Hose fitting and die for preparation

Information

  • Patent Grant
  • 6434990
  • Patent Number
    6,434,990
  • Date Filed
    Friday, July 7, 2000
    24 years ago
  • Date Issued
    Tuesday, August 20, 2002
    21 years ago
Abstract
A system and method for hydroforming hose fittings (10) for use with hose assemblies (30).
Description




BACKGROUND OF THE INVENTION




This invention relates generally to a hose assembly employing a hydroformed fitting, and more particularly, to an improved hydroforming system and method of using a die to hydroform a hose fitting.




Hydroforming, sometimes referred to as fluid forming, was developed during the late 1940s-early '50s in response to a need for a more efficient, cost-effective method of producing metal parts. As a general principle, hydroforming involves application of a predetermined fluid pressure to an area of metal surface to be manipulated. Where the metal surface is a tube, an internal fluid pressure is applied as the tube is bent and stretched. Generally, hydroformation of a tube can be accomplished by filling the tube interior with the fluid, retaining it therein and increasing the internal pressure. Depending upon the die tool utilized, hydroforming can also be used to radially expand the tube.




Specific advantages of hydroforming include: relatively inexpensive tooling, the availability of complex shapes and contours, minimal material thinout (hydroforming flows the metal rather than stretching it—thinout is usually less than 10%), reduced finishing costs (bid comparison, matched die methods of formation can cause scuff marks, shock and stretch lines), and precision with difficult configurations even where high tolerances are required.




Typically, fittings manufactured for use ill conjunction with hose assemblies are machined at considerable expense. Where a one-piece machined fitting is not available or is uneconomical, a brazing procedure can be utilized to provide the desired fitting from two components. Inherently, brazing provides a structural weakness which may manifest itself through failure upon application of routine pressure forces. Where one-piece fittings can be machined, they are difficult to bend if a curved configuration is required. Even so, bending introduces material weaknesses and increases the potential for failure at application pressures.




There are a considerable number of problems and deficiencies relating to the manufacture of hose fittings and, subsequently, assemblies with such fittings. The search for a cost-efficient and effective alternative to machining has been an on-going concern in the art. There is a need for a system/method, hose fitting and/or assembly which takes advantage of the manufacturing and commercial benefits typically associated with hydroforming.




OBJECTS OF THE INVENTION




It is an object of this invention to overcome the problems and shortcomings of the prior art, including those described above. Another object of this invention can be to provide a hose assembly prepared using a hydroforining process.




It can be another object of the present invention to provide a one-piece hose fitting which is formed unitarily, without brazing, to maintain structural integrity.




It can also be an object of this invention to provide a fitting meeting pertinent industry dimensional, design and/or performance specifications or their equivalents, such a fitting as can be hydroformed and/or used in conjunction with a hose assembly also meeting or equivalent to such underlying specifications.




It can also be an object of this invention to provide a system for hydroforming, unitarily, a one-piece hose fitting, such a system as can include a die tool and/or a set of dies, as can be used to hydroform a fitting meeting or equivalent to various industry specifications.




It can also be an object of the present invention to provide a system having an interchangeable die tool and/or dies such that hose fittings of variable design and dimension can be hydroformed from tubular stock.




It can also be an object of this invention to provide a system and/or method for hydroforming a hose fitting for use in conjunction with a securing mechanism, such that a hose can be assembled with such a fitting.




It can also be an object of this invention to provide a metallic hose fitting hydroformed such that the fitting is substantially free of machine lines, scuff marks and related surface deformities typically observed as a result of machining or related mechanical/grinding procedures, and substantially without material thinning, allowing for a degree of thinning inherent to hydroforming processes.




It can also be an object of this invention to provide a hose fitting, assembly, system and/or method obviating the need for costly finishing work on the hose fitting.




It will be understood by those skilled in the art that one or more aspects of this invention can meet certain objects, while one or more other aspects can meet certain other objectives. Each objective may not apply equally, in all instances, to every aspect of this invention. As such, the following objects—in light of the prior art regarding hose assemblies, hose fittings and methods for their preparation—can be viewed in the alternative with respect to any one aspect of the present invention.




Other objects, features and advantages of the present invention will be apparent from the following summary and description of preferred embodiments, and as such, will be readily apparent to those skilled in the art having knowledge of various hose fittings, assemblies and the requirements for their use in trade and industry. Such objects, features, benefits and advantages will be apparent from the above as taken in conjunction with the accompanying examples, tables, data, figures and all reasonable inferences to be drawn therefrom.




SUMMARY OF THE INVENTION




This invention includes an improved hose fitting, as well as an assembly for use therewith, together with a system and/or method of preparing such. The invention overcomes certain well-known problems and deficiencies, including those outlined above, while providing a cost-effective alternative to current manufacturing and machining operations. In part, the present invention is a hose assembly, including: (1) a unitary hose fitting hydroformed from a tube and (2) a hose functionally and dimensionally compatible with the hose fitting. Consistent with die benefits available through hydroforming but heretofore unrealized in the context of a hose fitting, application of internal tubular pressure results in a number of structural characteristics not available through use of the prior art, including metal flow without stretching or substantially thinning the metal. In such a way, a one-piece fitting can be unitarily prepared without brazing and without lines or scuff marks or other surface imperfections typically resulting from a machining operation. At least a barb can be incorporated into the fitting configuration, such that the hose component mates with the fitting and engages a barb incorporated therein.




In preferred embodiments, the hydroformed hose fitting has at least one portion for attachment of a securing mechanism. In such an embodiment, the assembly also includes a mechanism to secure the hose to the fitting. hi highly-preferred embodiments and without limitation, the mechanism can be a ferrule or a clamp. While screw style fittings may be less preferred for certain assemblies or uses, such can also be hydroformed in accordance with this invention providing measures are taken to maintain structural integrity about the thread portion. See, for instance, U.S. Pat. No. 5,333,775 referenced below.




Likewise, ill preferred embodiments, the hydroformed fitting of die assembly has dimensional aid performance properties selected from, among other properties, dimensional and performance properties either meeting or equivalent to Society of Automotive Engineers (SAE) J516 standard specifications for hydraulic hose fittings. In a similar fashion, preferred embodiments of the present assembly include those where the hose component has dimensional and performance properties selected from those dimensional and performance properties either meeting or equivalent to SAE J517 standard specifications for hydraulic hoses. Such standard specifications for hydraulic hose and hose fittings, as well as other hose and fitting components, are well-known to those skilled in the art, but heretofore have not been utilized in conjunction with hose fittings, assemblies or their manufacture. Incorporation of such standard specifications will be well-known to those skilled in the art made aware of this invention.




The compatibility of the hose component with the inventive fitting of this invention can be in accordance with SAE recommended practice J 1273. In particular, pursuant to recommended practice under SAE J1273, die pressure of an assembly system must first be determined. Hose selection is then made so that die recommended maximum operating pressure is equal to or greater than die system pressure. Surge pressure higher than the maximum operating procedure will tend to shorten applicable hose life; accordingly, such pressures must be taken into account in determining compatibility. Other factors include, without limitation: suction (negative pressure), temperature of a fluid passed through the hose, fluid compatibility with the hose and fittings, size of the components as compared to the pressure and rate of flow of the pressurized fluid, the environment (ultraviolet light, ozone, salt water, chemicals, etc.) which can cause degradation, mechanical loads (induced by flexing, twisting, etc.), abrasion and electrical conductivity. Such factors and other related considerations are well-known to those skilled in the art and will be understood as applicable to the present hydroformed hose fittings and their use with hose assemblies, as those individuals are made aware of this invention.




Other preferred embodiments of the assembly of this invention include those where multiple barbs are provided on the fitting component. Such barbs can have a variety of configurations, including, without limitation, circumferential edges, squares, beads or a combination of such configurations. Likewise, in preferred embodiments, the fitting of this invention has a uniform wall thickness dimension. Even so, where variations are required, such can be introduced by hydroforming the fitting in accordance with the methods and procedures described in U.S. Pat. No. 5,333,775, the entirety of which is incorporated herein by reference.




In part, the present invention is an improved hydroforming system. The improvement includes a plurality of dies, but at least first and second opposed dies, removably engaging one another and defining a cavity for placement of tubular stock. Reference is made to several figures described below. Each die has at least one concave portion, and the concave portions are arranged to define a cavity having the design and outer dimensions of a hose fitting. in preferred embodiments, the dies are configured such that the cavity has a design and dimensions meeting SAE J516 standard specifications for hydraulic hose fittings, or a design and dimensions equivalent to such standard specifications. In highly-preferred embodiments, the cavity has a concave portion so as to provide a hose fitting with a configuration engageable with a ferrule. In a singular fashion, with or without such a configuration, a highly-preferred embodiment provides a cavity having a concave portion to provide at least one hose barb on die resultant fitting.




In part, die present invention is a method of using a die to manufacture a hose fitting. As described more fully above, such a fitting has a configuration suitable for use with a hose assembly. The inventive method includes: (1) providing a metallic tube, (2) providing a die tool to engage the tube and defining a shaped cavity, (3) contacting the interior of the tube with an expansive material and retaining the material within the tube, (4) increasing the pressure of the expansive material on the tube interior to a predetermined level sufficient to flow the metal component of the tube, and (5) engaging the tube with the aforementioned die tool to form a hose fitting.




As can be utilized with the present invention, a tubular blank is filled with a hydroforming fluid, by introduction to a fluid bath, injection or placement of the fluid therein. The ends of the tube can be plugged to retain the fluid within the tube, with the internal pressure thereafter increased to a desired level according to techniques known to those skilled in the art. Either sequentially or contemporaneously therewith, the die tool is brought into engagement with the tube to hydroform a hose fitting having an external configuration and set of outer dimensions defined by and/or corresponding to the shaped cavity. Mechanical and hydraulic components usable with the present method are well-known, as illustrated by the description provided in U.S. Pat. No. 5,471,857 which is incorporated herein in its entirety. Other such components or mechanisms can include a cam lock of the sort which could be arranged and configured to be used in conjunction with and/or close the dies of

FIGS. 5B and 5C

, as described below.




In preferred embodiments, engagement of the die tool with a pressurized tube provides a hose fitting with a design and dimensions selected from a group of properties meeting, SAE J516 standard specifications for hydraulic hose fittings or, without limitation, properties equivalent to such standard specifications. Alternatively or in conjunction therewith, the engagement results i a dimensional configuration providing a mating relationship with a ferrule.




The present method is described above in terms of utilizing a hydraulic fluid. In preferred embodiments, such a fluid is a hydraulic oil of the sort which can be used in hydroforming operations of the prior art. In other embodiments, various other expansive materials can be used, as would be well-known to those individuals skilled in the art mid made aware of this invention. Such expansive materials include, without limitation, water, urethane and an explosive. Regardless of the identity or nature of the expansive material, internal pressures of the sort useful with the present invention are preferably at least about 55,000 psi. However, pressures of from less than 5,000 psi to greater than 150,000 psi can be employed, depending at least in part on tubular material choice and desired outer diameter of the resulting hose fitting. Various other pressures and method parameters can be utilized, as required by the particular hose fitting hydroformed and as would be well-known to those skilled in the art having knowledge that such articles can be hydroformed.




The method of this invention can be utilized in conjunction with one or more of several additional related steps and/or processes. For instance, a metallic tube can be preformed or swaged, using al automated punch or one of several commercially available swaging machines. See, for instance, U.S. Pat. No. 4,662,841 which is incorporated herein in its entirety. Various resulting tubular configurations can result therefrom. In particular and as a preferred embodiment of this invention, a tubular portion eventually hydroformed to provide hose barbs can be preformed in this manner to provide a reduced outside diameter. Without limitation, reference is made to FIG.


6


. The preformed and/or swaged tube of

FIG. 6

can then be hydroformed as described herein to provide a hose fitting of the type shown in FIG.


7


.




The method of this invention also contemplates one or more steps or processes after hydroformation. For example, the hose fitting of

FIG. 1

can be machined or otherwise manipulated with respect to the portion preformed and/or swaged to widen the inside diameter, if required to improve fluid flow properties. Likewise, without limitation, the fittings of this invention can be heat-treated after hydroformation to improve various physical, structural and/or metallurgical properties.




Material expansion is a concern during hydroforming operations. Expansion is limited for a given tubular material having a given starting inner and outer diameters and a desired resulting outer diameter. Further expansion results in an undue material thinning and eventual failure at a certain application pressure. Such expansion and pressure limits can be determined experimentally or via computer simulation. For instance, for a tubular blank of 1010 steel material (0.75-inch diameter and 0.095-inch thickness), it was determined that die limit of outer diameter expansion is about 31%, beyond which there occurs deleterious material thinning. For example and using the above material specifications, a tube blank having a 0.75-inch outer diameter can be appropriately expanded to provide an outer diameter of about 0.984 inches. With respect to the present invention and, in particular with reference to

FIG. 1

, such an expansion and limit can be most pertinent to the formation of raised portions


12


and the mating relationship with a corresponding coupling mechanism (see, FIG.


4


).











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view of a hose fitting, in accordance with this invention.





FIG. 2

is a schematic view of a die tool configured with a cavity corresponding to die outer dimensions of the fitting of FIG.


1


.





FIG. 3

is a perspective partially exploded view of a fitting, of the female 37-degree flared type, in accordance with this invention and SAE standard specification J516.





FIG. 4

is a partial fragmentary view of a hose assembly, in accordance with this invention.





FIGS. 5A-5C

illustrate schematically by cross-sectional view dies or die segments arranged and configured to provide a hydroforming cavity of the type defining the design and outer dimensions of an inventive hose fitting and/or such a fitting ill conformance with pertinent industry dimensional, design and/or performance specifications.





FIG. 6

shows schematically by perspective view a tube or portion thereof, one end of which has been manipulated prior to hydroformation.





FIG. 7

is a perspective view of a hose fitting, in accordance with this invention, hydroformed using the tube/portion of FIG.


6


. This view also includes phantom lines showing an internal diameter in part attributable to preformation.





FIG. 8

shows in partial cross-sectional view another hose fitting and configuration, in accordance with this invention.











DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS




A representative hose fitting, in accordance with this invention, is shown in FIG.


1


. Fitting


10


is configured to provide raised portions


12


with recess


14


therebetween and a plurality of lose barbs


16


. The arrangement of portions


12


and recess


14


provide for a mating relationship with a securing mechanism for a hose component, such a mechanism including a ferrule as shown in FIG.


4


.




Fitting


10


can be hydroformed from tubular stock using die tool


18


defining cavity


20


, as shown in the cross sectional view provided by FIG.


2


. In preferred embodiments, die tool


18


can comprise first and second opposed dies,


22




a


and


22




b


, respectively. Cavity


20


includes at least one concave portion


24


. As shown in

FIG. 2

, the indicated portion defines tie design and outer dimensions of one portion


12


of fitting


10


. Opposed dies


22




a


and


22




b


can also be configured, for instance, to provide a cavity accounting for any preforming or swaging of the type described above. Accordingly, the opposed dies could define the design and outer dimensions of a fitting configured as shown in FIG.


7


.




As illustrated in

FIG. 3

, fitting


10


can be angled and/or further manipulated after hydroforming. Fitting


10


can be passed through threaded nut


26


either before or after the angle shown is introduced. Edge


28


is then flared to retain nut


26


along fitting


10


.




A hose assembly, in accordance with this invention, is illustrated by the partial fragmentary view provided in FIG.


4


. Assembly


30


includes hose


32


in conjunction with fitting


34


and secured thereto by mechanism


36


. The mating relationship of mechanism


36


and raised portion


38


of fitting


34


, together with the grasping action of barbs


40


, assure proper function of assembly


30


. A number of barb configurations are shown in

FIG. 4

, starting from left to right: sharp edged, square and beaded. Typically, one circumferential barb configuration will be utilized; however, a combination of barbs can be used with good effect.




Fitting


10


can also be hydroformed from tubular stock using die tools


18


such as those shown by representation in

FIGS. 5A-C

. The die tool shown in the cross-sectional view of

FIG. 5A

defines cavity


46


and can comprise, as shown, dies


44




a


-


44




d


. In

FIG. 5B

, a plurality of dies


48




a


-


48




e


define cavity


50


. Likewise, the die tool represented in the cross-sectional view of

FIG. 5C

can comprise opposed dies


52




a


-


52




c


to define design cavity


54


.




As described above, tubular die stock can be preformed to narrow one end thereof Such preformation can be accomplished by swaging or other mechanical operations using procedures and equipment well known to those skilled in the al. Tubular stock


56


can be configured to have end portion


58


, as shown in FIG.


6


. For instance, if dimension a is 0.75 inches, dimensions b and c could be 0.66 and 1.50 inches, respectively, by way of providing a useful preformed tube configuration. As illustrated in

FIG. 7

, the preformed tube of

FIG. 6

can be hydroformed to provide fitting


10


. The arrangement of portions


12


and recess


14


provide for a mating relationship with a securing mechanism for a hose component. As discussed above, such a mechanism can include, but is not limited to, the ferrule


36


shown in FIG.


4


. As best shown in

FIG. 7

, the inner diameter of fitting end


58


is somewhat narrowed as a result of the tubular preformation. As discussed above, various mechanical means can be employed to increase the inner diameter of end


58


to provide, if necessary, better flow properties.




References made to

FIG. 8

as a point of contrast with die hose fitting of FIG.


7


. in particular, the arrangement of portions


12


and recess


14


illustrates schematically the modification of the configuration of fitting


10


so as not to exceed either theoretical or empirical material expansion limitations. The arrangement of portions


12


and recess


14


allows for a secure mating relationship with a hose component despite the reduced outer dimensions of portions


12


.




EXAMPLES OF THE INVENTION




The following non-limiting examples and data illustrate various aspects and features relating to die method, system and resulting fittings and assemblies of this invention, including die surprising and unexpected manufacture of hose fittings using hydroforming technologies.




Examples 1-17, below, illustrate hoses of the sort which can be used in conjunction with the fittings and/or assemblies of this invention. The dimensional and design parameters of such hoses will be well known to those skilled in die art made aware of this invention. For instance, die hoses of examples 1-17 are the well-known SAE 100R series hoses (SAE 100R1, etc.), the dimensional and design parameters of which can be found in SAE standard J517. Various performance specifications for such SAE 100R1-15 hoses are also well-known, some of which are summarized in Tables 1a-b through 3a-b.




Example 1




Steel Wire Reinforced, Rubber Covered Hydraulic Hose (SAE 100R1). A hose for use with petroleum base hydraulic fluids within a temperature range of −40 to +100° C., and with various water base hydraulic fluids. A hose in accordance with this example can have an inner tube of oil-resistant synthetic rubber, a single wire braid reinforcement, and an oil- and weather-resistant synthetic rubber cover. A ply or braid of suitable material may be used over the inner tube and/or over the wire reinforcement to anchor the synthetic rubber to the wire. Alternatively, the same hose may have a cover designed to assemble with fittings which do not require removal of the cover or a portion thereof.




Example 2




High-Pressure, Steel Wire Reinforced, Rubber Covered Hydraulic Hose (SAE 100R2). A hose for use with petroleum base hydraulic fluids within a temperature range of −40 to +100° C., and with various water base hydraulic fluids. A hose in accordance with this example can have an inner tube of oil-resistant synthetic rubber, steel wire reinforcement and an oil- and weather-resistant synthetic rubber cover. A ply or braid of suitable material may be used over the inner tube and/or over the wire reinforcement to anchor the synthetic rubber to the wire. Construction variations consist with this invention are further referenced in SAE Standard J517.




Example 3




Double Fiber Braid (Nonmetallic), Rubber Covered Hydraulic Hose (SAE 100R3). A hose for use with petroleum base hydraulic fluids within a temperature range of −40 to +100° C., and with various water base hydraulic fluids. A hose in accordance with this example can have an inner tube of oil-resistant synthetic rubber, two braids of suitable textile yarn, and an oil- and weather-resistant synthetic rubber cover.




Example 4




Wire Inserted Hydraulic Suction Hose (SAE 100R4). A hose for use in low pressure and vacuum applications with petroleum base hydraulic fluids within a temperature range of −40 to +100° C., and with various water base hydraulic fluids. A hose in accordance with this example can have an inner tube of oil-resistant synthetic rubber, a reinforcement consisting of a ply or plies of woven or braided textile fibers with suitable spiral of body wire, and an oil- and weather-resistant synthetic rubber cover.




Example 5




Single Wire Braid, Textile Covered Hydraulic Hose (SAE 100R5). A hose for use with petroleum base hydraulic fluids within a temperature range of −40 to +100° C., and with various water base hydraulic fluids. A hose in accordance with this example can have an inner tube of an oil-resistant synthetic rubber and two textile braids separated by a high tensile steel wire braid. All braids are impregnated with an oil- and mildew-resistant synthetic rubber compound.




Example 6




Single Fiber Braid (Nonmetallic), Rubber Covered Hydraulic Hose (SAE 100R6). A hose for use with petroleum base hydraulic fluids within a temperature range of −40 to +100° C., and with various water base hydraulic fluids. A hose in accordance with this example can have an inner tube of oil-resistant synthetic rubber, and one braided ply of suitable textile yarn, and an oil- and weather-resistant synthetic rubber cover.




Example 7




Thermoplastic Hydraulic Hose (SAE 100R7). A thermoplastic hose for use with petroleum base and synthetic hydraulic fluids within a temperature range of −40 to +93° C., and with various water base hydraulic fluids. A hose in accordance with this example can have a thermoplastic inner tube resistant to hydraulic fluids with suitable synthetic fiber reinforcement and a hydraulic fluid- and weather-resistant thermoplastic cover. Such a nonconductive hose should be identified with an orange cover and an appropriate lay line, in accordance with Federal Standard 595A. Such a hose is available for use in applications where there is die potential of contact with high voltage sources.




Example 8




High-Pressure Thermoplastic Hydraulic Hose (SAE 100R8). A thermoplastic hose for use with petroleum base and synthetic hydraulic fluids within a temperature range of −40 to +93° C., and with various water base hydraulic fluids. A hose in accordance with this example can have a thermoplastic inner tube consistent to hydraulic fluids with suitable synthetic fiber reinforcement and a hydraulic fluid- and weather-resistant thermoplastic cover. Such a nonconductive hose, as with the hose of the preceding example, should be identified with an orange cover and an appropriate lay line, in accordance with Federal Standard 595A. Again, such a hose is available for use in applications where there is the potential of contact with high voltage sources.




Example 9




High-Pressure, Four-Spiral Steel Wire Reinforced, Rubber Covered Hydraulic Hose (SAE 100R9). A hose for use with petroleum base fluids within a temperature range of −40 to +100° C., and with various water base hydraulic fluids. A hose in accordance with this example can have an inner tube of oil-resistant synthetic rubber, four-spiral plies of wire wrapped in alternating directions, and an oil- and weather-resistant synthetic rubber cover. A ply or braid of suitable material may be used over the inner tube and/or over the wire reinforcement to enter the synthetic rubber to the wire. Alternatively, such a hose can have a cover designed to assemble with fittings which do not require removal of the cover or a portion thereof.




Example 10




Heavy-Duty, Four-Spiral Steel Wire Reinforced, Rubber Covered Hydraulic Hose (SAE 100R10). A section covers hose for use with petroleum base fluids within a temperature range of −40 to +100° C., and with various water base hydraulic fluids. A hose in accordance with this example can have an inner tube of oil-resistant synthetic rubber, four-spiral plies of heavy wire wrapped in alternating directions, and an oil- and weather-resistant synthetic rubber cover. A ply or braid of suitable material may be used over the inner tube and/or over the wire reinforcement to anchor the synthetic rubber to die wire. Alternatively, such a hose has a cover designed to assemble with fittings which do not require removal of die cover or a portion thereof.




Example 11




Heavy-Duty Six-Spiral Steel Wire Reinforced, Rubber Covered Hydraulic Hose (SAE 100R11). A hose for use with petroleum base fluids within a temperature range of −40 to +100° C., and with various water base hydraulic fluids. A hose in accordance with this example can have an inner tube of oil-resistant synthetic rubber, six-spiral plies of wire wrapped in alternating directions, and an oil- and weather-resistant synthetic rubber cover. A ply or braid of suitable material may be used over die inner tube and/or over die wire reinforcement to anchor the synthetic rubber to the wire.




Example 12




Heavy-Duty, High Impulse, Four-Spiral Wire Reinforced, Rubber Covered Hydraulic Hose (SAE 100R12). A hose for use with petroleum base fluids within a temperature range of −40 to +121° C., and with various water base hydraulic fluids. A hose in accordance with this example can have an inner tube of oil-resistant synthetic rubber, four-spiral plies of wire wrapped in alternating directions, and an oil- and weather-resistant synthetic rubber cover. A ply or braid of suitable material may be used over or within the inner tube and/or over the wire reinforcement to anchor die synthetic rubber to die wire.




Example 13




Heavy-Duty, High Impulse, Multiple Spiral Wire Reinforced, Rubber Covered Hydraulic Hose (SAE 100R13). A hose for use with petroleum base fluids within a temperature range of −40 to +121° C., and with various water base hydraulic fluids. A hose in accordance with this example call have an inner tube of oil-resistant synthetic rubber, multiple-spiral plies of heavy wire wrapped in alternating directions and an oil- and weather-resistant synthetic rubber cover. A ply or braid of suitable material may be used over or within the inner tube and/or over the wire reinforcement to anchor die synthetic rubber to die wire.




Example 14




PTFE Lined Hydraulic Hose (SAE 100R14). A hose for use with petroleum base and synthetic base hydraulic fluids within a temperature range of −54 to +204° C., and with various water base hydraulic fluids. A hose in accordance with this example can have an inner tube of polytetrafluorethylene (PTFE), reinforced with a single blade of 303XX Series stainless steel. Alternatively, such a hose may have the additional feature of an electrical conductive inner surface to preclude build-up of electrostatic charge.












TABLE 1a











SUMMARY OF SAE J517 100R-SERIES HOSE













MAXIMUM





OPERATING





PRESSURE






MPa
PSI
































Nom-













inal






Hose






I.D.






Size,






in




100R1




100R2




100R3




100R4




100R5




100R6




100R7






























{fraction (3/16)}











20.7
3000

















34.5
5000

















10.3
1500


















20.7
3000

















3.4
500

















20.7
3000



















¼











19.0
2750

















34.5
5000

















8.6
1250


















20.7
3000

















2.8
400

















19.0
2750



















{fraction (5/16)}











17.2
2500

















29.3
4250

















8.3
1200


















15.5
2250

















2.8
400

















17.2
2500































15.5
2250

















27.6
4000

















7.8
1125



















2.8
400

















15.5
2250



















{fraction (13/32)}











15.5
2250




















13.8
2000



















½











13.8
2000

















24.1
3500

















6.9
1000


















12.1
1750

















2.8
400

















13.8
2000































10.3
1500

















19.0
2750

















6.0
875


















10.3
1500

















2.4
350

















10.3
1500



















¾











8.6
1250

















15.5
2250

















5.2
750

















2.1
300


















2.1
300

















8.6
1250































7.8
1125

















13.8
2000



















5.5
800



















1











6.9
1000

















13.8
2000

















3.9
565

















1.7
250



















6.9
1000



















1⅛















4.3
625































4.3
625

















11.2
1625

















2.6
375

















1.4
200



















1⅜















3.4
500































3.4
500

















8.6
1250


















1.0
150



















1{fraction (13/16)}















2.4
350



















2











2.6
375

















7.8
1125


















0.7
100



















2⅜















2.4
350
































6.9
1000


















0.4
62



















3














0.4
56

















1.4
200



















4














0.2
35




























TABLE 1b











SUMMARY OF SAE J517 100R-SERIES HOSE













MAXIMUM





OPERATING





PRESSURE






MPa
PSI
































Nom-













inal






Hose






I.D.






Size,






in




100R8




100R9




100R10




100R11




100R12




100R13




100R14



























10.3
1500



















{fraction (3/16)}











34.5
5000


















68.9
10000

















86.2
12500



















10.3
1500



















¼











34.5
5000


















60.3
8750

















77.6
11250



















10.3
1500



















{fraction (5/16)}

















10.3
1500































27.6
4000

















31.0
4500

















51.7
7500

















68.9
10000

















27.6
4000


















10.3
1500



















{fraction (13/32)}

















6.9
1000



















½











24.1
3500

















27.6
4000

















43.1
6250

















51.7
7500

















27.6
4000


















5.5
800































19.0
2750




















27.6
4000


















5.5
800



















¾











15.5
2250

















20.7
3000

















34.5
5000

















43.1
6250

















27.6
4000

















34.5
5000

















5.5
800





































5.5
800



















1











13.8
2000

















20.7
3000

















27.6
4000

















34.5
5000

















27.6
4000

















34.5
5000

















5.5
800



















1⅛

















4.1
600
































17.2
2500

















20.7
3000

















24.1
3500

















20.7
3000

















34.5
5000



















1⅜


























13.8
2000

















17.2
2500

















20.7
3000

















17.2
2500

















34.5
5000



















1{fraction (13/16)}













2












13.8
2000

















17.2
2500

















20.7
3000

















17.2
2500

















34.5
5000



















2⅜




























17.2
2500












3






4






















TABLE 2a











SUMMARY OF SAE J517 100R-SERIES HOSE













MINIMUM





BURST





PRESSURE






MPa
PSI
































Nom-













inal






Hose






I.D.






Size,






in




100R1




100R2




100R3




100R4




100R5




100R6




100R7























{fraction (3/16)}











82.7
12000

















137.9
20000

















41.4
6000


















82.7
12000

















13.8
2000

















82.7
12000



















¼











75.8
11000

















137.9
20000

















34.5
5000


















82.7
12000

















11.0
1600

















75.8
11000



















{fraction (5/16)}











68.9
10000

















117.2
17000

















33.1
4800


















62.0
9000

















11.0
1600

















68.9
10000































62.0
9000

















110.3
16000

















31.0
4500



















11.0
1600

















62.0
9000



















{fraction (13/32)}











62.0
9000




















55.2
8000




















½











55.2
8000

















96.5
14000

















27.6
4000


















48.3
7000

















11.0
1600

















55.2
8000































41.4
6000

















75.8
11000

















24.1
3500


















41.4
6000

















9.7
1400

















41.4
6000



















¾











34.5
5000

















62.0
9000

















20.7
3000

















8.3
1200


















8.3
1300

















34.5
5000































31.0
4500

















55.2
8000



















22.1
3200



















1











27.6
4000

















55.2
8000

















15.5
2250

















6.9
1000



















27.6
4000



















1⅛















17.2
2500































17.2
2500

















44.8
6500

















10.3
1500

















5.5
800




















1⅜















13.8
2000































13.8
2000

















34.5
5000


















4.1
600




















1{fraction (13/16)}















9.7
1400



















2











10.3
1500

















31.0
4500


















2.8
400




















2⅜















9.7
1400
































27.6
4000


















1.7
250




















3














1.5
225

















5.5
800



















4














1.0
140




























TABLE 2b











SUMMARY OF SAE J517 100R-SERIES HOSE













MINIMUM





BURST





PRESSURE






MPa
PSI
































Nom-













inal






Hose






I.D.






Size,






in




100R8




100R9




100R10




100R11




100R12




100R13




100R14



























82.7
12000



















{fraction (3/16)}











132.9
20000


















275.8
40000

















344.7
50000



















68.9
10000



















¼











132.9
20000


















241.3
35000

















310.3
45000



















62.0
9000



















{fraction (5/16)}

















55.2
8000































110.3
16000

















124.1
18000

















206.8
30000

















275.8
40000

















110.3
16000


















48.3
7000



















{fraction (13/32)}

















41.4
6000



















½











96.5
14000

















110.3
16000

















172.4
25000

















206.8
30000

















110.3
16000


















41.4
6000































75.8
11000




















110.3
16000


















34.5
5000



















¾











62.0
9000

















82.7
12000

















137.9
20000

















172.4
25000

















110.3
16000

















137.9
20000

















27.6
4000





































24.1
3500



















1











55.2
8000

















82.7
12000

















110.3
16000

















137.9
20000

















110.3
16000

















137.9
20000

















24.1
3500



















1⅛

















17.2
2500
































68.9
10000

















82.7
12000

















96.5
14000

















82.7
12000

















137.9
20000



















1⅜


























55.2
8000

















68.9
10000

















82.7
12000

















69.0
10000

















137.9
20000



















1{fraction (13/16)}













2












55.2
8000

















68.9
10000

















82.7
12000

















69.0
10000

















137.9
20000



















2⅜




























69.0
10000



















3






4






















TABLE 3a











SUMMARY OF SAE J517 100R-SERIES













HOSE





PROOF





PRESSURE






MPa
PSI
































Nom-













inal






Hose






I.D.






Size,






in




100R1




100R2




100R3




100R4




100R5




100R6




100R7






























{fraction (3/16)}











41.7
10000

















68.9
10000

















20.7
3000


















41.4
6000

















6.9
1000

















41.1
6000



















¼











37.9
5500

















68.9
10000

















17.2
2500


















41.4
6000

















5.5
800

















37.9
5500



















{fraction (5/16)}











34.5
5000

















58.6
8500

















16.5
2400


















31.0
4500

















5.5
800

















34.5
5000































31.0
4500

















55.2
8000

















15.5
2250



















5.5
800

















31.0
4500



















{fraction (13/32)}











31.0
4500




















27.6
4000




















½











27.6
4000

















48.3
7000

















13.7
2000


















24.1
3500

















5.5
800

















27.6
4000































20.7
3000

















37.9
5500

















12.1
1750


















20.7
3000

















4.8
700

















20.7
3000



















¾











17.2
2500

















31.0
4500

















10.3
1500

















4.1
600


















4.1
600

















17.2
2500































15.5
2250

















27.6
4000



















11.0
1600



















1











13.8
2000

















27.0
4000

















7.8
1125

















3.4
500



















13.8
2000



















1⅛















8.6
1250































8.6
1250

















22.4
3250

















5.2
750

















2.8
400




















1⅜















6.9
1000































6.9
1000

















17.2
2500


















2.1
300




















1{fraction (13/16)}















4.8
700



















2











5.2
750

















15.5
2250


















1.4
200




















2⅜















4.8
700
































13.8
2000


















0.9
125





















3














0.8
112

















2.7
400



















4














0.5
70




























TABLE 3b











SUMMARY OF SAE J517 100R-SERIES













PROOF





PRESSURE






MPa
PSI
































Nom-













inal






Hose






I.D.






Size,






in




100R8




100R9




100R10




100R11




100R12




100R13




100R14



























41.4
6000



















{fraction (3/16)}











68.9
10000


















137.9
20000

















172.4
25000



















34.5
5000



















¼











68.9
10000


















120.6
17500

















155.1
22500



















31.0
4500



















{fraction (5/16)}

















27.6
4000































55.2
8000

















62.0
9000

















103.4
15000

















137.9
20000

















55.2
8000


















24.1
3500



















{fraction (13/32)}

















20.7
3000



















½











48.3
7000

















55.2
8000

















86.2
12500

















103.4
1500

















55.2
8000


















20.7
3000































37.9
5500




















55.2
8000


















17.2
2500



















¾











31.0
4500

















41.4
6000

















68.9
10000

















86.2
12500

















55.2
8000

















69.0
10000

















13.8
2000





































12.1
1750



















1











27.6
4000

















41.4
6000

















55.2
8000

















68.9
10000

















55.2
8000

















69.0
10000

















12.1
1750



















1⅛

















8.6
1250
































34.5
5000

















41.4
6000

















48.3
7000

















13.8
2000

















69.0
10000



















1⅜



























27.6
4000

















34.5
5000

















41.4
6000

















34.5
5000

















69.0
10000



















1{fraction (13/16)}














2












27.6
4000

















34.5
5000

















41.4
6000

















34.5
5000

















69.0
10000



















2⅜



























34.5
5000



















3






4














Example 15




Heavy-Duty, High Impulse, Multiple Spiral Wire Reinforced, Rubber Covered Hydraulic Hose (SAE 100R15). A hose for use with petroleum base fluids within a temperature range of −40 to +121° C. A hose in accordance with this example can have an inner tube of oil-resistant rubber, multiple spiral plies of heavy wire wrapped in alternating directions and an oil- and weather-resistant synthetic rubber cover. A ply or braid of suitable material may be used over or within the inner tube and/or over the wire reinforcement to anchor a synthetic rubber to die wire. Performance specifications for each nominal SAE 100R15 hose ID size (⅜, ½, ¾, 1, 1¼ and 1½ inch): minimum burst pressure, 165.5/24,000 (MPa/psi); proof pressure, 82.7/12,000 (MPa/psi); maximum operating pressure, 41.4/6,000 (MPa/psi).




Example 16




High-Pressure, Steel Wire Reinforced, Rubber Covered Hydraulic Hose (SAE 100R16). A hose for use with petroleum- and water-base hydraulic fluids within a temperature range of −40 to +100° C. A hose in accordance with the example as an inner tube of oil-resistant synthetic rubber, steel wire reinforcement according to hose design (one or two braids) and an oil- and weather-resistant synthetic rubber cover. A ply or braid of suitable material may be used over the inner tube and/or over the wire reinforcement to anchor die synthetic rubber to the wire. Various performance specifications for such a hose are as provided below.





















Nomial SAE




Min





Max







100R16




Burst




Proof




Operating







Hose ID




Pressure




Pressure




Pressure







Size, mm




MPa




MPa




MPa





























6.4




137.9




69.0




34.5







7.9




117.2




58.6




29.3







9.5




110.3




55.2




27.6







12.7




96.5




48.3




24.1







15.9




75.8




37.9




19.0







19.0




62.0




31.0




15.5







25.4




55.2




27.6




13.8







31.8




44.8




22.4




11.2















Example 17




Compact 21 MPa Maximum Operating Pressure One and Two Steel Wire Reinforced Rubber Covered Hydraulic Hose With Smaller Bend Radius (SAE 100R17). Hoses of this type are smaller in diameter than one and two braid hoses with similar performance characteristics specified in SAE 100R1 and 100R2 which gives them the ability to operate at smaller bend radii. They are also lighter in weight and their compactness offers advantages when minimal space is available in installations. This hose can be manufactured as either a one braid or two braid design and is identified as to the number of braids. A hose in accordance with this example can have an inner tube of oil resistant elastomer, steel wire reinforcement according to hose design (one or two braids), and an oil- and weather-resistant elastomeric cover. A ply or braid of suitable material may be used over the inner tube and/or over die Wire reinforcement to anchor the elastomer. A hose of this sort has a nominal internal diameter from about 6.3 mm to 25.0 mm, for use with refined petroleum based hydraulic fluids, at temperatures ranging from −40° C. to 100° C. Such a hose is not suitable for use with castro oil based and ester based fluids. Various performance specifications for such a hose are as provided below.
























Max







ISO




Min Burst




Proof




Operating







Nominal ID




Pressure




Pressure




Pressure







mm




MPa




MPa




MPa





























6.3




84.0




42.0




21.0







8




84.0




42.0




21.0







10




84.0




42.0




21.0







12.5




84.0




42.0




21.0







16




84.0




42.0




21.0







19




84.0




42.0




21.0







25




84.0




42.0




21.0















Examples 18-27 illustrate hose fittings in accordance with this invention and of the type which can be used in conjunction with the hoses and/or assemblies described herein.




Example 18




The hydroformed hydraulic hose fitting of this example is a male dry seal type thread tight fitting which can be used with a variety of compatible hoses, including those meeting the dimensional, design and performance specifications for SAE 100R1-100R13 hydraulic hoses, as well-known to those skilled in the art and more fully described in SAE Standard Specifications J517. Such a fitting can be of the (a) permanently attached, (b) field attachable screw, or (c) field attachable segment clamp style, each of which is more fully described by way of design and dimensional specifications in SAE Standard Specification J516.




Example 19




The hydroformed hydraulic hose fitting of this example is a male straight thread O-ring boss type fitting which can be used with a variety of compatible hoses, including those meeting the dimensional, design and performance specifications for SAE 100R1, R2, R5, R7-R10 and 100R12 hydraulic hoses, as well-known to those skilled in the art and more fully described in SAE Standard Specification J517. Such a fitting can be of the (a) permanently attached or (b) field attachable screw style, each of which is more fully described by way of design and dimensional specifications in SAE Standard Specification J516.




Example 20




The hydroformed hydraulic hose fitting of this example is a male 37 degree flared type fitting which can be used with a variety of compatible hoses, including those meeting the dimensional, design and performance specifications for SAE 100R1-100R10, 100R12 and 100R13 hydraulic hoses, as well-known to those skilled in the art and more fully described in SAE Standard Specification J517. Such a fitting can be of tie (a) permanently attached, (b) field attachable screw or (c) field attachable segment clamp style, each of which is more fully described by way of design and the dimensional specifications in SAE Standard Specification J516.




Example 21




The hydroformed hydraulic hose fitting of this example is a female 37 degree flared type fitting which can be used with a variety of compatible hoses, including those meeting the dimensional, design and performance specifications for SAE 100R1-100R13 hydraulic hoses, as well-known to those skilled in the art and more fully described in SAE Standard Specification J517. Such a fitting can be of the (a) permanently attached, (b) field attachable screw, or (c) field attachable segment clamp, (d) option 37 degree radio flare swivel end-45 degree angle, (e) permanently attached with sleeve-45 degree angle, (e) field attachable screw-45 degree angle, (f) permanently attached-90 degree angle short drop, (g) field attachable screw-90 degree angle short drop, (h) permanently attached-90 degree angle long drop, and field attachable screw style-90 degree angle long drop, each of which is more fully described by way of design and dimensional specifications in SAE Standard Specification J516.




Example 22




The hydroformed hydraulic hose fitting of this example is a male 45 degree flared type fitting which can be used with a variety of compatible hoses, including those meeting the dimensional, design and performance specifications for SAE 100R1, 100R3 and 100R5-100R7 hydraulic hoses, as well-known to those skilled in the art and more fully described in SAE Standard Specification J517. Such a fitting can be of the (a) permanently attached or (b) field attachable screw style, each of which is more fully described by way of design and dimensional specifications in SAE Standard Specification J516.




Example 23




The hydroformed hydraulic hose fitting of this example is a female 45 degree flared type fitting which can be used with a variety of compatible hoses, including those meeting the dimensional, design and performance specifications for SAE 100R1, 100R3, 100R5-100R7 hydraulic hoses, as well-known to those skilled in the art and more fully described in SAE Standard Specification J517. Such a fitting can be of the (a) permanently attached, (b) field attachable screw, (c) permanently attached-45 degree angle, (d) field attachable screw-45 degree angle, (e) permanently attached-90 degree angle short drop, (f) field attachable screw-90 degree angle short drop, (g) permanently attached-90 degree angle long drop and (h) field attachable screw-90 degree angle long drop style, each of which is more fully described by way of design and dimensional specifications in SAE Standard Specification J516.




Example 24




The hydroformed hydraulic hose fitting of this example is a male flareless type fitting which can be used with a variety of compatible hoses, including those meeting the dimensional, design and performance specifications for SAE 100R1 and 100R2 hydraulic hoses, as well-known to those skilled in the art and more fully described in SAE Standard Specification J517. Such a fitting can be of the (a) permanently attached or (b) field attachable screw style, each of which is more fully described by way of design and dimensional specifications in SAE Standard Specification J516.




Example 25




The hydroformed hydraulic hose fitting of this example is a female flareless type fitting which can be used with a variety of compatible hoses, including those meeting the dimensional, design and performance specifications for SAE 100R1 and 100R2 hydraulic hoses, as well-known to those skilled in the art and more fully described in SAE Standard Specification J517. Such a fitting can be of die (a) optional preset ferrule end construction, (b) permanently attached or (c) field attachable screw style, each of which is more fully described by way of design and dimensional specifications in SAE Standard Specification J516.




Example 26




The hydroformed hydraulic hose fitting of this example is a 4-bolt split flange type fitting which can be used with a variety of compatible hoses, including those meeting tile dimensional, design and performance specifications for SAE 100R1, 100R2, 100R4, 100R5 and 100R9-100R12 hydraulic hoses, as well-known to those skilled in the art and more fully described in SAE Standard Specification J517. Such a fitting can be of die (a) permanently attached, (b) field attachable screw, (c) field attachable segment clamp, (d) permanently attached-22.5 degree angle, (e) field attachable screw-22.5 degree angle, (f) field attachable segment clamp-22.5 degree angle, (g) permanently attached-30 degree angle, (h) field attachable screw-30 degree angle, (i) field attachable segment clamp-30 degree angle, 0) permanently attached-45 degree angle, (k) field attachable screw-45 degree angle, (l) field attachable segment clamp-45 degree angle, (m) permanently attached-60 degree angle, (n) field attachable screw-60 degree angle, (o)field attachable segment clamp-60 degree angle, (p) permanently attached-67.5 degree angle, (q) field attachable screw-67.5 degree angle, (r) field attachable segment clamp-67.5 degree angle, (s) permanently attached-90 degree aigle, (t) field attachable screw-90 degree angle and (u) field attachable segment clamp-90 degree angle style, each of which is more fully described by way of design and dimensional specifications in SAE Standard Specification J516.




Example 27




The hydroformed hydraulic hose fitting of this example is a female O-ring face seal type fitting which can be used with a variety of compatible hoses, including those meeting tie dimensional, design and performance specifications for SAE 100R1 and 100R12 hydraulic hoses, as well-known to those skilled in the art and more fully described in SAE Standard Specification J517. Such a fitting can be of the (a) permanently attached, (b) field attachable screw, (c) permanently attached-45 degree angle, (d) field attachable screw-45 degree angle, (e) permanently attached-90 degree short drop angle, (f) field attachable screw-90 degree short drop angle, (g) permanently attached-90 degree long drop and (h) field attachable screw-90 degree long drop style, each of which is more fully described by way of design and dimensional specifications in SAE Standard Specification J516.




While the principles of this invention have been described in connection with specific embodiments, it should be understood clearly that these descriptions, along with the chosen examples, figures, tables and data contained therein, are made only by way of illustration and are not intended to limit the scope of this invention in any manner. For instance, the systems and methods of this invention can be adapted in a straightforward manner to provide for the manufacture of fuel/oil hose fittings and assemblies, in accordance with SAE standard J30. Likewise, while various dimensional, design and performance specifications have been referenced in conjunction with the SAE standards, the present invention has equal applicability with respect to any corresponding international specifications employed industrially in other jurisdictions, which can be met with equal effect and are to be considered with the present invention. Other advantages and features of the invention will become apparent from tie following claims, with die scope thereof determined by a reasonable equivalents, as understood by those skilled in the art.



Claims
  • 1. A method of using a die to manufacture a hose fitting, said fitting having a configuration suitable for use with a hose assembly, said method comprising:providing a metallic tube from tubular stock; providing a die tool to engage said tube, said tool defining a shaped cavity, said cavity having the design and outer dimensions of a hose fitting; contacting the interior of said tube with an expansive material and retaining said material within said tube; increasing the pressure of said material on said tube interior to a predetermined level, said pressure sufficient to flow said metal; and engaging said tube with said die tool to form a hose fitting.
  • 2. The method of claim 1 wherein engagement of said tool with said tube provides a hose fitting with predetermined design and outer diameter dimensions.
  • 3. The method of claim 2 wherein said engagement provides a design and dimensions selected from the group of properties meeting SAE J516 standard specifications for hydraulic hose fittings, and properties equivalent to SAE J516 standard specifications for hydraulic hose fittings.
  • 4. The method of claim 1 wherein said engagement forms a dimensional configuration for a mating relationship with a ferrule.
  • 5. The method of claim 1 wherein said expansive material is selected from the group consisting of a hydraulic fluid, a urethane and an explosive.
  • 6. The method of claim 5 wherein said expansive material is a hydraulic oil.
  • 7. The method of claim 1 wherein said pressure is at least about 55,000 psi.
PCT Information
Filing Document Filing Date Country Kind
PCT/US99/00369 WO 00
Publishing Document Publishing Date Country Kind
WO99/35432 7/15/1999 WO A
US Referenced Citations (15)
Number Name Date Kind
1204352 Hachmann Nov 1916 A
3017203 Macleod Jan 1962 A
4513497 Finch Apr 1985 A
4702501 McLennan Oct 1987 A
4773679 Hangebrauck Sep 1988 A
5009002 Kelly Apr 1991 A
5062199 Kelly Nov 1991 A
5333775 Bruggemann et al. Aug 1994 A
5387016 Joseph et al. Feb 1995 A
5445001 Snavely Aug 1995 A
5471857 Dickerson Dec 1995 A
5485737 Dickerson Jan 1996 A
5557961 Ni et al. Sep 1996 A
5644829 Mason et al. Jul 1997 A
6270126 Juedes Aug 2001 B1
Foreign Referenced Citations (1)
Number Date Country
9710907 Mar 1997 WO