Hose coupling endform for fluid transfer assemblies

Abstract
An endform connector having an axial bore through which a fluid is conveyed comprising: a rigid tubular member having a first end, a second end, an annular channel having an inner diameter extending from the first end to the second end through which a fluid is transported, a stem portion extending a fixed distance from the first end, and at least one sealing member extending outward from the stem portion forming a surface having a tapered profile terminating in an outwardly extending rim, which exhibits an ellipsoidal perimeter adapted to be inserted into an inner channel of a fluid transport hose, wherein the endform connector is sealed to a fluid transport hose; and a connector portion on the second end adapted to be coupled with a second fluid conveying structure, and a method for assembling an endform connector to a hose are described.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a longitudinal side view of an endform tube connector of the prior art ready for assembly with a hose;



FIG. 2
a is a cross-sectional end view of the endform tube connector of FIG. 1;



FIG. 2
b is a cross-sectional end view of an endform tube connector of the prior art;



FIG. 3
a is a graph illustrating the push-on force necessary to assemble an endform connector of the present invention with a hose of Example 1, Sample 1;



FIG. 3
b is a graph illustrating the push-on force necessary to assemble an endform connector of the prior art with a hose of Example 1, Sample 2;



FIG. 4
a is a graph illustrating the coupling tensile force of an endform connector of the present invention assembled with a hose using a screw clamp of Example 2. Sample 3;



FIG. 4
b is a graph illustrating the coupling tensile force of an endform connector of the prior art assembled with a hose using a screw clamp of Example 2, Sample 4;



FIG. 5
a is a graph illustrating the coupling tensile force of an endform connector of the present invention assembled with a Mubea constant tension clamp of Example 3, Sample 5;



FIG. 5
b is a graph illustrating the coupling tensile force of an endform connector of the prior art assembled with a Mubea constant tension clamp of Example 3, Sample 6;



FIG. 6
a is a graph illustrating the coupling tensile force of an endform connector of the present invention assembled with a hose using an Oetiker clamp of Example 4, Sample 7; and



FIG. 6
b is a graph illustrating the coupling tensile force of an endform connector of the prior art assembled with a hose using an Oetiker clamp of Example 4, Sample 8.





DETAILED DESCRIPTION OF THE INVENTION

It has been found that a hose endform connector having an arrowhead barb configured to exhibit an ellipsoidal perimeter rather than a circular circumference overcomes current assembly problems by providing significantly reduced push-on force in assembling the endform connector to a hose, and achieving superior coupling tensile force compared to prior art endform connectors which employ an arrowhead barb having a circular circumference.


The basic concept of the present invention is to change the shape of the outer perimeter of the arrowhead barb from a circular shape to an ellipsoidal shape. Changing the shape of the arrowhead barb significantly reduces assembly effort by about 50% while maintaining coupling tensile (axial force) unaffected over a wider tolerance. Assembly effort is primarily a function of interference between the hose inner diameter, the arrowhead barb outer diameter, and the stem land. Changing the outer perimeter of the arrowhead barb to an ellipsoidal or oval shape allows the barb circumference to be reduced while retaining an equivalent peak diameter, in comparison to symmetrically circular shapes.


The advantage of the ellipsoidal design can best be explained by the following comparison:







The circumference of a circle is: C=πD


The perimeter of an ellipsoid or oval shape is approximated by






C


π



(

D
+
d

)

2






The “d” dimension can be significantly reduced. This will significantly reduce assembly effort. The “D:” value will remain unchanged in order to maintain equal coupling tensile force relative to the circular rim configuration. The potential applications for the endform connectors having the present ellipsoidal configuration include assemblies for automotive and other mechanical applications, such as in power steering, transmission, oil cooler, and other fluid transport assemblies requiring high pressures.


In determining the perimeter of the ellipsoidal rim the ratio of the “D” dimension to the “d” dimension is greater than 1 but should not be greater than about 1.5. Preferably, the ratio of “D” to “d” is about 1.01 to 1.25 and. Most preferably, about 1.05 to 1.20 depending on the properties desired.



FIGS. 1 and 2 illustrate a hose endform connector of the present invention used to connect an end form connector to a polymeric hose. As shown in FIG. 1, the endform connector 10 includes a tubular body 12 having a first end 14 and a second end 16. An annular channel 18 extends along longitudinal axis X from the first end 14 to the second end 16. The tubular body 12 includes a stem portion 20 and a sealing member 22 adjacent the first end 14 of the tubular body 12. The stem portion 20 and the sealing member 22 are adapted to inserted into an open channel 24 of a hose 26 to secure the hose 26 to the endform connector 10 to provide a leak-free connection. The stem portion 20 has a uniform outer annular surface 28 extending a fixed distance from the first end 14 of the tubular body 12. The sealing member 22 extends outwardly from the outer annular surface 28 of the stem portion 20 to form a radially increasing surface 30 having a tapered profile. The radially increasing surface 30 of the sealing member 22 terminates in a rim 32 exhibiting an ellipsoidal perimeter. The sealing member 22 includes a rearward surface 34 lying in a plane perpendicular to or nearly perpendicular to the orientation of the tubular body 12. The rearward surface 34 of the sealing member 22 extends radially outward from the tubular body 12 and terminates with the rim 32 exhibiting an ellipsoidal perimeter. Typically, the rearward surface 34 may be tapered at an angle of up to about 5°, preferably, about 0 to 3° and most preferably, about 0 to 2°, with respect to the vertical orientation of the rearward surface 34. The stem portion 20 is adapted to be inserted into an open end 24 of a hose 26 to provide a leak-free fitting. FIG. 2 shows a cross-sectional view of the endform connector of FIG. 1, wherein the rim 32 of the sealing member 22 is shown as having an ellipsoidal configuration while the annular channel 18 of the tubular body has a circular configuration.


When the metal endform connector 10 is inserted into the open end of the hose 26, sufficient pressure is exerted upon the hose 26 to radially compress the hose 26 inward around the stem portion 20 of the end fitting 10 such that the open channel 24 of the hose 26 engages the sealing member 22 providing a leak-free seal in the fluid transport assembly. The sealing members 22 not only provide leak-free seals but they also increase the pull-off resistance of the hose 26 from the endform connector 10.


The number of sealing members on the endform connector is not critical. One sealing member in the form of an arrowhead barb is sufficient in most application; however, it may be desirable to include more than one sealing member at fixed intervals along the stem portion of the endform connector. In those instances where more than one sealing member is employed, It may be desirable to alter the rotational position of the more than one sealing members to exhibit a non-linear orientation of the ellipsoidal rims so that the “D” diameters of all arrowhead barbs are not in a linear relationship.


The materials used to form the endform connector should be of a low corrosion tolerance material, such as steel or the like. Such materials should be high quality and free from voids, pits, laps cracks, folds, seams and other defects. It is within the context of the present invention to treat the metal endform connectors, especially the arrowhead barbs to protect them from the environment. The endform members may be coated with a polymeric material 36 (FIG. 1) such as nylon, or the metal may be electroplated, painted or similarly treated.


EXAMPLE 1 (FIGS. 3a & 3b)

SAMPLE 1—A first endform connector having an ellipsoidal shaped arrowhead barb in accordance with the present invention, and a fluid transport hose were assembled to determine the push-on force necessary to form the assembly.


COMPARATIVE SAMPLE 2—A second endform connector having a circular shaped arrowhead barb in accordance with the prior art, and a fluid transport hose were assembled to determine the push-on force necessary to form the assembly.


All factors were constant in samples 1 and 2 except for the stem (Sample 1 having an ellipsoidal shaped barb and Sample 2 having a circular rim). The push-on force for Sample 1 having the ellipsoidal rim was 49% lower than Sample 2 having the circular rim.


EXAMPLE 2 (FIGS. 4a & 4b)

SAMPLE 3—Same as SAMPLE 1 except that the endform having an ellipsoidal shaped barb and the fluid transport hose were assembled and clamped using an ABA screw clamp to determine coupling tensile force exhibited by the ABA screw clamp on the assembly according to the present invention.


COMPARATIVE SAMPLE 4—Same as COMPARATIVE SAMPLE 2 except that the endform connector having a circular shaped arrowhead barb were assembled and clamped using an ABA screw clamp to determine the coupling tensile force exhibited by the ABA screw clamp on the prior art assembly.


All factors were constant except for the stem (Sample 3 having an ellipsoidal shaped barb and Sample 4 having a circular barb). The coupling tensile force of SAMPLE 3 was statistically equivalent to that of SAMPLE 4. The mean value differences show SAMPLE 4 to have a 40.6 lb higher tensile relative to SAMPLE 3.


EXAMPLE 3 (FIGS. 5a & 5b)

SAMPLE 5—Same as SAMPLE 1 except that the endform having an ellipsoidal shaped barb and the fluid transport hose were assembled and clamped using a Mubea Constant Tensile clamp to determine coupling tensile force exhibited by the Mubea Constant Tensile clamp on the assembly according to the present invention.


COMPARATIVE SAMPLE 6—Same as COMPARATIVE SAMPLE 2 except that the endform connector having a circular shaped arrowhead barb were assembled and clamped using a Mubea Constant Tensile clamp to determine the coupling tensile force exhibited by the Mubes Constant Tensile clamp on the prior art assembly.


All factors were constant except for the stem (Sample 3 having an ellipsoidal shaped barb and Sample 4 having a circular barb). The coupling tensile force of SAMPLE 5 was statically equivalent to that of SAMPLE 6. The mean value differences show SAMPLE 5 to have a 53 lb higher tensile relative to SAMPLE 6.


EXAMPLE 4 (FIG. 6a & 6b)

SAMPLE 7—Same as SAMPLE 1 except that the endform having an ellipsoidal shaped barb and the fluid transport hose were assembled and clamped using an Oetiker Tensile clamp to determine coupling tensile force exhibited by the Oetiker Tensile clamp on the assembly according to the present invention.


COMPARATIVE SAMPLE 8—Same as COMPARATIVE SAMPLE 2 except that the endform connector having a circular shaped arrowhead barb were assembled and clamped using an Oetiker Tensile clamp to determine the coupling tensile force exhibited by the Oetiker Tensile clamp on the prior art assembly.


All factors were constant except for the stem (Sample 3 having an ellipsoidal shaped barb and Sample 4 having a circular barb). The coupling tensile force of SAMPLE 7 was statically equivalent to that of SAMPLE 8. The mean value differences show SAMPLE 7 to have a 26 lb higher tensile relative to SAMPLE 8.


Although the present invention has been fully described in connection with a preferred embodiment thereof and with reference to the accompanying drawings, various changes and modifications will occur to those skilled in the art. Accordingly, such changes and modifications are to be understood as being within the scope of the present invention as defined by the appended claims.

Claims
  • 1. An endform connector having an axial bore through which a fluid is conveyed, said endform connector comprising: a rigid tubular member having a first end, a second end, an annular channel having an inner diameter extending from said first end to said second end through which a fluid is transported;a stem portion extending a fixed distance from said first end, and at least one sealing member extending outward from said stem portion forming a surface having a tapered profile, said surface having said tapered profile terminating in an outwardly extending rim, said outwardly extending rim exhibiting an ellipsoidal perimeter adapted to be inserted into an inner channel of a fluid transport hose, wherein said endform connector is sealed to said fluid transport hose; anda connector portion on said second end, said connector portion adapted to be coupled with a second fluid conveying structure.
  • 2. The endform connector of claim 1, wherein said sealing member is an arrowhead barb.
  • 3. The endform connector of claim 1, wherein said at least one sealing member includes an annular surface opposite said tapered surface, said annular surface extending perpendicularly to said rigid tubular member.
  • 4. The endform connector of claim 1, wherein said rim having said ellipsoidal perimeter exhibits a sharp edge.
  • 5. The endform connector of claim 1, wherein said hose is capable of being uniformly deformed onto and around said at least one sealing member upon being subjected to high concentric pressure to create a leak-free seal therebetween.
  • 6. The endform connector of claim 1, wherein said endform connector is made from a rigid material selected from the group consisting of metal, ceramic or plastic.
  • 7. The endform connector of claim 6, wherein said endform connector is made from metal.
  • 8. The endform connector of claim 7, wherein said metal is steel.
  • 9. The endform connector of claim 1, wherein said endform connector is pre-coated with a protecting material to protect said endform connector from environmental conditions.
  • 10. The endform connector of claim 9, wherein said protective material is nylon.
  • 11. The metal end fitting of claim 1, wherein said second fluid transporting assembly is a quick connect/quick disconnect coupling.
  • 12. A method for coupling an endform connector to a hose to provide a leak-free seal between said endform connector and said hose wherein said coupling exhibits reduced push-on effort, said method comprising; providing a rigid tubular member having a first end, a second end, an annular channel having an inner diameter extending from said first end to said second end through which a fluid is transported, a stem portion extending a fixed distance from said first end, and at least one sealing member extending outward from said stem portion forming a surface having a tapered profile, said surface having said tapered profile terminating in an outwardly extending rim, said outwardly extending rim exhibiting an ellipsoidal perimeter adapted to be inserted into an inner channel of a fluid transport hose, wherein said endform connector is sealed to said fluid transport hose; and a connector portion on said second end, said connector portion adapted to be coupled with a second fluid conveying structure,providing a hose having an annular inner surface for transporting a fluid therethrough;providing a clamping means for clamping said hose to said endform connector; andsubjecting said hose to a clamping pressure sufficient to cause said hose to deform onto and around said endform connector.
  • 13. The method of claim 12, wherein said endform connector is made from a rigid material selected from the group consisting of metal, ceramic and plastic.
  • 14. The method of claim 13, wherein said endform connector is made from metal.
  • 15. The method of claim 14, wherein said metal is steel.
  • 16. The method of claim 12, wherein said sealing member includes an annular surface opposite said tapered surface, said annular surface extending perpendicularly from said rigid tubular member.
  • 17. The method of claim 12, wherein said ellipsoidal rim exhibits a sharp edge.
  • 18. The method of claim 12, wherein said endform connector is pre-coated with a protecting material to protect said endform connector from environmental conditions.
  • 19. The method of claim 18, wherein said protective material is nylon.
  • 20. In a method of assembling an endform connector to a hose in a fluid transport assembly, the improvement which comprises: providing a steel tubular member having a first end, a second end, an annular channel having an inner diameter extending from said first end to said second end through which a fluid is transported, a stem portion extending a fixed distance from said first end, and at least one sealing member extending outward from said stem portion forming a surface having a tapered profile, said surface having said tapered profile terminating in an outwardly extending rim, said outwardly extending rim exhibiting an ellipsoidal perimeter having a sharp edge, said tapered surface adapted to be inserted into an inner channel of a fluid transport hose, wherein said endform connector is sealed to said fluid transport hose; and a connector portion on said second end, said connector portion adapted to be coupled with a second fluid conveying structure;providing a hose having an annular inner surface for transporting a fluid therethrough;providing a clamping means for clamping said hose to said endform connector; andsubjecting said hose to a clamping pressure sufficient to cause said hose to deform onto and around said endform connector.