The present disclosure relates to connectors having wired and wireless couplings. The present disclosure also relates to apparatus for associating a hospital bed to a location in a healthcare facility or for transferring data between a hospital bed and a network of computer devices in a healthcare facility, but has use in other applications and in other environments as well.
Wireless communication between patient-support devices, such as hospital beds, and a network of a healthcare facility are known. For example, U.S. Pat. No. 7,399,205, which is hereby incorporated by reference herein, discloses the use of wireless communication circuitry in a plug body of a standard AC power plug and a module that is mounted in a room adjacent a standard AC power receptacle or outlet. Having circuitry included in the plug body increases the weight of the plug body and introduces plug retention issues. That is, the added weight of the circuitry in the plug body has a tendency to cause the plug to fall out of the receptacle. Also, in those embodiments of the '205 patent relying on the use of photodiodes for data transfer, the necessary alignment tolerance requirements present issues of their own. Accordingly, there is a need to improve upon the devices of the '205 patent.
The present invention may comprise one or more of the features recited in the appended claims and/or the following features which, alone or in any combination, may comprise patentable subject matter:
An apparatus may be provided for providing data communication and power to a device located in a room having a power outlet. The apparatus may include a cable that may extend from the device and that may have at one end thereof a plug which may have a plug body. A plurality of prongs may extend from the plug body and may be configured to couple to the power outlet to receive power. The apparatus may further include a first near field communication antenna which may be carried by the plug body. A communication module may be provided and may comprise a second near field communication antenna. The communication module may be located in the room in proximity to the plug. At least one of the first near field communication antenna and the second near field communication antenna may communicate data wirelessly to the other of the first near field communication antenna and the second near field communication antenna.
According to this disclosure, near field communication circuitry may be carried by the device and may be coupled to the first near field communication antenna via at least one conductor that may be routed along the cable. In some embodiments, near field communication circuitry may be carried by the plug body and may be coupled to the first near field communication antenna. The power outlet may comprise, for example, a standard AC power outlet. A DC power outlet is contemplated as an alternative.
In some embodiments, the first near field communication antenna and the second near field communication antenna may be spaced apart by about four centimeters (4 cm) or less when the first near field communication antenna and the second near field communication antenna communicate wirelessly. It is possible, however, for the first and second near field communication antennae to be spaced apart by a greater distance, such as up to 3 inches (7.62 cm) apart, as long as the first and second near field communication antennae are able to successfully receive wireless signals from each other. According to this disclosure, the first near field communication antenna may optionally be included in a label that may stick to the plug body.
In some embodiments, the first near field communication antenna may serve as a passive target and the second near field communication antenna may be coupled to initiator circuitry that may actively generate a radio frequency field via the second near field communication antenna to power up the passive target for data transfer. Alternatively or additionally, the second near field communication antenna may serve as a passive target and the first near field communication antenna may be coupled to initiator circuitry that actively generates a radio frequency field via the first near field communication antenna to power up the passive target for data transfer.
In some embodiments, a wall plate may carry the second near field communication antenna. The wall plate may have an opening through which the power outlet may be accessible. The wall plate carrying the second near field communication antenna may be configured to cover an existing wall plate associated with the power outlet.
According to this disclosure, first circuitry may be coupled to the first near field communication antenna and second circuitry may be coupled to the second near field communication antenna. The first and second circuitry may communicate via the first near field communication antenna and the second near field communication antenna according to a peer-to-peer protocol. In some embodiments, a read/write module may be carried by the plug body and coupled to the first near field communication antenna. Alternatively or additionally, a read/write module may be coupled to the second near field communication antenna.
According to an aspect of this disclosure, an apparatus for coupling a patient-support device to a power outlet and to a computer network in a healthcare facility may be provided. The apparatus may comprise a cable that may extend from the patient-support device and that may have at one end thereof a plug which may comprise a plug body. A plurality of prongs may extend from the plug body and may be configured to couple to the power outlet to receive power. A first near field communication antenna may be carried by the plug body. The apparatus may also have a communication module that may include a second near field communication antenna. At least one of the first near field communication antenna and the second near field communication antenna may communicate data wirelessly to the other of the first near field communication antenna and the second near field communication antenna.
In some embodiments, the communication module may include a housing that may be in close proximity to the power outlet. The second near field communication antenna may be situated in the housing. Optionally, the housing may have an opening through which the plug may be inserted to couple to the power outlet. According to this disclosure, the communication module may comprise a mounting plate that may mount over a cover plate associated with the power outlet. The housing may, in turn, couple to the mounting plate. In some embodiments, the communication module may comprise a Nurse Call cancel button.
According to this disclosure, near field communication circuitry may be carried by the patient-support device and may be coupled to the first near field communication antenna via at least one conductor that may be routed along the cable. In some embodiments, the near field communication circuitry may be carried by the plug body and may be coupled to the first near field communication antenna. According to this disclosure, the first near field communication antenna optionally may be included in a label that may stick to the plug body.
According to an aspect of this disclosure, a system may include a bed having an auxiliary power outlet and a medical device that may include a cable which may have at one end thereof a plug comprising a plug body. A plurality of prongs may extend from the plug body and may couple to the auxiliary power outlet to receive power. The system may have a first near field communication antenna carried by the plug body and a communication module which may have a second near field communication antenna. The communication module may be coupled to the bed in proximity to the auxiliary power outlet. At least one of the first near field communication antenna and the second near field communication antenna may communicate data wirelessly to the other of the first near field communication antenna and the second near field communication antenna.
In some embodiments, the bed may receive data from the medical device via the first and second near field communication antennae. The bed may be configured to send at least some of the data received from the medical device to a unit spaced from the bed. For example, the bed may have a third near field communication antenna and the unit spaced from the bed may have a fourth near field communication antenna. The data sent by the bed may be transmitted from the third near field communication antenna to the fourth near field communication antenna.
According to a further aspect of this disclosure, a system may include a patient support apparatus, a first near field communication module that may be coupled to the patient support apparatus, and a second near field communication module that may be spaced from the patient support apparatus. The first near field communication module may have a first near field communication antenna and the second near field communication module may have a second near field communication antenna. At least one of the first near field communication antenna and the second near field communication antenna may communicate data wirelessly to the other of the first near field communication antenna and the second near field communication antenna. In some embodiments, the first near field communication module retrofits onto the patient support apparatus and the second near field communication module attaches to a surface associated with a room in which the patient support apparatus is located.
Additional features, which alone or in combination with any other feature(s), such as those listed above and those listed in the claims, may comprise patentable subject matter and will become apparent to those skilled in the art upon consideration of the following detailed description of various embodiments exemplifying the best mode of carrying out the embodiments as presently perceived.
The detailed description particularly refers to the accompanying figures, in which:
A power plug 10 at the end of a power cord 12 includes a plug body 14 as shown diagrammatically in
According to this disclosure, a first near field communication (NFC) antenna 24 is carried by plug body 14 and a second NFC antenna 26 is included in a communication module 28 that is located in proximity to outlet 20. In the illustrative examples of
In the illustrative examples of
Use of NFC antennae 24, 26 and associated circuitry 32, 34 permits simplified transactions, data exchange, and wireless connections between two devices in close proximity to each other, usually by no more than a few centimeters. In the illustrative embodiments of
In the illustrative example, circuitry 32 and circuitry 34 are both powered such that bidirectional, peer-to-peer communication is achieved. In other embodiments, one of antenna 24, 26 and the associated circuitry 32, 34, respectively, serves as an initiator circuit and the other of antenna 24, 26 and associated circuitry 32, 34 serves as a passive target. The initiator actively generates a radio frequency (RF) field that powers the passive target. In such alternative arrangements, the passive targets can be fashioned as tags, stickers, fobs, or cards that do not include batteries or direct connection to external power sources. Thus, according to this disclosure, antenna 24 is included in a label that sticks to plug body 14 (or plug body 14′) in some embodiments. Circuitry 32 and/or circuitry 34 are sometimes referred to as read/write modules according to this disclosure.
By having NFC antenna 24 included on plug body 14 (or plug body 14′) and by having module 28 located in close proximity to outlet 20, the NFC antennae 24, 26 automatically establish communications quickly in roughly one tenth of a second after plug 10 is plugged into outlet 20. Because plug 10 is configured to receive power and is configured to communicate wirelessly with module 26, only one connector (i.e., plug 10) is needed to provide both power and data to device 16 and furthermore, only this single connector needs to be unplugged if device 16 is to be moved to a new location. Due to the short reception range between antennae 24, 26, the likelihood of unwanted interference from other wireless signals is reduced.
The labels, stickers, or tags that carry the antennae 24, 26 are approximately the size of a U.S. quarter which has a diameter of 24.26 mm (0.955 in) or roughly 1 inch. Thus, in some embodiments, the labels carrying antenna 24 are simply stuck onto plug body 14, 14′. The antenna 24, 26 can be placed up to 10 feet away from a transceiver chip of the associated circuitry 32, 34. Thus, in the
The module 28 which carries antenna 26 and associated circuitry 34 can be fashioned in any number of ways, including the various embodiments shown in U.S. Pat. No. 7,399,205. For example, module 28 may be fashioned as a wall plate that carries antenna 26 and that has an opening through which the sockets 22 of AC power outlet 20 are accessible for receiving prongs 18 of plug 10. The wall plate carrying the antenna 26 is configured to cover an existing wall plate associated with the AC power outlet 20 in some embodiments. Such an embodiment of a wall plate may be fashioned similarly to the embodiment of FIGS. 1-4 of U.S. Pat. No. 7,399,205, for example.
In other embodiments, the wall plate or module 26 carrying antenna 26 replaces the existing wall plate altogether. In further embodiments, antenna 26 is carried in a housing or plate that mounts to a wall or similar structure in close proximity to outlet 20 but without covering up any of the existing wall plate of the outlet 20. The term “close proximity” is intended to mean close enough that communications between antenna 26 and antenna 24 is possible when plug 10 is coupled to outlet 20. In still other embodiments, antenna is carried in a housing of an adapter module that plugs into outlet 20. The adapter module may be fashioned similar to any of those shown in FIGS. 8-12 of U.S. Pat. No. 7,399,205 for example.
As shown diagrammatically in
In some embodiments, module 28 is not connected to network 30 but rather simply serves to provide the circuitry of bed 16 with a location identifier (ID) that is transmitted from antenna 26 to antenna 24. The circuitry of bed 16, in turn, transmits a bed identifier (ID) and the location identifier such as by wireless communications with a wireless access point, for example. In such an embodiment, the wireless access point is coupled to the network 30. Remote computers of the network 30 receive the bed ID and the location ID to associate bed 16 with the location in the healthcare facility at which bed 16 is located. In some embodiments, bed 16 transmits additional data, such as bed status information, patient physiological data, bed diagnostic data, and so forth. In other embodiments, the bed ID and/or the additional data is transmitted via antenna 24 to antenna 26 and then on to network 30 via circuitry 34 and/or circuitry 40. The location ID of module 28 is also transmitted so that the bed-to-room association can be made by remote computers in those embodiments as well.
Examples of the type of bed data that is transmitted from bed 16 via near field communication circuitry 32, 34 and antennae 24, 26 to network 30, for various embodiments of bed 16, is summarized below in Table 1 as follows:
In the example of Table 1, Bed Type 1 is the TOTALCARE® bed, Bed Type 2 is the VERSACARE® bed, Bed Type 3 is the CAREASSIST® ES bed, Bed Type 4 is the ADVANTA™ 2 bed, Bed Type 5 is the ADVANCE bed, and Bed Type 6 is the ADVANTA bed, each of which is, or was, marketed by Hill-Rom Company, Inc. Beds 16 of other types which have other types of bed data are, of course, within scope of this disclosure. Based on Table 1, it will be appreciated that bed data includes, for example, data pertaining to one or more of the following: a position of one portion of a bed frame relative to another portion of the bed frame (e.g., Brake Status, Bed Low Position, Rail positions, Head Angle), a mattress function (e.g., Wound Surface and Pulmonary Surface information), a status of a bed exit alarm system of the hospital bed (e.g., the patient position monitoring (PPM) information), and patient physiologic data (e.g., patient weight). It is also contemplated by this disclosure that maintenance and/or service data is among the type of bed data that is transmitted from bed 16 via near field communication circuitry 32, 34 and antennae 24, 26 to network 30, for various embodiments of bed 16.
In some contemplated embodiments, bed 16 has a mattress and/or bed frame with sensors to sense patient physiologic data (e.g., heart rate, temperature, respiration rate, blood oxygenation, blood pressure, etc.) and that such data is also among the bed data communicated from bed 16 to circuitry 32 and antenna 24 and then on to network 30 via antenna 26 and circuitry 34. An example of a mattress with physiologic sensors can be found in U.S. Pat. Nos. 7,515,059; 7,330,127 and 6,721,980 which are hereby incorporated by reference herein for all that they teach to the extent they are not inconsistent with the present application which shall control as to any inconsistencies. Other examples of mattresses and bed frames having physiologic sensors can be found in U.S. Patent Application Publication No. 2010/0101022 which is hereby incorporated by reference for all that it teaches to the extent that it is not inconsistent with the present application which shall control as to any inconsistencies.
Referring now to
In some embodiments, power is provided to auxiliary outlet 50 from power cord 12. In such embodiments, isolation circuitry is included in bed 16 so as to isolate bed power from the auxiliary power. In other embodiments, a separate power cord 62 extends from bed 16 and has a plug 64 with prongs 66 that are received in sockets of a power outlet. In the illustrative example of
According to this disclosure, bed 16 has an additional near field communication antenna 124 and additional near field communication circuitry 132 in close proximity to auxiliary outlet 50 as shown diagrammatically in
If it is determined by circuitry of bed 16 that an inappropriate or wrong device has been plugged into outlet 50, then bed 16 transmits an appropriate alert message to network 30 and, in some embodiments, disconnects power from auxiliary outlet 50 so as to turn off medical device 60. In some embodiments, bed 16 includes a visual indicator of some sort, such as a message on a graphical display screen or an alert light, to indicate locally that an inappropriate device has been connected to auxiliary outlet 50. Thus, according to this disclosure, bed 16 is configurable such that its one or more auxiliary outlets 50 are designated for specific pieces or equipment or specific types of equipment. The near field communication capability of bed 16 associated with the auxiliary outlet(s) 50 are used to verify that the designated equipment is coupled to outlet(s) 50. In some embodiments, bed 16 interacts with and/or controls device 60 via data transmitted via antennae 124, 126. For example, a touch screen display on bed 16 is configured to accept user inputs for controlling device 60 in some embodiments.
In many hospitals and other types of healthcare facilities, there are two separate power grids, one being a critical power grid and the other being a non-critical power grid. Outlets associated with the critical power grid are typically indicated by being red or orange in color and outlets associated with non-critical power grid are typically white or off white in color. During a power outage or other emergency in which power to a hospital or healthcare facility is lost, one or more generators are usually operated to provide back-up power to the critical power grid. It is desirable, therefore, that only critical devices, such as ventilators, infusion pumps, and other devices that provide critical care (e.g., life sustaining care) to a patient are connected to outlets associated with the critical power grid so that noncritical devices do not need to be powered by the back-up generators during an emergency or power outage. Thus, according to this disclosure, near field communication components 124, 126, 132, 134 are used to make sure that only medical devices 60 that are deemed critical (i.e., the appropriate or proper medical devices) are used with the one or more auxiliary outlets 50 of bed 16.
In some embodiments, medical devices 60 include near field communication circuitry 134 which is coupled to antenna 126 via conductors 136 as indicated diagrammatically. Circuitry 134 is used for transmitting medical device data to the circuitry of bed 16 via antennae 126, 124 and circuitry 132. Alternatively or additionally, bed data is transmitted to medical device 60 via circuitry 132, 134 and antennae 124, 126. For example, if device 60 is an infusion pump or drug delivery pump, then bed 16 may transmit patient weight data to device 60 which, in turn, may use the patient weight data to establish a rate at which a fluid or drug is administered to the associated patient. As another example, if device 60 senses that its fluid level is running low, then that information may be communicated to bed 16 which, in turn, transmits an alert message to a remote computer device of network 30, including transmission to a portable wireless communication device carried by a caregiver. Alternatively or additionally, a local alert regarding the alert condition of device 60 is displayed locally on bed 16, such as being displayed on a display screen. Circuitry 134 is shown as being carried by medical device 60 in
In the illustrative example of
According to an aspect of this disclosure, the near field communication components 24, 26, 32, 34 may serve as a secondary or back-up communication channel between bed 16 and remote computer devices of network 30. Thus, bed 16 may couple to network 30 via a separate nurse call cable, such as a 37-pin cable typically used to connect Hill-Rom beds to a nurse call system, which serves as the primary communication channel for data to and from bed 16. In such embodiments, the primary nurse call channel operates at faster data transfer rates than the data transfer rate at which near field communication components 24, 26, 32, 34 operate. In still other embodiments, near field communication components 24, 26, 32, 34 are used for determining bed-to-room location and then bed uses another communications channel, such as a wired connection or wi-fi to wireless access point communication, as the primary communication channel.
According to another embodiment, antenna 24 is not mounted on plug 14 but instead, is coupled to some other portion of bed 16. For example, antenna 24 is mounted on a base frame of bed 16 in some embodiments. In such embodiments, antenna 26 and its associated circuitry 34 need not be placed near any wall outlet. In this embodiment, the near field communication components 24, 26, 32, 34 operate as a bed docking system which is used for establishing bed-to-room association. The near filed communication components 24, 32 may be included in a module that bolts onto, or otherwise mounts, to bed 16 and then components 26, 34 are wall mounted and wired to network 30. This allows for retrofitting existing beds with near field communication components 26, 34, again, for bed-to-room association purposes. The term “wall mounted” is intended to encompass mounting onto a room wall or onto a portion of some other piece of architectural equipment (e.g., headwall units, columns, arms, carts, chases, bed locators) found in a patient room, as well as mounting on a floor or ceiling. The term wall outlet is intended to cover power outlets mounted to room walls and power outlets mounted on other architectural equipment, a ceiling, or a floor.
According to another aspect of this disclosure, the Wi-Fi circuitry 80, 82 is used to support secondary radio communications, such as voice communications or entertainment (e.g., television or radio) audio signal communications, to and from bed 16. In some embodiments, Wi-Fi circuitry 80, 82 operates according to the Bluetooth protocol, although any suitable wireless technology is within the scope of this disclosure. In some embodiments, the Wi-Fi circuitry 80, 82 uses bed ID and location ID transmitted via antennae 24, 26 to automatically pair up for the secondary radio communications. However, this need not be the case if circuitry 80, 82 is operable to perform the automatic pairing functions themselves. Thus, to give an example, a patient on bed 16 communicates with a caregiver at a remote nurse's station by pressing a nurse call button or switch as is known in the art. The patient's voice is picked up by a microphone on bed 16 and transmitted to the remote nurse's station via circuitry 80, 82 and the caregiver's voice is heard by the patient through a speaker on bed 16 that receives the caregiver's voice audio via circuitry 80, 82. Of course, other circuitry and components, such as network 30 and processor 40 are included in the audio data link between the bed 16 and remote nurse's station in some embodiments.
Also according to this disclosure, bed 16 configures itself differently based on location ID data transmitted via antenna 26 from module 28 and received by antenna 24. For example, if the location ID indicates that the bed 16 is located in a med/surg room (e.g., a typical patient room) the bed 16 configures its settings in one way and if the location ID indicates that the bed is located in the intensive care unit (ICU), the bed 16 configures its setting in another way. Some screens that are shown on the graphical user interface of bed 16 for control of various features of bed 16 may be enabled or disabled depending upon the location of bed 16. Further according to this disclosure, patient ID data is transmitted from a remote computer of network 30 to bed 16 via antennae 24, 26 and bed 16 configures itself based on patient ID. For example, certain therapies such as continuous lateral rotation therapy (CLRT), alternating pressure therapy, low air loss therapy, and the like may be indicated for the particular patient and bed 16 will enable the appropriate therapy based on the patient ID. Therapies that may be contraindicated, such as, CLRT for a spinal surgery patient, are disabled by bed 16 based on patient ID.
In some embodiments, the location ID is used by the bed 16 to configure room lighting or to determine the type of television in the room and so forth. It is further contemplated that in some embodiments, the location ID is used by bed 16 to enable features such as permitting a patient to order and pay for video on demand or to turn on features of a rental bed or to gain access to remote servers or websites for looking up medical information. Data communicated between antenna 24 of bed 16 and antenna 26 of module 28 is used, in some embodiments, to synchronize display of data from devices 60 on a display of bed 16, or vice versa, and even to provide display information to mobile devices carried by caregivers.
Although certain illustrative embodiments have been described in detail above, many embodiments, variations and modifications are possible that are still within the scope and spirit of this disclosure as described herein and as defined in the following claims.
The present application is a divisional of U.S. application Ser. No. 13/687,005, filed Nov. 28, 2012, to be issued as U.S. Pat. No. 9,466,877, which claimed the benefit, under 35 U.S.C. § 119(e), of U.S. Provisional Application No. 61/564,466, filed Nov. 29, 2011 and each of which is hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
5398149 | Weil | Mar 1995 | A |
5561412 | Novak et al. | Oct 1996 | A |
5699038 | Ulrich et al. | Dec 1997 | A |
5838223 | Gallant et al. | Nov 1998 | A |
6147592 | Ulrich et al. | Nov 2000 | A |
6362725 | Ulrich et al. | Mar 2002 | B1 |
6721980 | Price et al. | Apr 2004 | B1 |
6735430 | Farley et al. | May 2004 | B1 |
6897780 | Ulrich et al. | May 2005 | B2 |
7242308 | Ullrich et al. | Jul 2007 | B2 |
7319386 | Collins, Jr. et al. | Jan 2008 | B2 |
7330127 | Price et al. | Feb 2008 | B2 |
7375616 | Rowse et al. | May 2008 | B2 |
7399205 | McNeeley et al. | Jul 2008 | B2 |
7515059 | Price et al. | Apr 2009 | B2 |
7538659 | Ulrich et al. | May 2009 | B2 |
7552879 | Nagata et al. | Jun 2009 | B2 |
7590384 | Dawidowsky | Sep 2009 | B2 |
7652578 | Braun et al. | Jan 2010 | B2 |
7688270 | Tsushima | Mar 2010 | B2 |
7706559 | Collins, Jr. et al. | Apr 2010 | B2 |
7734307 | Dawidowsky | Jun 2010 | B2 |
7737827 | Perkins et al. | Jun 2010 | B2 |
7746218 | Collins, Jr. et al. | Jun 2010 | B2 |
7751375 | Perkins et al. | Jul 2010 | B2 |
7756467 | Bent et al. | Jul 2010 | B2 |
7768949 | Perkins et al. | Aug 2010 | B2 |
7899393 | Luong | Mar 2011 | B2 |
7907926 | Rofougaran | Mar 2011 | B2 |
7912441 | Von Bosch | Mar 2011 | B2 |
7929910 | Chen | Apr 2011 | B2 |
7937107 | Rofougaran et al. | May 2011 | B2 |
7941096 | Perkins et al. | May 2011 | B2 |
7995971 | Rofougaran et al. | Aug 2011 | B2 |
8013717 | Alberth, Jr. et al. | Sep 2011 | B2 |
8014720 | Lortz | Sep 2011 | B2 |
8014721 | Johnson | Sep 2011 | B2 |
8041227 | Holcombe et al. | Oct 2011 | B2 |
8060012 | Sklovsky et al. | Nov 2011 | B2 |
8086176 | Teruyama et al. | Dec 2011 | B2 |
8096813 | Biggs | Jan 2012 | B2 |
8099045 | Chang | Jan 2012 | B2 |
8108684 | Addy | Jan 2012 | B2 |
8115598 | Rofougaran et al. | Feb 2012 | B2 |
8116679 | Dunko | Feb 2012 | B2 |
8116680 | Bloebaum et al. | Feb 2012 | B2 |
8117445 | Werner et al. | Feb 2012 | B2 |
8145140 | Rofougaran et al. | Mar 2012 | B2 |
8150374 | Lowe | Apr 2012 | B2 |
8150915 | Raman et al. | Apr 2012 | B1 |
8175533 | Schubert | May 2012 | B2 |
8180285 | Rofougaran | May 2012 | B2 |
8180289 | Glickman | May 2012 | B1 |
8185047 | Washiro | May 2012 | B2 |
8212735 | Hyvonen et al. | Jul 2012 | B2 |
8213860 | Teruyama et al. | Jul 2012 | B2 |
8224246 | Suumaki et al. | Jul 2012 | B2 |
8232882 | Miyabayashi et al. | Jul 2012 | B2 |
8233841 | Griffin et al. | Jul 2012 | B2 |
8238825 | Rofougaran et al. | Aug 2012 | B2 |
8249524 | Darwhekar et al. | Aug 2012 | B2 |
8249650 | Rofougaran et al. | Aug 2012 | B2 |
8266027 | Moritz et al. | Sep 2012 | B2 |
8272892 | McNeely et al. | Sep 2012 | B2 |
8280304 | Hirsch | Oct 2012 | B2 |
8289716 | Patel et al. | Oct 2012 | B2 |
8291091 | Naniyat | Oct 2012 | B2 |
8311479 | Teruyama et al. | Nov 2012 | B2 |
8311504 | Rofougaran | Nov 2012 | B2 |
8321922 | Lo et al. | Nov 2012 | B1 |
8326281 | Hill | Dec 2012 | B2 |
8355670 | White | Jan 2013 | B2 |
8368540 | Perkins et al. | Feb 2013 | B2 |
8369889 | Rofougaran et al. | Feb 2013 | B2 |
8380977 | Son et al. | Feb 2013 | B2 |
9466877 | Dixon et al. | Oct 2016 | B2 |
20070141869 | McNeely et al. | Jun 2007 | A1 |
20080155257 | Werner et al. | Jun 2008 | A1 |
20080224861 | McNeely et al. | Sep 2008 | A1 |
20090212925 | Schuman, Sr. et al. | Aug 2009 | A1 |
20090212956 | Schuman et al. | Aug 2009 | A1 |
20090214009 | Schuman, Sr. et al. | Aug 2009 | A1 |
20090217080 | Ferguson et al. | Aug 2009 | A1 |
20090325484 | Lele et al. | Dec 2009 | A1 |
20100007498 | Jackson | Jan 2010 | A1 |
20100101022 | Riley et al. | Apr 2010 | A1 |
20100182153 | Jensen | Jul 2010 | A1 |
20110068892 | Perkins et al. | Mar 2011 | A1 |
20110070833 | Perkins et al. | Mar 2011 | A1 |
20110201270 | Perkins et al. | Aug 2011 | A1 |
20110207402 | Perkins et al. | Aug 2011 | A1 |
20120007717 | Jong | Jan 2012 | A1 |
20120264374 | Perkins et al. | Oct 2012 | A1 |
20120324119 | Imes et al. | Dec 2012 | A1 |
20130135160 | Dixon et al. | May 2013 | A1 |
20130318716 | Vanderpohl, III | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
20100153367 | Jul 2010 | JP |
100973850 | Aug 2010 | KR |
2005022692 | Mar 2005 | WO |
WO 2005022692 | Mar 2005 | WO |
Entry |
---|
“Texas Instruments Announces the New TRF7970A NFC Contactless Short-Range Communication Transceiver.” Embedded System News.Com, http://embeddedsystemnews.com/texas-instruments-ammounces-the-new-trf7970a-nfc-contactless . . . ; printed Nov. 22, 2011. |
“Multi-Protocol Fully Integrated 13.56 MHz RFIA/Near Field Communication (NFC) Transceiver IC,” TRF7970A, 85 pages, Aug. 2011—Revised Jan. 2013. |
“TRF7970A Near Field Communication Transceiver IC,” © 2011 Texas Instruments Incorporated, 3 pages. |
Extended European Search Report for Application No. 17192060.6-1812; dated Jan. 3, 2018; 11 pages. |
Number | Date | Country | |
---|---|---|---|
20160358452 A1 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
61564466 | Nov 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13687005 | Nov 2012 | US |
Child | 15237807 | US |