The present disclosure relates to connectors having wired and wireless couplings. The present disclosure also relates to apparatus for transferring data from a hospital bed to a network of computer devices in a healthcare facility, but has use in other applications and in other environments as well.
Power plugs and/or power receptacles, such as standard 3-prong AC power plugs and receptacles, having electrical and optical couplings are known. See, for example, U.S. Pat. Nos. 6,533,466; 6,071,015; 5,967,840; 5,696,861; and 4,767,181. Other types of plugs and receptacles having electrical and optical couplings that are also known. See, for example, U.S. Pat. Nos. 5,242,315; 5,109,452; 4,721,358; 4,678,264; 4,465,333; and 4,767,168.
Many devices have a need for both power and data. Typically, such devices have a power cord that couples to a standard power outlet or receptacle and a separate data cable or cord that connects to a data port or receptacle. Having two connections requires that both cables must be disconnected and then reconnected every time the device is moved to a new location. Data connectors or plugs usually have small connector pins that may be damaged during connection or disconnection from an associated receptacle.
In the healthcare environment, many hospital beds receive power from standard wall outlets which may be mounted to a room wall or other architectural equipment, such as a headwall, a bed locator, a column, an arm, and so forth. Thus, a power cord extends between the hospital bed and the wall outlet. Many conventional hospital beds have a separate data port or data cable that connects to a data port mounted to the room wall, headwall, bed locator, etc. Thus, a data cable separate from the power cord extends between the hospital bed and the associated data port or receptacle. Data from the hospital bed is communicated to a network in the healthcare facility so that other computer devices connected to the network have access to the data from the hospital bed. When such a hospital bed having a power cord and a separate data cable is to be transported to a new location, both the power cord and data cable are disconnected from the associated receptacles prior to bed transport and are reconnected to associated receptacles at the new location.
A plug and/or a communication module and/or a system and/or an apparatus having, or used with, such a plug and/or communication module is provided and has one or more of the following features or combinations thereof, which alone or in any combination may comprise patentable subject matter:
The plug and/or communication module may be provided with both a wired coupler and a wireless coupler. The wired coupler may comprise electrical contacts, such as electrically conductive prongs or sockets or portions thereof. The wireless coupler may comprise one or more of the following: a photoemitter, a photodetector, a photodiode, a radio frequency (RF) transmitter, an RF receiver, an RF transceiver, an infrared (IR) transmitter, an IR receiver, and an IR transceiver. A portion of the wireless coupler may be included in a communication module that attaches to a standard simplex or duplex power outlet. Data may be wirelessly communicated in accordance with any known data transfer protocol, including but not limited to protocols such as IrDA, spread spectrum (including the Bluetooth protocol), RS232, TCP/IP, USB, and 802.11X. The wireless data may be communicated by frequency modulation, including frequency modulated infrared (FMIR).
Both power and data may be delivered via a single cable. Such a cable may have a connector, such as a male plug or a female receptacle, at one end or at both ends. Such a cable may include one or more power wires and one or more data wires extending along the length of the cable. The power wires may couple to power prongs or power sockets of the plug. The data wires may couple to signal-processing circuitry which receives the data via the data wires and transmits the data wirelessly after processing the data. The plug may include a plug body which houses at least some of the signal-processing circuitry. The signal-processing circuitry may be integrated into a standard NEMA power cord and plug. The data may comprise any desired information including but not limited to device status, audio, video, and telephony.
The plug and/or communication module may include, or may be coupled to, components for performing parallel-to-serial conversion, serial-to-parallel conversion, encoding, decoding, digital signal processing, compression and/or decompression (CODEC). The wireless signals communicated between the plug and communication module may be bidirectional signals. The wireless signals may include FMIR signals having different carrier frequencies. The wireless signal from the plug to the communication module may be a mixed signal containing a first signal that is frequency modulated at a first carrier frequency and a second signal that is frequency modulated at a second frequency. The wireless signal from the communication module to the plug may be a mixed signal containing a third signal that is frequency modulated at a third carrier frequency and a fourth signal that is frequency modulated at a fourth carrier frequency.
The communication module may plug into a standard power receptacle. The communication module may have both wired and wireless couplers. The communication module may have a receptacle that receives a plug having both wired and wireless couplers. The communication module may have a housing, a data cable extending from the housing, and power prongs extending from the housing. The power prongs may couple to a power outlet or receptacle. The data cable may couple to a data port or receptacle that is spaced from the power outlet. The power outlet and data port to which the communication module couples may be provided in a healthcare facility on a room wall, on a headwall, on a bed locator, on a column, on an arm, or on any other architectural structure. The plug that couples to the communication module may provide connectivity for a hospital bed to power and data. The communication module may include a port configured to couple to a connector of a hospital bed pendant controller and/or to a connector of a data cable extending from a hospital bed.
A method for installing and/or using a plug and/or a communication module is also disclosed and has one or more of the following features or combinations thereof, which alone or in any combination may comprise patentable subject matter:
The method may comprise coupling a combined power-and-data cable to a device. The method may further comprise coupling a plug having a wireless transceiver to a power outlet. The method may comprise placing near the power outlet a communication module having a wireless transceiver that communicates with the wireless transceiver of the plug. The method may comprise coupling the communication module to a data port of the computer network.
Additional features, which alone or in combination with any other feature(s), such as those listed above, may comprise patentable subject matter and will become apparent to those skilled in the art upon consideration of the following detailed description of various embodiments exemplifying the best mode of carrying out the embodiments as presently perceived.
The detailed description particularly refers to the accompanying figures in which:
A power-and-data plug 20 which receives power for a device 22 also includes circuitry 24 for communicating wirelessly with a first communication module 26 that is mounted adjacent a standard AC power outlet or receptacle 28 as shown in
In the embodiment of
In the illustrative embodiment, data cord 78 includes a first 37-pin connector 86 which connects to a 37-pin data port of module 74 and a second 37-pin connector 88 which connects to a 37-pin data port of unit 80 as shown in
The communications links between device 22 and plug 20, between plug 20 and module 26, between module 26 and module 74 and between module 74 and the network are governed by any suitable communications protocol including, but not limited to, protocols such as IrDA, spread spectrum (including the Bluetooth protocol), RS232, TCP/IP, USB, and 802.11X. Furthermore, any one or more of plug 20, device 22, module 26 and module 74 may have circuitry for performing parallel-to-serial conversion, serial-to-parallel conversion, encoding, decoding, digital signal processing, compression and/or decompression (CODEC), or any other type of data processing.
Plug 20 has a plug body 30 in which circuitry 24 is situated as shown in
Plug 20 is included as part of a cable assembly 39 which has a combined power-and-data cable or cord 40 that extends from the back of plug body 30 as shown in
Cable 40 comprises a unitary jacket 52, a set of power conductors 54 that are grouped together, and a set of data conductors 56 that are grouped together as shown in
Each of conductors 54, 56 is encased in its own insulator 58. A sheath 60 surrounds data conductors 56 and serves to shield conductors 56, at least partially, from any electromagnetic field(s) produced by the relatively high AC voltage levels associated with power conductors 54. In one embodiment, sheath 60 comprises aluminum and polyethylene, although sheath 60 may comprise any material or materials that are able to shield conductors 56 to some degree. In the illustrative embodiment, a pleach 62 surrounds sheath 60 and a ground conductor 64 is embedded in pleach 62. In alternative embodiments, ground conductor 64 is grouped with conductors 56 within the space surrounded by sheath 60 and, in such embodiments, conductor 64 may have its own insulator similar to insulators 58. In some embodiments, one or both of sheath 60 and pleach 62 are omitted.
As is apparent in
Having separate cords 44, 46 extending from junction member 42, with associated connectors 48, 50 at the ends of cords 44, 46, allows cable assembly 39 to couple to devices having spaced-apart data and power connectors (not shown) which are configured to mate with connectors 48, 50. Thus, devices 22 having completely separate power cords and data cords may be retrofitted with cable assembly 39. In alternative embodiments, a combined power-and-data connector may be provided at the end of cable assembly 39 if the associated device has a mating connector that is appropriately configured to couple with the combined power-and-data connector of assembly 39. In such alternative embodiments, junction member 42 is omitted and cable 40 extends between plug 20 and the combined power-and-data connector. In still other alternative embodiments, device 22 is manufactured such that cable 40 is not intended to be detachable from device 22 but rather extends into a portion of device 22, such as through a strain relief, for example, and then conductors 56 couple to circuitry internal to device 22 by solder connections or a data connector, for example.
As mentioned above, plug 20 has circuitry 24 that communicates wirelessly with communication module 26. Module 26, sometimes referred to herein as the “outlet module,” comprises a housing 66 and circuitry 68 that is situated in a cavity provided in an upper portion 70 of housing 66 as shown in
In the illustrative example, gap 72 is relatively small, such as one the order of 1 inch (2.54 cm) or less. However, gap 72 may be larger if desired. As long as gap 72 is small enough (i.e., on the order of 1 yard or 1 meter), then short-range transceivers may be used in plug 20 and module 26. If gap 72 is larger, then longer range transceivers are used. This disclosure contemplates that the wireless communications link between circuitry 24 and circuitry 68, be it one-way or bidirectional, may be infrared (IR), radio frequency (RF), ultrasonic, or any other type of wireless communications link. In the illustrative embodiment, data is transmitted wirelessly between circuitry 24 and circuitry 68 via frequency modulated infrared (FMIR) signals as will be described in further detail below.
Housing 66 of module 26 includes a bottom portion 92 and a pair of side portions 94 that interconnect top portion 70 and bottom portion 92 as shown in
One of side portions 94 of housing 66 is slightly larger than the other of side portions 94 and has a cavity in which is received a Hall effect sensor 98. Wires 100 are routed from sensor 98 to circuitry 68 situated in upper portion 70 of housing 70. A magnet 110, shown in
A front wall 124 of portion 70 of housing 66 has a large aperture 126 and a small aperture 128 as shown in
When sensor 98 senses the presence of magnet 110 and when circuitry 68 of module 26 is able to communicate wirelessly with circuitry 24 of plug 20, LED 134 shines green to indicate that plug 20 is plugged into outlet 28 and to indicate successful wireless communication between plug 20 and module 26. If sensor 98 does not sense the presence of magnet 110 or if circuitry 68 is not able to communicate wirelessly with circuitry 24 despite sensor 98 sensing the presence of magnet 110, then LED 134 shines red to indicate an error condition in the communications link between plug 20 and module 26. In alternative embodiments, module 26 may have multiple LED's in lieu of the single LED 134 which is able to shine red or green.
Depending upon whether outlet 28 is a simplex outlet (i.e., one outlet 28) having a simplex cover plate 136, shown in
Main portions 144, 148 of respective plates 140, 142 each have multiple generally round apertures 154 which are positioned to align with threaded apertures associated with various configurations of outlets 28 and which are configured to receive fasteners, such as screws, therein to mount plates 140, 142 over plates 136, 138, respectively. Thus, fasteners are received in different ones of apertures 154 depending upon the configuration of a particular outlet with which plates 140, 142 are used. A ridge 156 extends forwardly from each of portions 144, 148 and is inset by a slight amount from the outer periphery of portions 144, 148. A pair of generally rectangular apertures 158 are provided in top portions of ridge 156. In the illustrative example, a pair of gaps 160 are provided between portions of ridges 156 of plates 140, 142. The gap 160 between the top portions of ridges 156 is provided to accommodate one of apertures 154 and to permit data cable 76 to pass therethrough. The other of gaps 160 is provided between portions of ridges 156 near one of the sides of respective plates 140, 142 to receive a tool, such as a screwdriver, if needed, to facilitate disassembly of module 26 and, in the case of plate 140 to accommodate one of apertures 154.
Housing 66 is configured to couple to each of plates 140, 142. Thus, although plates 140, 142 are configured differently depending upon whether outlet 28 has a simplex or duplex configuration, the same configuration of housing 66 may be used regardless of whether outlets 28 have a simplex or duplex configuration. In the illustrative embodiment, a pair of fingers or tabs 162 extend downwardly from top wall 116 of housing 66 as shown in
While mounting plates 140, 142 have been discussed above as mounting to outlets 28 and associated plates 136, 138 with fasteners, such as screws, and while housing 66 has been described above as mounting to plates 140, 142 with tabs 162 and fasteners, such as screws, it is within the scope of this disclosure for alternative coupling mechanisms to couple portions of module 26 together or to mount module 26 adjacent to outlet 28. For example, clips, rivets, snaps, fingers, tabs, adhesive, tape, bands, straps, magnets, and the like, as well as combinations of these, are contemplated by this disclosure for coupling portions of module 26 together and for mounting module 26 adjacent to outlet 28. While the illustrative embodiment has module 26 mounted over plates 136, 138 associated with outlets 28, in alternative embodiments, module 26 is mounted to the wall (or any other structure to which outlet 28 is mounted or any other suitable structure in the vicinity of outlet 28) either above, below, or beside cover plates 136, 138 associated with outlets 28. In still other embodiments, cover plates 136, 138 are omitted and module 26, itself, serves as a cover plate for the associated outlet 28.
Opening 96 of housing 66 is large enough to permit opening 146 of plate 140 and opening 150 of plate 142 to align generally with different portions of opening 96. When plug 20 is coupled to outlet 28, a portion of plug 20 is received in opening 96 and in whichever one of openings 146, 150 is in registry with opening 96. Furthermore, the outer peripheries of housing 66 and each of plates 140, 142 have generally the same dimensions so that when housing 66 is coupled to either of plates 140, 142, the top surface of upper portion 70 of housing is generally coplanar with the upper surface of rim 152, the outer side surfaces of side portions 94 are generally coplanar with the side surfaces of rim 152, and the bottom surface of bottom portion 92 is generally coplanar with the bottom surface of rim 152.
In the illustrative embodiment of
As mentioned above, communication module 74, which is sometimes referred to herein as the “wall module,” communicates with module 26 via data cord 76. Module 74 includes a housing 168, a face plate 170 that couples to housing 168, and circuitry 172 that couples to face plate 170 as shown in
Flange 178 has four apertures 180 that generally align with threaded apertures 182 provided in front rails 184 of junction box 174. Face plate 170 has four fastener-receiving bosses 171 that generally align with apertures 180 and apertures 182. Fasteners, such as screws, extend through bosses 171 and through apertures 180 and are threaded into apertures 182 to couple housing 168 and face plate 170 to junction box 174. In lieu of fasteners received by bosses 171 and apertures 180, 182, all types of coupling mechanisms, including, for example, clips, rivets, snaps, fingers, tabs, adhesive, tape, bands, straps, magnets, and the like, as well as combinations of these, are contemplated by this disclosure for coupling housing 168 and face plate 170 to box 174.
Circuitry 172 of module 74 comprises a pair of circuit boards 186 in a back-to-back arrangement and separated by spacers 188 as shown in
As shown diagrammatically in
Examples of control data associated with block 210 include caster braking data (i.e., set or not set), siderail position data (i.e., up or down), bed function lock out data (i.e., whether a caregiver has locked out certain functions of the bed), room light data (i.e., whether one or more lights in a room should be turned on or off), television (TV) control data (i.e., whether a TV should be on or off, whether a TV channel should be changed up or down, whether TV volume should be changed up or down), radio control data (i.e., whether a radio should be on or off, whether a radio channel should be changed up or down, whether radio volume should be changed up or down), Nurse call data (i.e., whether a Nurse call signal has been generated, whether a Nurse call cancel signal has been generated), and microphone control data (i.e., whether a microphone of the bed is on or off). Those skilled in the art will appreciate that bed 22 may have other control data associated therewith and that all of such control data may be communicated to or from module 196 in accordance with this disclosure.
Module 198 is coupled to a power cord module which, in one embodiment, corresponds to cable assembly 39 described above. Therefore, the same reference number (i.e., 39) is used to denote power cord module in
As also indicated diagrammatically in
Emergency power 216 is coupled to outlet 28 as shown diagrammatically in
According to the embodiment illustrated in
Referring now to
A configuration jumper 236 is coupled to conditioner 234 as shown in
A filtered audio-and-data in signal 239 is output from filter 240 and is input into a low noise amplifier 242. An amplified and filtered audio-and-data in signal 243 is output from amplifier 242 and is input into a limiter and IR demodulator circuit 244. Circuit 244 demodulates signal 243 received from amplifier 242 at two different frequencies, one of which corresponds to the carrier frequency associated with the audio portion of mixed audio-and-data 235 in signal and the other of which corresponds to the carrier frequency associated with the data portion of mixed audio-and-data in signal 235. Thus, circuit 244 outputs a data signal 246 and an audio signal 248, which signals 246, 248 are input into squelch circuitry 250.
A squelched data signal 249 and a squelched audio signal 251 are output from circuitry 250 as shown in
The audio portion of the FMIR signal which is received by transceiver 228 and which is sounded through speaker 262 after being processed in the manner discussed above includes, for example, voice data (human or prerecorded) originating at a master nurse call station, voice data originating at another station similar to station 82 but located in another patient room, television sound, radio sound, and/or an audible alarm signal. The data portion of the FMIR signal which is received by transceiver 228 and which is communicated to microcontroller 254 after being processed in the manner discussed above may be any of a number of different data signals, such as alarm signals, signals for controlling functions of device 22, interrogation signals to request that microcontroller 254 respond with certain data, and signals for controlling additional devices that are coupled to microcontroller 254 via at least one product specific interface 266, shown in
As shown diagrammatically in
Microcontroller 254 controls a latching device 282, shown in
Microcontroller 254 is coupled to a nurse call circuit 288, a universal television application specific integrated circuit (UTV ASIC) 290, and a set of general purpose relays 292, shown in
UTV ASIC 290 comprises circuitry that controls the operation of a television in the patient room and, in some embodiments, UTV ASIC 290 is configured to output the appropriate data signals to control multiple brands of televisions. In some embodiments, general purpose relays 292 are coupled to motors, such as motors of linear actuators, that are operated to move various portions of bed 22. Such movements of bed 22 may include raising or lowering a head section of bed 22, raising or lowering a thigh or foot section of bed 22, raising or lowering an upper frame of bed 22 relative to a base frame of bed 22, and tilting the upper frame of bed 22 relative to the base frame of bed 22.
A set of LED's 298 are coupled to connector 264 by LED signal lines 297 and to microcontroller 254 by control lines 299. Each of the LED's correspond to various ones of the functions of bed 22 that are controlled by or monitored by microcontroller 254 and are turned on or off (or are operated to shine one color or another color) to indicate a status of the associated function. A current loop gateway circuit 300 sends and/or receives SPI1 signals 302 to and/or from microcontroller 254. Circuit 300 also sends and/or receives SPI current loop signals 304 to and/or from connector 264 as shown in
Connector 264 is provided on bed 22 so that, in the event that a wired connection from bed 22 to the network of the healthcare facility is desired, such a wired connection may be accomplished, for example, by coupling connector 264 to interface unit 80, shown in
Data signal 314 comprises UART packets of data from microcontroller 254 that are input into a biphase encoder 316, shown in
Any audio signals from bed 22, such as, for example, an audio signal 319 originating from a microphone 320 which is provided on bed 22 and which is coupled to a daughter board interface 321, is input in an FM/IR modulator 322. In alternative embodiments, speaker 262 may also serve as a microphone and may output an audio signal that is input into modulator 322. A modulated audio signal 323 is output from modulator and is input into summing amplifier 238, which mixes signals 318, 323 to produce the mixed audio-and-data out signal 237 which is transmitted from transceiver 228 after being conditioned by conditioner 234 and passed through circuit 232.
In alternative embodiments, a second audio-and-data out signal 324 may originate on a circuit board (not shown) that is coupled to a daughter board interface 326. Such a circuit board may receive and/or transmit an SPI2 signal 325 to and/or from microcontroller 254 as shown in
Referring now to
As will become apparent in the discussion below, the circuitry 172 of module 74 is very nearly the same as the circuitry of bed 22 discussed above in connection with
The at least one photodiode 330 which operates as the photoemitter of transceiver 328 emits a third FMIR signal and the at least one photodiode 330 which operates as the photodetector of transceiver 328 receives a fourth FMIR signal (the first and second FMIR signals were discussed above in connection with photodiodes 230 of transceiver 228). Transceiver 328 is coupled to a receiver amplifier/transmitter passthrough circuit 332, shown in
A configuration jumper 336 is coupled to conditioner 334 as shown in
A filtered audio-and-data in signal 339 is output from filter 340 and is input into a low noise amplifier 342. An amplified and filtered audio-and-data in signal 343 is output from amplifier 342, as shown in
A squelched bed data signal 349 and a squelched audio signal 351 are output from circuitry 350 as shown in
The audio portion of the FMIR signal which is received by transceiver 328 and which eventually becomes audio signal 351 after being processed as described above may be, for example, voice data originating at microphone 320, shown in
As shown diagrammatically in
Microcontroller 354 is coupled to a nurse call circuit 388, a latching nurse call circuit 381, a universal television application specific integrated circuit (UTV ASIC) 390, and a set of general purpose relays 392, shown in
A set of LED's 398 are coupled to connector 364 by LED signal lines 397 and to microcontroller 354 by control lines 399. Each of the LED's 398 correspond to various ones of the LED's 298 that, in turn, correspond to functions of bed 22. A current loop gateway circuit 400 sends and/or receives SPI1 signals 402 to and/or from microcontroller 354. Circuit 400 also sends and/or receives SPI current loop signals 404 to and/or from connector 364 as shown in
Connector 90 is wired to connector 364 by lines 411 and is coupled to microcontroller 356 by a wired bed interface line 415. Thus, if a wired connection is provided between bed 22 and connector 90 with an appropriately configured cable assembly having 37-pin connectors at each end, then signals associated with the various pins of connector 90 are provided to corresponding ones of the pins of connector 364 by lines 411 for communication with, monitoring of, and/or control of the various components of circuitry 172 that are coupled to connector 364. Signals on line 415 indicate to microcontroller 354 whether or not bed 22 is wired to connector 90.
Data regarding the status of button 132 and LED 134 are communicated from jumper 336 to microcontroller 354 by switch/LED data lines 417 as shown in
Any audio signals received by connector 364 from the network, such as, for example, a headwall speaker audio signal 419 is input into an audio transformer 420. Transformer 420 outputs a transformed audio signal 427 that is input into an FM/IR modulator 422. A modulated audio signal 423 is output from modulator 422 and is input into summing amplifier 338, which mixes signals 418, 423 to produce the mixed audio-and-data out signal 337 which is transmitted from transceiver 328 after being conditioned by conditioner 334 and passed through circuit 332.
In alternative embodiments, a second audio-and-data out signal 424 may originate on a circuit board (not shown) that is coupled to a daughter board interface 426. Such a circuit board may receive and/or transmit an SPI2 signal 425 to and/or from microcontroller 354 as shown in
As is apparent from the above discussion, the bidirectional wireless communication between plug 20 and module 26 is established by a first mixed FMIR signal that is transmitted from transceiver 228 of plug 20 to transceiver 328 of module 26 across gap 72 and by a second mixed FMIR signal that is transmitted from transceiver 328 of module 26 to transceiver 228 of plug 20 across gap 72. The first mixed FMIR signal includes an audio portion modulated at a first carrier frequency and a data portion modulated at a second carrier frequency. The second mixed FMIR signal includes an audio portion modulated at a third carrier frequency and a data portion modulated at a fourth carrier frequency. While the four different carrier frequencies may be any desired frequencies, in one embodiment, the first carrier frequency is 2.3 Megahertz (MHz), the second carrier frequency is 4.0 MHz, the third carrier frequency is 2.8 MHz, and the fourth carrier frequency is 5.0 MHz.
The audio portions of the FMIR signals transmitted between transceivers 228, 328 remain analog throughout the transmission and processing. These audio signals are frequency modulated similar to the manner in which FM radio signals are frequency modulated. However, instead of being transmitted by an RF antenna, the audio signals are transmitted by photodiodes 230, 330 which, in some embodiments, are high speed IR LED's. The demodulators 244, 344 are tuned to the appropriate carrier frequencies of the audio portions of the FMIR signals. The data portions of the FMIR signals are frequency modulated in basically the same manner as the audio signals, but the data being modulated is a coded pulse signal that, in one embodiment, has a bandwidth of about 10 kilohertz (kHz).
In the illustrative embodiment, a model no. TSH511 and a model no. TSH512 chipset available from STMicroelectronics of Geneva, Switzerland is used in the circuitry of device 22 and in the circuitry 172 of module 74. As indicated by the dotted line box in
Electric circuit schematics of one implementation of the above-described system in accordance with this disclosure are provided in U.S. Provisional Patent Application Ser. No. 60/601,501 which was filed Aug. 13, 2004 and which is already incorporated by reference herein.
Referring now to
Module 430 has a housing 432 that carries circuitry corresponding to circuitry 68 of module 26, described above, and corresponding to circuitry 172 of module 74, described above. Thus, module 430 is basically a combination of modules 26, 74 into a single communication module. Module 430 has a nurse call cancel button 434, shown in
Because plug 450 couples to outlet 428 above module 430, the circuitry carried by plug 450 is situated in a lower portion of a plug body 452. The circuitry of plug 450 includes a wireless transceiver that communicates wirelessly with a wireless transceiver of module 430 across a gap 472 defined between plug body 452 and module 430 as shown in
Plug 450 has three electrical contact members 442, two of which are shown in
Data cable 476 has a first connector 446 at one end and a second connector 448 at an opposite end. Connector 446 couples to a mating connector accessible through a port located at the bottom of module 430 as shown in
Module 430 has a first auxiliary connector 458 which is accessible through a first port 462 on the front of housing 432 and a second auxiliary connector 460 which is accessible through a second port 464 on the front of housing 432 as shown in
Referring now to
Outlet 486 is accessible on the front of housing 484 and has sockets 488 into which prongs 32, 34, 36 of plug 20 may be inserted. Module 480 has three electrical contact members 490, two of which are shown in
In some embodiments, housing 484 carries circuitry corresponding to circuitry 68 of module 26, described above, and corresponding to circuitry 172 of module 74, described above. In other embodiments, housing 484 carries circuitry corresponding to circuitry 68 but does not have circuitry corresponding to circuitry 172. This disclosure contemplates that module 480 may have any type of circuitry capable to communicating wirelessly with wireless communications circuitry of an associated plug. Module 480 has a nurse call cancel button 496 which operates similarly to button 132 of module 26. In addition, module 480 has an LED 498 which operates similarly to LED 134 of module 26.
In the illustrative example, housing 484 is sized and configured to fit over a standard electrical outlet cover plate (not shown). Module 480 has a window or lens 500 at the bottom of an overhanging portion 502 of housing 484. Portion 502 protrudes away from the main portion of housing 484 by a sufficient amount to allow a wireless transceiver of module 480 to be aimed toward a wireless transceiver of the associated plug that couples to outlet 486. Lens 500 is transmissive to the wireless signals communicated between the transceiver of module 480 and the transceiver of the plug coupled to outlet 486 of module 480. In the illustrative embodiment, module 480 has a bed indicia 504 on the front of housing 484 beneath outlet 486.
In the above examples, outlet modules 26, 430, 480 are mounted adjacent power outlets that are coupled to walls of associated hospital rooms. It will be appreciated that power outlets are sometimes provided on other types of equipment in hospital rooms and therefore, module 26, 430, 480 may be mounted to any such equipment having power outlets. For example, in an alternative arrangement shown in
Because some embodiments described herein have a short-range wireless link between device 22 and an associated outlet module, such as one of modules 26, 430, 480, there is little probability, if any, that wireless signals to and/or from one device 22 will get communicated to an outlet module designated for another device in such embodiments having short-range wireless links. In these embodiments, therefore, an association between a particular bed and a particular location in a healthcare facility may be made without any manual entry of data by caregivers.
To associate a particular bed to a particular outlet module and/or to a particular wall module (i.e., communication module), which corresponds to a particular location in a healthcare facility, a unique identifier or address is assigned to each communication module and a unique identifier, such a serial number, is assigned to each device 22. The unique identifiers of the communication modules are stored in memory of the circuitry of each associated communication module and the unique identifiers for devices 22 are stored in the memory of devices 22.
In response to a wireless communications link being established between a particular device 22 and a particular module 26, 430, 480, the unique identifiers are exchanged between devices 22 and one or more of modules 26, 74, 430, 480 and, in some embodiments, are transmitted to the network For example, when sensor 98 senses the proximity of magnet 110, one of the associated module 26, 74, 430, 480 sends a query or interrogation signal to the associated device 22 and the associated device responds with its unique identifier which is stored in memory of the module 26, 74, 430, 480. As a result of being queried, each device 22 sends an interrogation signal to one or more of the associated module 26, 74, 430, 480 and the associated module 26, 74, 430, 480 responds with its unique identifier. Alternatively, the unique identifier of each module 26, 74, 430, 480 may be transmitted along with its initial interrogation signal for storage in the memory of the associated device 22.
In some embodiments, the unique identifiers of devices 22 and modules 26, 74, 430, 480 are communicated only once in response to the initial wireless coupling of a particular device 22 to an associated module 26, 74, 430, 480. In other embodiments, the unique identifiers of devices 22 and modules 26, 74, 430, 480 are communicated periodically. In still other embodiments, the unique identifiers of devices 22 and modules 26, 74, 430, 480 are communicated as part of every packet sent by devices 22 and modules 26, 74, 430, 480. A computer device of the network, such as a Master Nurse Station computer, may keep track of the association between each of devices 22 and the corresponding module 26, 74, 430, 480. Such a computer device may also associate device 22 and/or the corresponding module 26, 74, 430, 480 to other data, such as the patient, caregiver(s) or doctor(s) assigned to the particular device 22. Once device 22, modules 26, 74, 430, 480, and any other computer devices of the network are programmed appropriately, the various associations described above are monitored automatically without the need for caregivers to enter any data or provide any other commands to any devices of the network.
Although each of illustrative modules 26, 430, 480 couple to or mount over the associated power outlet, it is within the scope of this disclosure for modules 26, 430, 480 to be mounted elsewhere. For example, modules 26, 430, 480 may mount to other portions of the walls to which the associated outlets are mounted, either above, below or beside the outlets, or modules 26, 430, 480 may mount to other portions of the architectural equipment, or any other structures for that matter, that are in the vicinity of the associated power outlets.
Although certain embodiments have been described in detail above, variations and modifications exist within the scope and spirit of this disclosure as described and as defined in the following claims.
This application is a continuation of U.S. application Ser. No. 14/276,279, filed May 13, 2014, now U.S. Pat. No. 9,142,923, which is a continuation of U.S. application Ser. No. 13/105,443, filed May 11, 2011, now U.S. Pat. No. 8,727,804, which is a continuation of U.S. application Ser. No. 12/128,390, filed May 28, 2008, now U.S. Pat. No. 8,272,892, which is a continuation of U.S. application Ser. No. 10/568,918, filed Feb. 17, 2006, now U.S. Pat. No. 7,399,205, which is a U.S. national application under 37 C.F.R. §371(b) of International Application Serial No. PCT/US2004/026772 filed Aug. 19, 2004, which claims the benefit, under 35 U.S.C. §119(e), of U.S. Provisional Patent Application Ser. No. 60/496,743 filed Aug. 21, 2003 and U.S. Provisional Patent Application Ser. No. 60/601,501 filed Aug. 13, 2004 each of the foregoing applications being hereby expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2330356 | Belliveau | Sep 1943 | A |
2335524 | Lomax | Nov 1943 | A |
2736888 | McLain | Feb 1956 | A |
2740873 | Cronk | Apr 1956 | A |
2858421 | Touvet | Oct 1958 | A |
2896021 | Philipps | Jul 1959 | A |
3098220 | De Graaf | Jul 1963 | A |
3439320 | Ward | Apr 1969 | A |
3478344 | Schwitzgebel et al. | Nov 1969 | A |
3553383 | Rochtus | Jan 1971 | A |
3599199 | Bunting | Aug 1971 | A |
3599200 | Bunting | Aug 1971 | A |
3696384 | Lester | Oct 1972 | A |
3739329 | Lester | Jun 1973 | A |
3767859 | Doering et al. | Oct 1973 | A |
3805265 | Lester | Apr 1974 | A |
3913153 | Adams et al. | Oct 1975 | A |
3953933 | Goldstein | May 1976 | A |
3973200 | Akerberg | Aug 1976 | A |
3987928 | Mori | Oct 1976 | A |
4067005 | Levy et al. | Jan 1978 | A |
4150284 | Trenkler et al. | Apr 1979 | A |
4151407 | McBride et al. | Apr 1979 | A |
4183015 | Drew et al. | Jan 1980 | A |
4216462 | McGrath et al. | Aug 1980 | A |
4225953 | Simon et al. | Sep 1980 | A |
4228426 | Roberts | Oct 1980 | A |
4237344 | Moore | Dec 1980 | A |
4264982 | Sakarya | Apr 1981 | A |
4275385 | White | Jun 1981 | A |
4279433 | Petaja | Jul 1981 | A |
4298863 | Natitus et al. | Nov 1981 | A |
4331953 | Blevins et al. | May 1982 | A |
4343411 | Chesnut et al. | Aug 1982 | A |
4356475 | Neumann et al. | Oct 1982 | A |
4418334 | Burnett | Nov 1983 | A |
4455548 | Burnett | Jun 1984 | A |
4465333 | Caserta et al. | Aug 1984 | A |
4489387 | Lamb et al. | Dec 1984 | A |
4495495 | Ormanns et al. | Jan 1985 | A |
4495496 | Miller, III | Jan 1985 | A |
4539560 | Fleck et al. | Sep 1985 | A |
4577185 | Andersen | Mar 1986 | A |
4578671 | Flowers | Mar 1986 | A |
4593273 | Narcisse | Jun 1986 | A |
4598275 | Ross et al. | Jul 1986 | A |
4601064 | Shipley | Jul 1986 | A |
4649385 | Aires et al. | Mar 1987 | A |
4678264 | Bowen et al. | Jul 1987 | A |
4680790 | Packard et al. | Jul 1987 | A |
4709330 | Yokoi et al. | Nov 1987 | A |
4721358 | Faber et al. | Jan 1988 | A |
4740788 | Konneker | Apr 1988 | A |
4752951 | Konneker | Jun 1988 | A |
4767168 | Grandy | Aug 1988 | A |
4767181 | McEowen | Aug 1988 | A |
4792798 | Wilowski | Dec 1988 | A |
4795905 | Zierhut | Jan 1989 | A |
4814751 | Hawkins et al. | Mar 1989 | A |
4833452 | Currier | May 1989 | A |
4833467 | Kobayashi et al. | May 1989 | A |
4835343 | Graef et al. | May 1989 | A |
4837568 | Snaper | Jun 1989 | A |
4844582 | Giannini | Jul 1989 | A |
4850040 | Teich et al. | Jul 1989 | A |
4853692 | Wolk et al. | Aug 1989 | A |
4899135 | Chahariiran | Feb 1990 | A |
4903340 | Sorensen | Feb 1990 | A |
4924349 | Buehler et al. | May 1990 | A |
4947152 | Hodges | Aug 1990 | A |
4955000 | Nastrom | Sep 1990 | A |
4967195 | Shipley | Oct 1990 | A |
4977619 | Crimmins | Dec 1990 | A |
4984297 | Manome | Jan 1991 | A |
4990892 | Guest et al. | Feb 1991 | A |
4998095 | Shields | Mar 1991 | A |
4998939 | Potthast et al. | Mar 1991 | A |
5003984 | Muraki et al. | Apr 1991 | A |
5006830 | Merritt | Apr 1991 | A |
5027314 | Linwood et al. | Jun 1991 | A |
5033112 | Bowling et al. | Jul 1991 | A |
5036852 | Leishman | Aug 1991 | A |
5041086 | Koenig et al. | Aug 1991 | A |
5049876 | Kahle et al. | Sep 1991 | A |
5060303 | Wilmoth | Oct 1991 | A |
5062151 | Shipley | Oct 1991 | A |
5065154 | Kaiser | Nov 1991 | A |
5073681 | Hubben et al. | Dec 1991 | A |
5086290 | Murray et al. | Feb 1992 | A |
5089974 | Demeyer et al. | Feb 1992 | A |
5099346 | Lee et al. | Mar 1992 | A |
5103108 | Crimmins | Apr 1992 | A |
5109452 | Selvin et al. | Apr 1992 | A |
5124991 | Allen | Jun 1992 | A |
5137033 | Norton | Aug 1992 | A |
5140659 | Minds et al. | Aug 1992 | A |
5146528 | Gleim et al. | Sep 1992 | A |
5153584 | Engira | Oct 1992 | A |
5180886 | Dierenbach et al. | Jan 1993 | A |
5212760 | Goetz | May 1993 | A |
5214526 | Tonomura | May 1993 | A |
5228449 | Christ et al. | Jul 1993 | A |
5242315 | O'Dea | Sep 1993 | A |
5247380 | Lee et al. | Sep 1993 | A |
5266944 | Carroll et al. | Nov 1993 | A |
5274490 | Tsushima et al. | Dec 1993 | A |
5278536 | Furtaw et al. | Jan 1994 | A |
5291399 | Chaco | Mar 1994 | A |
5305132 | Fasen et al. | Apr 1994 | A |
5305133 | Cooper et al. | Apr 1994 | A |
5319355 | Russek | Jun 1994 | A |
5319363 | Welch et al. | Jun 1994 | A |
5321542 | Freitas et al. | Jun 1994 | A |
5357254 | Kah, Jr. | Oct 1994 | A |
5375604 | Kelly et al. | Dec 1994 | A |
5394882 | Mawhinney | Mar 1995 | A |
5396224 | Dukes et al. | Mar 1995 | A |
5396227 | Carroll et al. | Mar 1995 | A |
5415167 | Wilk | May 1995 | A |
5416627 | Wilmoth | May 1995 | A |
5416695 | Stutman et al. | May 1995 | A |
5417222 | Dempsey et al. | May 1995 | A |
5434775 | Sims et al. | Jul 1995 | A |
5446678 | Saltzstein et al. | Aug 1995 | A |
5455560 | Owen | Oct 1995 | A |
5455851 | Chaco et al. | Oct 1995 | A |
5456373 | Ford | Oct 1995 | A |
5458123 | Unger | Oct 1995 | A |
5461390 | Hoshen | Oct 1995 | A |
5475367 | Prevost | Dec 1995 | A |
5477010 | Buckshaw et al. | Dec 1995 | A |
5508836 | DeCaro et al. | Apr 1996 | A |
5511553 | Segalowitz | Apr 1996 | A |
5515426 | Yacenda et al. | May 1996 | A |
5534851 | Russek | Jul 1996 | A |
5537459 | Price et al. | Jul 1996 | A |
5544661 | Davis et al. | Aug 1996 | A |
5548637 | Heller et al. | Aug 1996 | A |
5548654 | Fast | Aug 1996 | A |
5549113 | Halleck et al. | Aug 1996 | A |
5561412 | Novak et al. | Oct 1996 | A |
5568119 | Schipper et al. | Oct 1996 | A |
5576452 | Dever et al. | Nov 1996 | A |
5576952 | Stutman et al. | Nov 1996 | A |
5579001 | Dempsey et al. | Nov 1996 | A |
5579775 | Dempsey et al. | Dec 1996 | A |
5588005 | Ali et al. | Dec 1996 | A |
5594786 | Chaco et al. | Jan 1997 | A |
5596648 | Fast | Jan 1997 | A |
5617236 | Wang et al. | Apr 1997 | A |
5621388 | Sherburne et al. | Apr 1997 | A |
5628324 | Sarbach | May 1997 | A |
5635907 | Bernard et al. | Jun 1997 | A |
5636245 | Ernst et al. | Jun 1997 | A |
5640953 | Bishop et al. | Jun 1997 | A |
5650769 | Campana, Jr. | Jul 1997 | A |
5650770 | Schlager et al. | Jul 1997 | A |
5657201 | Kochis | Aug 1997 | A |
5664270 | Bell et al. | Sep 1997 | A |
5675125 | Hollinger | Oct 1997 | A |
5678562 | Sellers | Oct 1997 | A |
5682139 | Pradeep et al. | Oct 1997 | A |
5686888 | Welles, II | Nov 1997 | A |
5686902 | Reis et al. | Nov 1997 | A |
5687717 | Halpern et al. | Nov 1997 | A |
5687734 | Dempsey et al. | Nov 1997 | A |
5689229 | Chaco et al. | Nov 1997 | A |
5691980 | Welles, II et al. | Nov 1997 | A |
5696861 | Schimmeyer et al. | Dec 1997 | A |
5699038 | Ulrich et al. | Dec 1997 | A |
5705980 | Shapiro | Jan 1998 | A |
5706110 | Nykanen | Jan 1998 | A |
5708421 | Boyd | Jan 1998 | A |
5712795 | Layman et al. | Jan 1998 | A |
5713856 | Eggers et al. | Feb 1998 | A |
5719761 | Gatti et al. | Feb 1998 | A |
5723817 | Arenas et al. | Mar 1998 | A |
5724025 | Tavori | Mar 1998 | A |
5731757 | Layson, Jr. | Mar 1998 | A |
5738102 | Lemelson | Apr 1998 | A |
5742237 | Bledsoe | Apr 1998 | A |
5751246 | Hertel | May 1998 | A |
5752917 | Fuchs | May 1998 | A |
5760704 | Barton et al. | Jun 1998 | A |
5767791 | Stoop et al. | Jun 1998 | A |
5772599 | Nevo et al. | Jun 1998 | A |
5781442 | Engleson et al. | Jul 1998 | A |
5793290 | Eagleson et al. | Aug 1998 | A |
5800387 | Duffy et al. | Sep 1998 | A |
5808564 | Simms et al. | Sep 1998 | A |
5811729 | Rintz | Sep 1998 | A |
5811730 | Rintz | Sep 1998 | A |
5812056 | Law | Sep 1998 | A |
5813873 | McBain et al. | Sep 1998 | A |
5822418 | Yacenda et al. | Oct 1998 | A |
5822544 | Chaco et al. | Oct 1998 | A |
5825283 | Camhi | Oct 1998 | A |
5836910 | Duffy et al. | Nov 1998 | A |
5838223 | Gallant et al. | Nov 1998 | A |
5838471 | Beard | Nov 1998 | A |
5844488 | Musick | Dec 1998 | A |
5862803 | Besson et al. | Jan 1999 | A |
5867821 | Ballantyne et al. | Feb 1999 | A |
5873369 | Laniado et al. | Feb 1999 | A |
5874693 | Rintz | Feb 1999 | A |
5877675 | Rebstock et al. | Mar 1999 | A |
5877820 | Yamamuro et al. | Mar 1999 | A |
5895888 | Arenas et al. | Apr 1999 | A |
5907419 | Martnelli et al. | May 1999 | A |
5910776 | Black | Jun 1999 | A |
5919141 | Money et al. | Jul 1999 | A |
5933488 | Marcus et al. | Aug 1999 | A |
5936539 | Fuchs | Aug 1999 | A |
5941846 | Duffy et al. | Aug 1999 | A |
5942986 | Shabot et al. | Aug 1999 | A |
5944659 | Flach et al. | Aug 1999 | A |
5949567 | Jebens | Sep 1999 | A |
5957854 | Besson et al. | Sep 1999 | A |
5963137 | Waters, Sr. | Oct 1999 | A |
5967840 | Rose et al. | Oct 1999 | A |
5974389 | Clark et al. | Oct 1999 | A |
5982519 | Martnelli et al. | Nov 1999 | A |
5990866 | Yollin | Nov 1999 | A |
5991728 | DeBusk et al. | Nov 1999 | A |
5994998 | Fisher et al. | Nov 1999 | A |
5995253 | Flaherty | Nov 1999 | A |
5995937 | DeBusk et al. | Nov 1999 | A |
5998735 | Patterson, Jr. | Dec 1999 | A |
6009333 | Chaco | Dec 1999 | A |
6014346 | Malone | Jan 2000 | A |
6014633 | DeBusk et al. | Jan 2000 | A |
6027367 | Woertz et al. | Feb 2000 | A |
6028519 | Dessureau et al. | Feb 2000 | A |
6038469 | Karlsson et al. | Mar 2000 | A |
6044283 | Fein et al. | Mar 2000 | A |
6044382 | Martino | Mar 2000 | A |
6047203 | Sackner et al. | Apr 2000 | A |
6051787 | Rintz | Apr 2000 | A |
6057758 | Dempsey et al. | May 2000 | A |
6057782 | Koenig | May 2000 | A |
6067019 | Scott | May 2000 | A |
6071015 | Erbse et al. | Jun 2000 | A |
6074345 | van Oostrom et al. | Jun 2000 | A |
6076166 | Moshfeghi et al. | Jun 2000 | A |
6078261 | Davsko | Jun 2000 | A |
6080106 | Lloyd et al. | Jun 2000 | A |
6085493 | DeBusk et al. | Jul 2000 | A |
6088362 | Turnbull et al. | Jul 2000 | A |
6093146 | Filangeri | Jul 2000 | A |
6097308 | Albert et al. | Aug 2000 | A |
6111509 | Holmes | Aug 2000 | A |
6117076 | Cassidy | Sep 2000 | A |
6125350 | Dirbas | Sep 2000 | A |
6132371 | Dempsey et al. | Oct 2000 | A |
6133837 | Riley | Oct 2000 | A |
6135949 | Russo et al. | Oct 2000 | A |
6140911 | Fisher et al. | Oct 2000 | A |
6147592 | Ulrich et al. | Nov 2000 | A |
6147618 | Halleck et al. | Nov 2000 | A |
6150951 | Olejniczak | Nov 2000 | A |
6159147 | Lichter et al. | Dec 2000 | A |
6160478 | Jacobsen et al. | Dec 2000 | A |
6167258 | Schmidt et al. | Dec 2000 | A |
6171264 | Bader | Jan 2001 | B1 |
6183101 | Chien | Feb 2001 | B1 |
6183417 | Geheb et al. | Feb 2001 | B1 |
6186962 | Lloyd et al. | Feb 2001 | B1 |
6193655 | McGrath | Feb 2001 | B1 |
6198394 | Jacobsen et al. | Mar 2001 | B1 |
6208250 | Dixon et al. | Mar 2001 | B1 |
6213942 | Flach et al. | Apr 2001 | B1 |
6241668 | Herzog | Jun 2001 | B1 |
6259355 | Chaco et al. | Jul 2001 | B1 |
6264614 | Albert et al. | Jul 2001 | B1 |
6270457 | Bardy | Aug 2001 | B1 |
6272347 | Griffith et al. | Aug 2001 | B1 |
6277080 | Nissila et al. | Aug 2001 | B1 |
6279183 | Kummer et al. | Aug 2001 | B1 |
6281440 | Baldwin et al. | Aug 2001 | B1 |
6287253 | Ortega et al. | Sep 2001 | B1 |
6289238 | Besson et al. | Sep 2001 | B1 |
6302844 | Walker et al. | Oct 2001 | B1 |
6304600 | Chiba | Oct 2001 | B1 |
6304774 | Gorman | Oct 2001 | B1 |
6314556 | DeBusk et al. | Nov 2001 | B1 |
6320510 | Menkedick et al. | Nov 2001 | B2 |
6329906 | Fisher et al. | Dec 2001 | B1 |
6336900 | Alleckson et al. | Jan 2002 | B1 |
6336903 | Bardy | Jan 2002 | B1 |
6344794 | Ulrich et al. | Feb 2002 | B1 |
6348777 | Brown et al. | Feb 2002 | B1 |
6355885 | Rintz et al. | Mar 2002 | B1 |
6362725 | Ulrich et al. | Mar 2002 | B1 |
6364834 | Reuss et al. | Apr 2002 | B1 |
6368284 | Bardy | Apr 2002 | B1 |
6398727 | Bui et al. | Jun 2002 | B1 |
6398728 | Bardy | Jun 2002 | B1 |
6402691 | Peddicord et al. | Jun 2002 | B1 |
6406426 | Reuss et al. | Jun 2002 | B1 |
6407335 | Franklin-Lees et al. | Jun 2002 | B1 |
6411840 | Bardy | Jun 2002 | B1 |
6412980 | Lounsberry et al. | Jul 2002 | B1 |
6416471 | Kumar et al. | Jul 2002 | B1 |
6421649 | Rattner | Jul 2002 | B1 |
6434187 | Beard et al. | Aug 2002 | B1 |
6439769 | Polkus et al. | Aug 2002 | B1 |
6441742 | Lovely et al. | Aug 2002 | B1 |
6441747 | Khair et al. | Aug 2002 | B1 |
6442145 | De Lange et al. | Aug 2002 | B1 |
6442290 | Ellis et al. | Aug 2002 | B1 |
6443890 | Schulze et al. | Sep 2002 | B1 |
6445299 | Rojas, Jr. | Sep 2002 | B1 |
6450953 | Place et al. | Sep 2002 | B1 |
6450956 | Rappaport et al. | Sep 2002 | B1 |
6457874 | Clapp, Jr. et al. | Oct 2002 | B1 |
6462656 | Ulrich et al. | Oct 2002 | B2 |
6475153 | Khair et al. | Nov 2002 | B1 |
6486792 | Noster et al. | Nov 2002 | B1 |
6493121 | Althaus | Dec 2002 | B1 |
6493568 | Bell et al. | Dec 2002 | B1 |
6493747 | Simmon et al. | Dec 2002 | B2 |
6494829 | New, Jr. et al. | Dec 2002 | B1 |
6494831 | Koritzinsky | Dec 2002 | B1 |
6496105 | Fisher et al. | Dec 2002 | B2 |
6496705 | Ng et al. | Dec 2002 | B1 |
6497656 | Evans et al. | Dec 2002 | B1 |
6500026 | Yamaguchi | Dec 2002 | B2 |
6504633 | Hovorka et al. | Jan 2003 | B1 |
6504635 | Nakashima | Jan 2003 | B1 |
6510344 | Halpern | Jan 2003 | B1 |
6514652 | Cash, Jr. | Feb 2003 | B2 |
6516324 | Jones et al. | Feb 2003 | B1 |
6517497 | Rymut et al. | Feb 2003 | B2 |
6526310 | Carter et al. | Feb 2003 | B1 |
6529164 | Carter | Mar 2003 | B1 |
6533453 | Heidsieck et al. | Mar 2003 | B1 |
6533466 | Smith | Mar 2003 | B1 |
6533729 | Khair et al. | Mar 2003 | B1 |
6535576 | Vafi et al. | Mar 2003 | B2 |
6539393 | Kabala | Mar 2003 | B1 |
6540686 | Heikkilaet et al. | Apr 2003 | B2 |
6544075 | Liao | Apr 2003 | B1 |
6544173 | West et al. | Apr 2003 | B2 |
6544174 | West et al. | Apr 2003 | B2 |
6544200 | Smith et al. | Apr 2003 | B1 |
6545218 | Blaess | Apr 2003 | B1 |
6551243 | Bocionek et al. | Apr 2003 | B2 |
6551252 | Sackner et al. | Apr 2003 | B2 |
6552888 | Weinberger | Apr 2003 | B2 |
6553106 | Gould et al. | Apr 2003 | B1 |
6554174 | Aceves | Apr 2003 | B1 |
6556630 | Brinsfield et al. | Apr 2003 | B1 |
6558045 | Yamaguchi | May 2003 | B2 |
6559620 | Zhou et al. | May 2003 | B2 |
6560274 | Leitgeb et al. | May 2003 | B1 |
6563618 | Morrow et al. | May 2003 | B1 |
6569094 | Suzuki et al. | May 2003 | B2 |
6572556 | Stoycos et al. | Jun 2003 | B2 |
6575901 | Stoycos et al. | Jun 2003 | B2 |
6575902 | Burton | Jun 2003 | B1 |
6577893 | Besson et al. | Jun 2003 | B1 |
6579231 | Phipps | Jun 2003 | B1 |
6581204 | DeBusk et al. | Jun 2003 | B2 |
6584182 | Brodnick | Jun 2003 | B2 |
6584454 | Hummel, Jr. et al. | Jun 2003 | B1 |
6585431 | Okamoto | Jul 2003 | B1 |
6585645 | Hutchinson | Jul 2003 | B2 |
6589170 | Flach et al. | Jul 2003 | B1 |
6593528 | Franklin-Lees et al. | Jul 2003 | B2 |
6594146 | Frangesch et al. | Jul 2003 | B2 |
6594511 | Stone et al. | Jul 2003 | B2 |
6594519 | Stoycos et al. | Jul 2003 | B2 |
6595929 | Stivoric et al. | Jul 2003 | B2 |
6599025 | Deutsch | Jul 2003 | B1 |
6600421 | Freeman | Jul 2003 | B2 |
6602191 | Quy | Aug 2003 | B2 |
6603401 | Ueyama | Aug 2003 | B1 |
6603494 | Banks et al. | Aug 2003 | B1 |
6605038 | Teller et al. | Aug 2003 | B1 |
6608253 | Rintz | Aug 2003 | B1 |
6609115 | Mehring et al. | Aug 2003 | B1 |
6609166 | Nakashima | Aug 2003 | B1 |
6611705 | Hopman et al. | Aug 2003 | B2 |
6612984 | Kerr, II | Sep 2003 | B1 |
6616606 | Petersen et al. | Sep 2003 | B1 |
6622088 | Hood | Sep 2003 | B2 |
6640246 | Gary, Jr. et al. | Oct 2003 | B1 |
6643238 | Nakajima | Nov 2003 | B2 |
6650346 | Jaeger et al. | Nov 2003 | B1 |
6659947 | Carter et al. | Dec 2003 | B1 |
6665385 | Rogers et al. | Dec 2003 | B2 |
6665820 | Frowein et al. | Dec 2003 | B1 |
6668328 | Bell | Dec 2003 | B1 |
6669630 | Joliat et al. | Dec 2003 | B1 |
6671547 | Lyster et al. | Dec 2003 | B2 |
6671563 | Engelson et al. | Dec 2003 | B1 |
6685633 | Albert et al. | Feb 2004 | B2 |
6688779 | Nishita | Feb 2004 | B2 |
6689091 | Bui et al. | Feb 2004 | B2 |
6694180 | Boesen | Feb 2004 | B1 |
6694367 | Niesbauer et al. | Feb 2004 | B1 |
6694509 | Stoval et al. | Feb 2004 | B1 |
6697765 | Kuth | Feb 2004 | B2 |
6707476 | Hochstedler | Mar 2004 | B1 |
6714913 | Brandt et al. | Mar 2004 | B2 |
6721818 | Nakamura | Apr 2004 | B1 |
6723046 | Lichtenstein et al. | Apr 2004 | B2 |
6726634 | Freeman | Apr 2004 | B2 |
6727818 | Wildman et al. | Apr 2004 | B1 |
6731311 | Bufe et al. | May 2004 | B2 |
6731989 | Engleson et al. | May 2004 | B2 |
6736759 | Stubbs et al. | May 2004 | B1 |
6740033 | Olejniczak et al. | May 2004 | B1 |
6748250 | Berman et al. | Jun 2004 | B1 |
6749566 | Russ | Jun 2004 | B2 |
6751630 | Franks et al. | Jun 2004 | B1 |
6754545 | Haeuser et al. | Jun 2004 | B2 |
6754883 | DeBusk et al. | Jun 2004 | B2 |
6758812 | Lang | Jul 2004 | B2 |
6759959 | Wildman | Jul 2004 | B2 |
6763195 | Willebrand et al. | Jul 2004 | B1 |
6763541 | Mahoney et al. | Jul 2004 | B2 |
6771172 | Robinson et al. | Aug 2004 | B1 |
6773396 | Flach et al. | Aug 2004 | B2 |
6778225 | David | Aug 2004 | B2 |
6781517 | Moster et al. | Aug 2004 | B2 |
6784797 | Smith et al. | Aug 2004 | B2 |
6791460 | Dixon et al. | Sep 2004 | B2 |
6792396 | Inda et al. | Sep 2004 | B2 |
6801227 | Bocionek et al. | Oct 2004 | B2 |
6807543 | Muthya | Oct 2004 | B2 |
6817979 | Nihtila | Nov 2004 | B2 |
6819247 | Birnbach et al. | Nov 2004 | B2 |
6823036 | Chen | Nov 2004 | B1 |
6825763 | Ulrich et al. | Nov 2004 | B2 |
6826578 | Brackett et al. | Nov 2004 | B2 |
6828992 | Freeman et al. | Dec 2004 | B1 |
6829796 | Salvatini et al. | Dec 2004 | B2 |
6830549 | Bui et al. | Dec 2004 | B2 |
6832199 | Kucek et al. | Dec 2004 | B1 |
6840117 | Hubbard, Jr. | Jan 2005 | B2 |
6840904 | Goldberg | Jan 2005 | B2 |
6847814 | Vogeleisen | Jan 2005 | B1 |
6868256 | Dooley et al. | Mar 2005 | B2 |
6870466 | Rust et al. | Mar 2005 | B2 |
6871211 | Labounty et al. | Mar 2005 | B2 |
6873884 | Brackett et al. | Mar 2005 | B2 |
6875174 | Braun et al. | Apr 2005 | B2 |
6876303 | Reeder et al. | Apr 2005 | B2 |
6876985 | Kawanaka | Apr 2005 | B2 |
6885288 | Pincus | Apr 2005 | B2 |
6891909 | Hurley et al. | May 2005 | B2 |
6893396 | Schulze et al. | May 2005 | B2 |
6897788 | Khair et al. | May 2005 | B2 |
6904161 | Becker et al. | Jun 2005 | B1 |
6909995 | Shiraishi | Jun 2005 | B2 |
6912549 | Rotter et al. | Jun 2005 | B2 |
6915170 | Engleson et al. | Jul 2005 | B2 |
6925367 | Fontius | Aug 2005 | B2 |
6930878 | Brackett et al. | Aug 2005 | B2 |
6937150 | Medema et al. | Aug 2005 | B2 |
6942616 | Kerr, II | Sep 2005 | B2 |
6958706 | Chaco et al. | Oct 2005 | B2 |
6984297 | Nisch et al. | Jan 2006 | B2 |
6987965 | Ng et al. | Jan 2006 | B2 |
6988989 | Weiner et al. | Jan 2006 | B2 |
7002468 | Eveland et al. | Feb 2006 | B2 |
7004907 | Banet et al. | Feb 2006 | B2 |
7010337 | Furnary et al. | Mar 2006 | B2 |
7020508 | Stivoric et al. | Mar 2006 | B2 |
7029455 | Flaherty | Apr 2006 | B2 |
7039456 | Chen | May 2006 | B2 |
7049524 | Belli et al. | May 2006 | B2 |
7053767 | Petite et al. | May 2006 | B2 |
7053831 | Dempsey et al. | May 2006 | B2 |
7068143 | Doering et al. | Jun 2006 | B2 |
7079036 | Cooper et al. | Jul 2006 | B2 |
7088233 | Menard | Aug 2006 | B2 |
7092376 | Schuman | Aug 2006 | B2 |
7099895 | Dempsey | Aug 2006 | B2 |
7103407 | Hjelt et al. | Sep 2006 | B2 |
7104955 | Bardy | Sep 2006 | B2 |
7107106 | Engleson et al. | Sep 2006 | B2 |
7117041 | Engleson et al. | Oct 2006 | B2 |
7123149 | Nowak et al. | Oct 2006 | B2 |
7127261 | Van Erlach | Oct 2006 | B2 |
7127738 | Jackson | Oct 2006 | B1 |
7129836 | Lawson et al. | Oct 2006 | B2 |
7130396 | Rogers et al. | Oct 2006 | B2 |
7138902 | Menard | Nov 2006 | B2 |
7150655 | Mastrototaro et al. | Dec 2006 | B2 |
7153262 | Stivoric et al. | Dec 2006 | B2 |
7153263 | Carter et al. | Dec 2006 | B2 |
7154398 | Chen et al. | Dec 2006 | B2 |
7156807 | Carter et al. | Jan 2007 | B2 |
7171166 | Ng et al. | Jan 2007 | B2 |
7177673 | Matsumura et al. | Feb 2007 | B2 |
7197357 | Istvan et al. | Mar 2007 | B2 |
7197492 | Sullivan | Mar 2007 | B2 |
7215991 | Beeson et al. | May 2007 | B2 |
7222054 | Geva | May 2007 | B2 |
7231258 | Moore et al. | Jun 2007 | B2 |
7242308 | Ulrich et al. | Jul 2007 | B2 |
7244150 | Brase et al. | Jul 2007 | B1 |
7256708 | Rosenfeld et al. | Aug 2007 | B2 |
7272428 | Hopman et al. | Sep 2007 | B2 |
7277758 | DiLorenzo | Oct 2007 | B2 |
7283423 | Holm et al. | Oct 2007 | B2 |
7292135 | Bixler et al. | Nov 2007 | B2 |
7292139 | Mazar et al. | Nov 2007 | B2 |
7294105 | Islam | Nov 2007 | B1 |
7301451 | Hastings | Nov 2007 | B2 |
7304580 | Sullivan et al. | Dec 2007 | B2 |
7319386 | Collins, Jr. et al. | Jan 2008 | B2 |
7324824 | Smith et al. | Jan 2008 | B2 |
7333002 | Bixler et al. | Feb 2008 | B2 |
7336563 | Holm | Feb 2008 | B2 |
7352652 | Holm et al. | Apr 2008 | B2 |
7362656 | Holm | Apr 2008 | B2 |
7384110 | Hoshiyama et al. | Jun 2008 | B2 |
7399205 | McNeely et al. | Jul 2008 | B2 |
7443302 | Reeder et al. | Oct 2008 | B2 |
7454885 | Lin et al. | Nov 2008 | B2 |
7480951 | Weismiller et al. | Jan 2009 | B2 |
7746218 | Collins, Jr. et al. | Jun 2010 | B2 |
8026821 | Reeder et al. | Sep 2011 | B2 |
8120471 | Collins, Jr. et al. | Feb 2012 | B2 |
8272892 | McNeely et al. | Sep 2012 | B2 |
8421606 | Collins, Jr. et al. | Apr 2013 | B2 |
8727804 | McNeely et al. | May 2014 | B2 |
9142923 | McNeely et al. | Sep 2015 | B2 |
20010034475 | Flach et al. | Oct 2001 | A1 |
20010050610 | Gelston | Dec 2001 | A1 |
20010051765 | Walker et al. | Dec 2001 | A1 |
20020004336 | Yamaguchi | Jan 2002 | A1 |
20020012329 | Atkinson et al. | Jan 2002 | A1 |
20020014951 | Kramer et al. | Feb 2002 | A1 |
20020021209 | Fisher et al. | Feb 2002 | A1 |
20020023121 | Sugiyama et al. | Feb 2002 | A1 |
20020032812 | Ito | Mar 2002 | A1 |
20020039068 | Holowick | Apr 2002 | A1 |
20020044043 | Chaco et al. | Apr 2002 | A1 |
20020044059 | Reeder et al. | Apr 2002 | A1 |
20020060624 | Zhang | May 2002 | A1 |
20020067273 | Jaques et al. | Jun 2002 | A1 |
20020067282 | Moskowitz et al. | Jun 2002 | A1 |
20020070867 | Conway et al. | Jun 2002 | A1 |
20020080037 | Dixon et al. | Jun 2002 | A1 |
20020091843 | Vaid | Jul 2002 | A1 |
20020101349 | Rojas, Jr. | Aug 2002 | A1 |
20020101861 | Gancarcik et al. | Aug 2002 | A1 |
20020103674 | Reeder et al. | Aug 2002 | A1 |
20020142650 | Clark et al. | Oct 2002 | A1 |
20020145534 | Dempsey | Oct 2002 | A1 |
20020149822 | Stroud | Oct 2002 | A1 |
20020151990 | Ulrich et al. | Oct 2002 | A1 |
20020165731 | Dempsey | Nov 2002 | A1 |
20020167417 | Welles, II et al. | Nov 2002 | A1 |
20020173991 | Avitall | Nov 2002 | A1 |
20020179092 | Swennen et al. | Dec 2002 | A1 |
20020186136 | Schuman | Dec 2002 | A1 |
20020196141 | Boone et al. | Dec 2002 | A1 |
20020198986 | Dempsey | Dec 2002 | A1 |
20030006881 | Reyes | Jan 2003 | A1 |
20030010345 | Koblasz et al. | Jan 2003 | A1 |
20030016419 | Palmer et al. | Jan 2003 | A1 |
20030025601 | Gruteser et al. | Feb 2003 | A1 |
20030028449 | Heinen et al. | Feb 2003 | A1 |
20030030569 | Ulrich et al. | Feb 2003 | A1 |
20030039257 | Manis et al. | Feb 2003 | A1 |
20030052770 | Mansfield, Jr. et al. | Mar 2003 | A1 |
20030052787 | Zerhusen et al. | Mar 2003 | A1 |
20030058085 | Fisher et al. | Mar 2003 | A1 |
20030062990 | Schaeffer, Jr. et al. | Apr 2003 | A1 |
20030062991 | Fisher et al. | Apr 2003 | A1 |
20030074222 | Rosow et al. | Apr 2003 | A1 |
20030141981 | Bui et al. | Jul 2003 | A1 |
20030146835 | Carter | Aug 2003 | A1 |
20030149598 | Santoso et al. | Aug 2003 | A1 |
20030153387 | Small et al. | Aug 2003 | A1 |
20030176798 | Simon | Sep 2003 | A1 |
20030185515 | Lubkert et al. | Oct 2003 | A1 |
20030206116 | Weiner et al. | Nov 2003 | A1 |
20030214407 | Sweatte | Nov 2003 | A1 |
20030223756 | Tatum et al. | Dec 2003 | A1 |
20030227386 | Pulkkinen et al. | Dec 2003 | A1 |
20030227900 | Watanabe | Dec 2003 | A1 |
20040072475 | Istvan | Apr 2004 | A1 |
20040073127 | Istvan et al. | Apr 2004 | A1 |
20040091270 | Choi et al. | May 2004 | A1 |
20040100377 | Brackett et al. | May 2004 | A1 |
20040106854 | Muraki | Jun 2004 | A1 |
20040121767 | Simpson et al. | Jun 2004 | A1 |
20040127802 | Istvan et al. | Jul 2004 | A1 |
20040147818 | Levy et al. | Jul 2004 | A1 |
20040167465 | Mihai et al. | Aug 2004 | A1 |
20040176667 | Mihai et al. | Sep 2004 | A1 |
20040183681 | Smith | Sep 2004 | A1 |
20040183684 | Callaway | Sep 2004 | A1 |
20040186358 | Chernow et al. | Sep 2004 | A1 |
20040193449 | Wildman et al. | Sep 2004 | A1 |
20050033124 | Kelly et al. | Feb 2005 | A1 |
20050035862 | Wildman et al. | Feb 2005 | A1 |
20050140508 | Tessier et al. | Jun 2005 | A1 |
20050148303 | Dempsey | Jul 2005 | A1 |
20050168341 | Reeder et al. | Aug 2005 | A1 |
20050177052 | Istvan et al. | Aug 2005 | A1 |
20050197545 | Hoggle | Sep 2005 | A1 |
20050206518 | Welch et al. | Sep 2005 | A1 |
20050242946 | Hubbard, Jr. et al. | Nov 2005 | A1 |
20050251002 | Istvan et al. | Nov 2005 | A1 |
20050251003 | Istvan et al. | Nov 2005 | A1 |
20050251004 | Istvan et al. | Nov 2005 | A1 |
20060030759 | Weiner et al. | Feb 2006 | A1 |
20060049936 | Collins, Jr. et al. | Mar 2006 | A1 |
20060077759 | Holm | Apr 2006 | A1 |
20060089539 | Miodownik et al. | Apr 2006 | A1 |
20060106649 | Eggers et al. | May 2006 | A1 |
20060122867 | Eggers et al. | Jun 2006 | A1 |
20060136271 | Eggers et al. | Jun 2006 | A1 |
20060143051 | Eggers et al. | Jun 2006 | A1 |
20060190302 | Eggers et al. | Aug 2006 | A1 |
20060214786 | Bixler et al. | Sep 2006 | A1 |
20060220839 | Fifolt et al. | Oct 2006 | A1 |
20060238350 | Tessier | Oct 2006 | A1 |
20060239195 | Camins et al. | Oct 2006 | A1 |
20060242293 | Russ | Oct 2006 | A1 |
20060248221 | Hottel et al. | Nov 2006 | A1 |
20060253281 | Letzt et al. | Nov 2006 | A1 |
20060258926 | Ali et al. | Nov 2006 | A1 |
20060267740 | Bixler et al. | Nov 2006 | A1 |
20060277202 | Dempsey | Dec 2006 | A1 |
20060279427 | Becker et al. | Dec 2006 | A1 |
20060288095 | Torok et al. | Dec 2006 | A1 |
20070013511 | Weiner et al. | Jan 2007 | A1 |
20070060976 | Denzene et al. | Mar 2007 | A1 |
20070069887 | Welch et al. | Mar 2007 | A1 |
20070112602 | Bellon et al. | May 2007 | A1 |
20070123955 | Verhoef et al. | May 2007 | A1 |
20070135866 | Baker et al. | Jun 2007 | A1 |
20070141869 | McNeely et al. | Jun 2007 | A1 |
20070142716 | Biondi | Jun 2007 | A1 |
20070156456 | McGillin et al. | Jul 2007 | A1 |
20070156707 | Fuchs et al. | Jul 2007 | A1 |
20070180140 | Welch et al. | Aug 2007 | A1 |
20070208235 | Besson et al. | Sep 2007 | A1 |
20070229249 | McNeal et al. | Oct 2007 | A1 |
20070233199 | Moore et al. | Oct 2007 | A1 |
20070251835 | Mehta et al. | Nov 2007 | A1 |
20070255111 | Baldus et al. | Nov 2007 | A1 |
20070255250 | Moberg et al. | Nov 2007 | A1 |
20070255348 | Holtzclaw | Nov 2007 | A1 |
20070258395 | Jollota et al. | Nov 2007 | A1 |
20070279211 | Fenske et al. | Dec 2007 | A1 |
20080009694 | Hopman et al. | Jan 2008 | A1 |
20080018435 | Brown | Jan 2008 | A1 |
20080049555 | Holm et al. | Feb 2008 | A1 |
20080114689 | Psynik et al. | May 2008 | A1 |
20080120784 | Warner et al. | May 2008 | A1 |
20080122616 | Warner et al. | May 2008 | A1 |
20080126122 | Warner et al. | May 2008 | A1 |
20080126132 | Warner et al. | May 2008 | A1 |
20080147442 | Warner et al. | Jun 2008 | A1 |
20080224861 | McNeely et al. | Sep 2008 | A1 |
20100079276 | Collins, Jr. et al. | Apr 2010 | A1 |
20110210833 | McNeely et al. | Sep 2011 | A1 |
20120092135 | Collins, Jr. et al. | Apr 2012 | A1 |
20140248804 | McNeely et al. | Sep 2014 | A1 |
20160042623 | Riley | Feb 2016 | A1 |
20160058641 | Moutafis | Mar 2016 | A1 |
20160140827 | Derenne | May 2016 | A1 |
Number | Date | Country |
---|---|---|
197 01 603 | Jul 1998 | DE |
199 12 395 | Sep 2000 | DE |
200 15 392 | May 2001 | DE |
1 431 941 | Jun 2004 | EP |
1 431 942 | Jun 2004 | EP |
WO 9718639 | May 1997 | WO |
WO 0037978 | Jun 2000 | WO |
WO 0194967 | Dec 2001 | WO |
WO 02075352 | Sep 2002 | WO |
WO 02091297 | Nov 2002 | WO |
WO 03027981 | Apr 2003 | WO |
WO 03105095 | Dec 2003 | WO |
WO2004036390 | Apr 2004 | WO |
WO 2004093023 | Oct 2004 | WO |
WO 2004104619 | Dec 2004 | WO |
WO 2005022692 | Mar 2005 | WO |
WO 2005022692 | Mar 2005 | WO |
WO 2005041142 | May 2005 | WO |
Entry |
---|
“The COMposer™ System, Installation Manual”, by Hill-Rom Services, Inc., (2003). |
“COMLinx™ Enterprise Solutions, Nurse Communication Module, User's Guide”< by Hill-Rom Services, Inc. (2000). |
“Cricket v2 User Manual” MIT Computer Science and Artificial Intelligence Lab. Jan. 2005. |
“The Cricket Indoor Location System”, 9 pages. |
Priyantha et al., “The Cricket Location-Support System,” ACM MOBICOM, Aug. 2000. |
Chakraborty, Anit, “A Distributed Architecture for Mobile, Location-Dependent Applications,” Massachusetts Institute of Technology, (1999). |
Hill-Rom NetLinx, “The COMposer® Communication System,” www.hill-rom.com. |
Notice of opposition to a European patent for EP 1865833, filed May 10, 2012 (5 pages). |
Annex 1 “Grounds of Opposition against Patent No. EP 1 865 833 61” (12 pgs.). |
Number | Date | Country | |
---|---|---|---|
20150351983 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
60496743 | Aug 2003 | US | |
60601501 | Aug 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14276279 | May 2014 | US |
Child | 14826304 | US | |
Parent | 13105443 | May 2011 | US |
Child | 14276279 | US | |
Parent | 12128390 | May 2008 | US |
Child | 13105443 | US | |
Parent | 10568918 | US | |
Child | 12128390 | US |