This invention relates to a hose for conveying a fluid and to a method of configuring a hose for conveying a fluid.
Flexible hoses are used to transfer fluid from one place to another and common applications are for transferring water, pressurised air, hydraulic fluid or any other fluid from one piece of equipment to another. Usually, fluid at one end of the hose is pressurised, possibly by a pump or header tank, and each end of the hose is provided with a connector that sealably connects the hose to the equipment. It is known to provide a hose for connecting one aircraft to another for the purpose of in-flight refuelling.
In-flight refuelling systems involve moving aviation fuel from a tanker aircraft to a receiving aircraft to increase the operating range and time of the receiving aircraft by overcoming the maximum fuel load limitation.
Currently, there are two main known methods of in-flight refuelling—‘probe and drogue’ and ‘flying boom’. The probe and drogue arrangement involves a flexible hose with a valve and a drogue at the distal end of the hose. The hose is extended from the tanker aircraft and is pulled behind the tanker aircraft by the aerodynamic force created by the drogue, which also provides sonic positional stability. The receiving aircraft comprises a probe extending forwardly from the nose or fuselage of the aircraft, and also has a valve at its distal end. The pilot of the aircraft to be refuelled controls and manoeuvres the aircraft to align the probe with the valve and the drogue and then moves the aircraft towards the tanker aircraft so that the probe connects with the valve on the hose. Once connection has been made, the valves can be opened to establish a fluid path, thereby allowing fuel to flow into the fuel tanks of the receiving aircraft.
Flying boom refuelling systems have a rigid boom that is deployed from the tanker aircraft, the position of which is typically controlled by an operator in the tanker aircraft. The boom can carry a hose which has a valve at its distal end. The receiving aircraft comprises a docking port that may be within the fuselage, or extending from the fuselage. The pilot of the receiving aircraft again flies their aircraft into contact with the boom. However, in this case, the boom operator can control the finite position of the boom so there is a two-way process for making the connection.
Developments in aviation mean that the industry is changing to favour Unmanned Aerial Vehicles (UAV's) and Autonomous Unmanned Aerial Vehicles (AUAV's) and the refuelling requirements of these aircraft are very different to those of conventional aircraft. A limitation of UAV's and AUAV's is the power that can be carried by onboard batteries which are recharged before each use.
Aircraft currently communicate via radio or satellite communications which can place a large strain on the bandwidth of such systems. UAV's and AUAV's that are deployed as observers can collect and store large amounts of data that is either transmitted over the communication channels or stored onboard the aircraft for later retrieval. Transmission over the communication channels requires more bandwidth which means more satellites, transmitters and receivers that can add considerable cost. Furthermore, communication channels may not he fast or secure enough to carry out some operations such as system diagnostics. Storing data onboard the aircraft delays the retrieval of that information and requires the aircraft to return to the ground. Therefore, the data storage capacity of an aircraft may also limit the aircraft's maximum operational time.
The present invention seeks to provide a hose for conveying fluids that seeks to alleviate or substantially overcome the problems with conventional fluid carrying hoses, including those mentioned above.
According to the invention, there is provided a hose for conveying fluids comprising a wall defining a fluid carrying tube and a power and/or data transmission cable integrated into said wall.
In one embodiment, the wall may comprise an inner fluid carrying tube and an outer protective sheath and the cable may be positioned between the inner fluid carrying tube and the outer protective sheath.
In an alternative embodiment, the wall may comprise an inner fluid carrying tube and an outer protective sheath and the cable may be embedded within the outer protective sheath.
Advantageously, the cable may be wound around the inner fluid carrying tube to define a helical path along the hose.
Helically winding the cable around the inner fluid carrying tube means that the cable is always at an angle to any bending of the hose, thereby reducing the stress induced in the cable.
Preferably, the cable comprises a plurality of spaced insulated wires encased in a sleeve of low friction material to allow movement of the wires relative to the sleeve when the cable is subject to bending.
The low friction casing reduces the stress placed on the wires as they move around within the casing. Also, allowing the wires to move within the casing means that the wires will move to the position of least stress during bending of the hose.
Preferably, the hose has a distal end and a user definable module, the user definable module being removably attachable to said distal end and including a connector for electrical connection to said cable.
The user definable module may be tubular and may surround the distal end of the hose.
Preferably, the user definable module comprises at least one or more components for determining a measurable parameter at the distal end of the hose.
The user definable module may comprise at least one of a position sensor, an accelerometer, a temperature sensor, a pressure sensor, a proximity sensor and a flow rate sensor.
The hose may also comprise an intermediate connecting collar, attachable to the distal end of the hose proximal to the user definable module, the collar comprising first electrical terminals to connect the cable to conductors in the collar and second electrical terminals spaced from the first electrical terminals to connect the conductors in the collar to the user definable module.
The conductors in the collar may extend from the first electrical terminal in a helical path and terminate at the second electrical terminal in a plane extending substantially at right angles to a longitudinal axis of the hose.
Advantageously, the intermediate collar has an angled cut out that defines a face which is substantially perpendicular to the helical path of the cable, said first electrical terminal being mounted on said face.
The angled cut out allows the helically wound cable to easily connect to the collar without having to bend the cable.
The intermediate collar may comprise an end face which lies in a plane substantially at right angles to the longitudinal axis of the hose, said second electrical terminal being mounted to said end face.
Preferably, the user definable module comprises two half tubular portions or shells that are attachable to each other to surround the distal end of the hose.
The two part construction of the user definable module allows the user definable module to be easily removed from the hose for interchanging.
The user definable module may be attachable to the collar.
Preferably, the user definable module comprises a connector configured to connect to the second electrical terminals, when the user definable module is attached to the distal end of the hose.
A connector may extend from the distal end of the hose to receive a probe, the connector extending distally beyond the user defined module.
In one embodiment, the user definable module comprises a terminal connector configured to electrically connect to a mating terminal connector on a receiving probe, when the connector is connected to said receiving probe.
In this way, an electrical connection is made between the hose and the receiving probe which may be used for transmitting power and/or data.
According to another aspect of the invention, there is provided a user definable module removably attachable to the distal end of a fluid conveying hose that is releasably connectable to a fluid receiving entity to provide fluid to said entity, the fluid conveying hose comprising a wall defining a fluid carrying tube and a power and/or data transmission cable integrated into said wall, the user definable module being connectable to said cable and comprising components to measure at least one measurable parameter at the end of the hose and/or provide electrical connection between the cable and said fluid receiving entity for the transmission of data and/or power along said hose via said user definable interface.
According to anther aspect of the invention there is provided a method of configuring a hose for fluid transfer, said hose being releasably connectable to a fluid receiving entity to provide fluid to said entity and comprising a wall defining a fluid carrying tube and a power and/or data transmission cable integrated into said wall, the method comprising the step of selecting a user definable module according to claim 19 and attaching said selected module to a distal end of the hose prior to connecting said hose to a fluid receiving entity.
Embodiments of the invention will now be described, by way of example only and with reference to the accompanying drawings, in which;
During normal duty the flexible hose 1 is exposed to bending forces caused by winding the hose 1 on and off a storage reel on the tanker aircraft and also from turbulence during operation, as the hose moves around in the air. The cable 9 is embedded within the hose 1 so will also be subject to those bending forces and there is a need to protect the cable 9, particularly the wires 15, from fatigue stresses. Bending the hose 1 and the cable 9 will exert tensile stress on one side of the wires 15 and compressive stress on the opposite side. Also, the direction of bending will change during operation, resulting in fatigue stress effects. The bending and fatigue stresses can alter the conductive properties of the wires 15 and affect the performance of the cable 9, possibly even causing the wires 15 to fail.
Helically winding the cable 9 along the length of the hose reduces the stress in the wires 15 during operation because the wires 15 are always at an angle to the bending direction of the hose 1. Furthermore, each wire is provided with low friction insulation, made from a fluoropolymer or thermoplastic material, and the insulated wires 15 are contained within a low friction sleeve 17, also made from a fluoropolymer or thermoplastic material. This allows the insulated wires 15 to move around within the sleeve 17. The low friction contact between the insulated wires 15 and the sleeve 17 allows the wires 15 to move around within the sleeve 17 to the position of least stress as the hose 1 bends, thereby reducing the bending and fatigue stresses induced in the power, signal and fibre optic wires 15. The outer surface of the sleeve 17 is treated to allow it to be bonded to the outer protective sheath 13 or reinforcing sheath 14 of the hose 1. The treatment process could be chemical etching, plasma arc or bespoke RF surface modification that allows adhesive to bond to the sleeve 17.
In addition to stress protection, the cable 9 is fully sheathed in a protective layer 16 to protect the cable 9 and the systems attached to the cable from an Electromagnetic Impulse (EMI). An EMI may occur naturally, such as from a lightning strike or as a result of the systems themselves, for example a build up of static electricity or short circuits. Alternatively, EMI may be used intentionally as weapon and the systems of the aircraft and the refuelling apparatus need to be protected from any such attack.
As shown in
The two parts 27, 28 of the UDI module 11 may be attachable to each other by a magnetic clamping system comprising a plurality of magnets, such as neodymium magnets, embedded in the mating faces of the two parts 27, 28. The magnets in each part 27, 28 have opposing poles such that they attract each other and clamp the two parts 27, 28 together. The magnets in one of the two parts 27, 28 are moveable so that the magnets can be moved from an aligned position for clamping to an unaligned positioned for separating the two parts 27, 28 of the UDI module 11. The magnets may be moveable by a manual lever or other actuator. Alternatively, the two parts 27, 28 of the UDI module are attachable by means of locking elements, fasteners, or any other suitable attachment that allows the UDI module 11 to be easily clamped and separated. Similarly, the UDI module 11 may also be attached to the outer face 26 of the termination collar 18 by any of the attachment means described above.
The UDI module 11 is easily removable from the refuelling hose 1 and can he changed during flight when the hose is retracted into the tanker aircraft 2. Different UDI modules 11 may be configured in different ways for different applications, for example refuelling of different aircraft or in different conditions.
The UDI module 11 comprises an electrical connector 30 on the end face 31 of one of the half-cylindrical portions 27 that connects with the electrical terminal 25 on the end face 26 of the termination collar 18 to electrically connect the termination collar 18 to the UDI module 11. Conductors or wires 32 are embedded into, or mounted to, the UDI module 11 to connect any devices that are mounted in the UDI module 11 to the connector 30 and therefore to the tanker aircraft 2 via the cable 9. Some examples of components that the UDI module 11 may comprise are position sensors, accelerometers, pressure, temperature, flow rate sensors, connection sensors (to detect if the probe and hose are suitably mated) and so forth. The UDI module 11 is able to provide whatever functionality is required for each individual refuelling aircraft, or even each individual operation. The cable 9 provides the connectivity and the UDI module provides a platform for using any type of electrical equipment desired at the connection between the refuelling hose and the receiving aircraft.
A further optional component for the UDI module n may include providing an electrical terminal (not shown) at the distal end 36 (see
The electrical connection along the hose 1 allows power and/or electrical signals to be carried from the tanker aircraft 2 to the receiving aircraft 6 and vice versa. Therefore, it is possible to provide power to the aircraft 6 being refuelled to recharge the batteries and extend the operating life of UAV's and AUAV's which carry limited life batteries. Furthermore, the tanker aircraft 2 is able to securely communicate with the receiving aircraft 6 to download data, such as surveillance images, or to upload instructions or perform diagnostic analysis on faulty or out of date systems. The data connection is more secure than a wireless alternative because it is direct, can not be intercepted and is protected from EMI and other such attacks.
Furthermore, the UDI module 11 may be fitted with a drogue that functions in the conventional manner. Alternatively, the UDI module 11 may have aerodynamic control surfaces and an actuator to control the wings from the tanker aircraft 2 such that an operator onboard the tanker aircraft may control the attitude of the distal end of the refuelling hose 1 to facilitate the connection between the probe 5 and the distal end 3 of the hose 1. Again, the UDI module 11 is changeable so a tanker aircraft will be able to switch between these applications during flight, depending on the requirements of each refuelling operation and the equipment onboard the receiving aircraft.
The components, systems and methods described herein are applicable to any in-flight refuelling system including, but not limited to, ‘manned tanker to manned aircraft’, ‘manned tanker to unmanned aircraft’ and ‘unmanned tanker to unmanned aircraft’. Furthermore, it will be appreciated that the invention as defined in the claims is applicable to other similar applications where a transfer of fluid is required from one moveable place to another. For example, ship-to-ship or ship-to-helicopter fluid transfer, or connections between oil and gas exploration and production equipment both on land and subsea.
Number | Date | Country | Kind |
---|---|---|---|
1205551.3 | Mar 2012 | GB | national |
Number | Date | Country | |
---|---|---|---|
Parent | 13848753 | Mar 2013 | US |
Child | 15278071 | US |