip carrier locking pin 140 is in the “lock” position, a signal (e.g., a pneumatic signal) may be transmitted to the slip lift cylinders 152 (see
The apparatus 100 may also include one or more slip carrier lock sensing valves 154, as shown in
The method 700 may also include positioning the apparatus 100 above the first tubular 810 and actuating the slip carriers 120 into an open position, as at 706. This is shown in
The method 700 may also include positioning the apparatus 100 at least partially around the first tubular 810 and closing and locking the slip carriers 120 around the first tubular 810, as at 708. This is shown in
The method 700 may also include actuating the slips 122 into a second (e.g., down) position, as at 710. The second position of the slips 122 may be downward and radially-inward with respect to the first position. Thus, the slips 122 may contact and grip the first tubular 810 when in the second position.
The method 700 may also include lifting the first tubular 810 into a substantially vertical orientation using a top drive 830 while the first tubular 810 is gripped by the apparatus 100, as at 712. This is shown in
The method 700 may also include lowering (e.g., stabbing) the first tubular 810 into the spider 802 using the top drive 830, as at 714. This is shown in
The method 700 may also include positioning the apparatus 100 above a second tubular 812 and actuating the slip carriers 120 into the open position, as at 720. The second tubular 812 may be positioned in the V-door. The method 700 may also include positioning the apparatus 100 at least partially around the second tubular 812 and closing and locking the slip carriers 120 around the second tubular 812, as at 722. This is shown in
The method 700 may also include lifting the second tubular 812 into a substantially vertical orientation using the top drive 830 while the second tubular 812 is gripped by the apparatus 100, as at 726. This is shown in
The method 700 may also include coupling (e.g., making up) the first and second tubulars 810, 812, as at 730. The first tubular 810 may be gripped and supported by the spider 802 when the first and second tubulars 810, 812 are coupled together, and the second tubular 812 may be gripped and supported by the apparatus 100 when the first and second tubulars 810, 812 are coupled together. The method 700 may also include actuating the slips of the spider 802 back into the first position (e.g., to release the second tubular 812) and lowering the first and second tubulars 810, 812 using the top drive 830, as at 732. The method 700 may also include actuating the slips of the spider 802 back into the second position to grip the second tubular 812, as at 734. The method 700 may also include actuating the slips 122 of the apparatus 100 back into the first position and unlocking the slip carriers 120, as at 736.
The method 700 may also include positioning the apparatus 100 above a third tubular 814 and actuating the slip carriers 120 into the open position, as at 738. The third tubular 814 may be positioned in the V-door. The method 700 may also include positioning the apparatus 100 at least partially around the third tubular 814 and closing and locking the slip carriers 120 around the third tubular 814, as at 740. The method 700 may also include actuating the slips 122 into the second position, as at 742.
The method 700 may also include lifting the third tubular 814 into a substantially vertical orientation using the top drive 830 while the third tubular 814 is gripped by the apparatus 100, as at 744. In the substantially vertical orientation, the third tubular 814 may be positioned above and aligned with the well center 800 (e.g., the spider 802). The method 700 may also include lowering the third tubular 814 into contact with the second tubular 812 using the top drive 830, as at 746. More particularly, a pin connection at the lower end of the third tubular 814 may be lowered into a box connection at the upper end of the second tubular 812.
The method 700 may also include coupling (e.g., making up) the second and third tubulars 812, 814, as at 748. The second tubular 812 may be gripped and supported by the spider 802 when the second and third tubulars 812, 814 are coupled together, and the third tubular 814 may be gripped and supported by the apparatus 100 when the second and third tubulars 812, 814 are coupled together. The method 700 may also include actuating the slips of the spider 802 back into the first position (e.g., to release the second tubular 812) and lifting the first, second, and third tubulars 810, 812, 814 (i.e., a stand) out of the spider 802 using the top drive 830 while the third tubular 814 is gripped by the apparatus 100, as at 750. This is shown in
In an alternative embodiment, after the second and third tubulars 812, 814 are coupled together, the method 700 may include actuating the slips 122 of the apparatus 100 back into the first position to release the third tubular 814, as at 752. The method 700 may also include unlocking and opening the slip carriers 120, as at 754. The method 700 may also include lowering an elevator 820 until the third tubular 814 is positioned at least partially therein using the top drive 830, as at 756. This is shown in
The apparatus 100 may also be used on pipe pick-up arms, such as on a casing running tool (“CRT”). The specific rig type and application may determine whether a CRT is used or a conventional elevator is used, and the rig-up of the apparatus 100 may be determined by this selection.
As used herein, the terms “inner” and “outer”; “up” and “down”; “upper” and “lower”; “upward” and “downward”; “above” and “below”; “inward” and “outward”; “uphole” and “downhole”; and other like terms as used herein refer to relative positions to one another and are not intended to denote a particular direction or spatial orientation. The terms “couple,” “coupled,” “connect,” “connection,” “connected,” “in connection with,” and “connecting” refer to “in direct connection with” or “in connection with via one or more intermediate elements or members.”
While the present teachings have been illustrated with respect to one or more implementations, alterations and/or modifications may be made to the illustrated examples without departing from the spirit and scope of the appended claims. In addition, while a particular feature of the present teachings may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular function. Furthermore, to the extent that the terms “including,” “includes,” “having,” “has,” “with,” or variants thereof are used in either the detailed description and the claims, such terms are intended to be inclusive in a manner similar to the term “comprising.” Further, in the discussion and claims herein, the term “about” indicates that the value listed may be somewhat altered, as long as the alteration does not result in nonconformance of the process or structure to the illustrated embodiment. Finally, “exemplary” indicates the description is used as an example, rather than implying that it is an ideal.
Other embodiments of the present teachings will be apparent to those skilled in the art from consideration of the specification and practice of the present teachings disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the present teachings being indicated by the following claims.
This application claims priority to U.S. Provisional Patent Application No. 62/407,018, filed on Oct. 12, 2016, the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1558261 | Grady | Oct 1925 | A |
1656582 | Harder | Jan 1928 | A |
2203118 | Williams | Jun 1940 | A |
8632111 | Krijnen | Jan 2014 | B2 |
20070261857 | Kuttel | Nov 2007 | A1 |
20080060818 | Bourgeois et al. | Mar 2008 | A1 |
20080277108 | Bouligny, Jr. et al. | Nov 2008 | A1 |
20100319932 | Angelle | Dec 2010 | A1 |
20120085550 | Robichaux et al. | Apr 2012 | A1 |
20140090856 | Pratt | Apr 2014 | A1 |
20150159444 | Stankovic | Jun 2015 | A1 |
20150240575 | Angelle | Aug 2015 | A1 |
Entry |
---|
Jin Ho Kim (Authorized Officer), International Search Report and Written Opinion dated Jan. 25, 2018, PCT Application No. PCT/US2017/055491, filed Oct. 6, 2017, pp. 1-17. |
Athina Nickitas-Etienne (Authorized Officer), International Preliminary Report on Patentability dated Apr. 25, 2019, PCT Application No. PCT/US2017/055491, pp. 1-14. |
Giovanna C. Wright, Non-Final Office Action dated Nov. 1, 2019, U.S. Appl. No. 16/258,859, pp. 1-22. |
Number | Date | Country | |
---|---|---|---|
20180100359 A1 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
62407018 | Oct 2016 | US |