This disclosure relates generally to load balancing among servers. More particularly but not exclusively, the present disclosure relates to techniques to achieve load balancing by, in response to resolving a DNS query by a client, using host-level policies to provide an address of a server that is expected to serve the client with a high performance in a given application.
Under the Transmission Control Protocol/Internet Protocol (TCP/IP), when a client provides a symbolic name (a Uniform Resource Locator or URL) to request access to an application program or another type of resource, the host name portion of the URL needs to be resolved into an IP address of a server for that application program or resource. For example, the URL (e.g., http://www.foundrynet.com/index.htm) includes a host name portion www.foundrynet.com that needs to be resolved into an IP address. The client first provides the host name portion to a local name resolver, which then queries a local Domain Name System (DNS) server to obtain a corresponding IP address. If a corresponding IP address is not locally cached at the time of the query, or if the time-to-live (TTL) of a corresponding IP address cached locally has expired, the DNS server then acts as a resolver and dispatches a recursive query to another DNS server. This process is repeated until an authoritative DNS server for the domain (e.g., foundrynet.com, in this example) is reached. The authoritative DNS server returns one or more IP addresses, each corresponding to an address at which a server hosting the application (“host server”) under the host name can be reached. These IP addresses are propagated back via the local DNS server to the original resolver. The application at the client then uses one of the IP addresses to establish a TCP connection with the corresponding host server. Each DNS server caches the list of IP addresses received from the authoritative DNS server for responding to future queries regarding the same host name, until the TTL of the IP addresses expires.
To provide some load sharing among the host servers, global server load balancing (GSLB) switches are sometimes used as proxies for authoritative DNS servers, together with one or more site switches each associated with one or more host servers. Each site switch provides the GSLB switch with current site-specific information related to the host servers associated with the site switches. When the DNS server sends the list of IP addresses in response to a client query, the GSLB switch evaluates this list by applying a GSLB policy in conjunction with using the information provided by the site switches. The GSLB policy contains, among other possible specifications, the metrics that are to be applied to the list of IP addresses and the order in which they are to be applied to select the best IP address. After the GSLB switch evaluates the addresses returned by the DNS server using the metrics in the policy, the GSLB switch sends the ordered address list, having the optimum address for access listed at the top, to the client. An example of a GSLB system and description of associated metrics are disclosed in U.S. application Ser. No. 10/376,903, entitled “GLOBAL SERVER LOAD BALANCING,” filed Feb. 28, 2003, assigned to the same assignee as the present application, and which is incorporated herein by reference in its entirety.
A given GSLB policy may specify which of the metrics are enabled and to be used for selection, parameters for the metrics (such as tolerance, limits, etc.), and the order in which these metrics should be used to evaluate the IP addresses in the DNS reply. Also, a GSLB policy can specify other configuration information, such as returning best IP address only instead of the entire IP list and so on.
Currently, the user (such as a system administrator) can only define such a GSLB policy (or other load balancing policies) globally. This global GSLB policy is applicable to all the domains for which the GSLB switch is providing GSLB. For instance, consider the example where the GSLB switch is providing GSLB for www.foo.com and www.test.com. (Also note in this example that for the domain www.foo.com, “www” is referred to as the “host” and “foo.com” is referred to as the “zone”). The user may define a GSLB policy with the following example metrics and metric-order:
Health check
Geographic
Least-response
This global policy would apply to both www.foo.com and www.test.com.
If the user wants a round-trip time (RTT) metric to be used for selection of the best IP address for the domain www.foo.com but not for the domain www.test.com, then there is currently no provision for this capability. The reason is that if the user enabled the RTT metric, then since the policy is global and applies to all domains, this metric would get enabled for both of the above domains.
One aspect provides a method that defines a host-level policy. The method specifies at least one metric and associated parameters, if applicable, to be used by the defined host-level policy. The host-level policy is applied to a host, and traffic to network addresses associated with the host are load balanced based on at least one metric and associated parameters of the host-level policy applied to that host.
Non-limiting and non-exhaustive embodiments are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified.
Embodiments of techniques to provide host-level policies for GSLB are described herein. In the following description, numerous specific details are given to provide a thorough understanding of embodiments. One skilled in the relevant art will recognize, however, that the invention can be practiced without one or more of the specific details, or with other methods, components, materials, etc. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects.
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
As an overview, one embodiment is usable for a network device that provides load balancing capabilities. An example is a GSLB switch that uses a global GSLB policy to provide GSLB for configured domains. Such a GSLB switch is provided with a GSLB host-level policy. Users can define a host-level policy (alternatively or additionally to the global GSLB policy) and apply the host-level policy to hosts in GSLB domains. In effect, the user can enable different policies for different hosts. This allows the user to control the GSLB metrics used for selection, as well as the metric order and additional selection parameters (such as tolerances, various DNS parameters, etc.), at the host level.
If users need this level of granularity for each host, then they can configure various host-level policies and apply them, as desired, to the each of these hosts. Users can also use the global GSLB policy for some hosts and host-level GSLB policy for other hosts. Alternatively, users can continue to use the global GSLB policy for all hosts, or use the host-level policies for all hosts (eliminating the use of the global GSLB policy).
GSLB host-level policies provide enormous flexibility for various GSLB implementations. Users can define different host-level policies to reflect the selection criteria they wish to use for different GSLB domains and provide improved and more tailored GSLB selection for each of those GSLB domains.
The GSLB host-level policy implementation of one embodiment comprises of:
The parameters for a GSLB host-level policy can be changed at any time after the policy has been defined, and any time before or after the policy has been applied to GSLB hosts. Any type of suitable software command or language can be used to program the GSLB switch with the host-level policy. Command line interface (CLI) commands, for instance, may be used to configure the host-level policy.
The following provides an illustration of the use of host-level policies for an implementation where the GSLB switch provides load balancing for the domains www.foo.com and www.test.com. First, a user defines a host-level GSLB policy (e.g., metric selection and order of application) called “H1” as follows:
The user then defines another host-level GSLB policy called “H2” as follows:
The user defines the host “www” for the zone foo.com and associates the GSLB host-level policy H1 with it. The user then defines the host “www” for the zone test.com and associates the GSLB host-level policy H2 with it. Thus, when the GSLB switch selects the best IP address for the domain www.foo.com, the GSLB host-level policy H1 is used for that selection. If best IP address selection is to be made for www.test.com, then the GSLB host-level policy H2 is used for that selection. If the user does not associate a host-level policy for a host, then the global GSLB policy will be associated with that host by default in an embodiment.
A suitable switch for implementing either the GSLB switch 12 or any of the site switches 18A, 18B, 22A and 22B is the ServerIron® (SI) product available from Foundry Networks, Inc. of San Jose, Calif. Throughout this description and in the figures, the GSLB switch will be described as the network device that can provide and implement the various load balancing (e.g., host-level and/or global load balancing policies) of an embodiment. It is understood that this use of the GSLB or Si switch is merely for purposes of illustration and explanation. Any suitable non-SI switch or non-SI network device can be used to implement the various geographic features and functions described herein. A router is one example.
Unlike the prior art, however, this list of IP addresses is ordered by the GSLB switch 12 based on performance metrics. The GSLB switch 12 of one embodiment can use at least some of the following metrics to evaluate the server IP addresses in a DNS reply:
The above metrics and their parameters may be configured and used in either or both host-level or global GSLB policies, except as noted below for some specific embodiments. The specifics of the above-listed metrics are described in further detail in U.S. application Ser. No. 09/670,487, entitled “GLOBAL SERVER LOAD BALANCING,” filed Sep. 26, 2000; in U.S. application Ser. No. 10/206,580, entitled “GLOBAL SERVER LOAD BALANCING,” filed Jul. 25, 2002 (disclosing embodiments of a connection-load metric for GSLB); in U.S. application Ser. No. 10/305,823, entitled “DISTRIBUTED HEALTH CHECK FOR GLOBAL SERVER LOAD BALANCING,” filed Nov. 27, 2002 (disclosing embodiments for distributing health check tasks to peer metric agents); and in U.S. application Ser. No. 10/376,903, entitled “GLOBAL SERVER LOAD BALANCING,” filed Feb. 28, 2003 (disclosing embodiments of weighted site, weighted IP, and active bindings metrics).
Other applications that disclose GSLB features (including metrics) are U.S. application Ser. No. 09/670,487, entitled “GLOBAL SERVER LOAD BALANCING,” filed Sep. 26, 2000; U.S. application Ser. No. 10/211,822, entitled “STATISTICAL TRACKING FOR GLOBAL SERVER LOAD BALANCING,” filed Aug. 1, 2002; U.S. application Ser. No. 10/377,364, entitled “METHOD AND SYSTEM TO CLEAR COUNTERS USED FOR STATISTICAL TRACKING FOR GLOBAL SERVER LOAD BALANCING, filed Feb. 28, 2003; U.S. application Ser. No. 10/214,921, entitled “CANONICAL NAME (CNAME) HANDLING FOR GLOBAL SERVER LOAD BALANCING, filed Aug. 7, 2002; U.S. application Ser. No. 10/674,627, entitled “GLOBAL SERVER LOAD BALANCING SUPPORT FOR PRIVATE VIP ADDRESSES, filed Sep. 29, 2003; U.S. application Ser. No. 10/840,496, entitled “CONFIGURABLE GEOGRAPHIC PREFIXES FOR GLOBAL SERVER LOAD BALANCING,” filed May 6, 2004; and U.S. application Ser. No. 10/924,552, entitled “SMOOTHING ALGORITHM FOR ROUND TRIP TIME (RTT) MEASUREMENTS FOR GLOBAL SERVER LOAD BALANCING,” filed Aug. 23, 2004; all of which are assigned to the same assignee as the present application and incorporated herein by reference in their entireties. These are a few example applications where various GSLB performance metrics are described. For the sake of brevity, these various metrics and the manner in which they are used in a GSLB algorithm or policy (whether at the host level or at the global level) to identify best sites in a list of IP addresses are only summarized and not described in detail herein. Such additional details may be found in these co-pending applications and in the applications that they reference.
In the remainder of this detailed description, for the purpose of illustrating embodiments only and except where indicated, the list of IP addresses returned are assumed to be the virtual IP addresses configured on the proxy servers at switches 18A, 18B, 22A and 22B (sites 20 and 24). In one embodiment when the authoritative DNS server 16 resolves a host name in a query and returns one or more IP addresses, the GSLB switch 12 determines (using the performance metrics) which site switch would provide the best expected performance (e.g., response time) for the client program 28 and returns the IP address list with a virtual IP address configured at that site switch placed at the top. (Other forms of ranking or weighting the IP addresses in the list can also be possible.) The client program 28 can receive the ordered list of IP addresses, and typically selects the first IP address on the list to access the corresponding host server.
The routing metric collector 205 collects routing information from routers (e.g., topological distances between nodes on the Internet).
In one embodiment, the GSLB switch controller 201 can be programmed with and/or can access data to be used for host-level policies (as well as default global policies) and their associated metrics, including at least one of weighted site, weighted IP, active bindings, geographic, RTT, or other metrics described in the co-pending applications identified above. In such an embodiment, the GSLB switch controller 201 can be communicatively coupled to a first storage unit 212 that contains one or more configured GSLB host-level policies. These host-level policies can in turn specify, for each host, the metrics to be used for selection of IP addresses, the order in which the metrics are to be applied, the parameters for the metrics (such as tolerance, limits, and the like), or other associated settings. The GSLB switch controller 201 can also be communicatively coupled to a second storage unit 210 that contains one or more global GSLB policies, some of which may be default policies in some embodiments.
In an embodiment, the first storage unit 212 and the second storage unit 210 can be in the form of databases having tables. It is appreciated, however, that either or both of these storage units can be embodied by any suitable data structure (including file systems, directory structures, variables, static or dynamic code, or any other suitable technique or structure that can accept and store policy settings and data). Additionally, the first and second storage units need not necessarily be separate, and may be integrated in whole or in part into a single storage unit, for instance.
Beginning at a block 302, the user specifies a host-level policy name, such as “P1” for purposes of illustration. At a block 304, the GSLB switch 12 (or more specifically, the GSLB controller 201) checks if the policy P1 already exists in the host-policy database (i.e., the storage unit 212). If the policy P1 is determined to not exist therein at a block 306, then the GSLB switch 12 creates new policy “P1” in the host-policy database in the storage unit 212 at a block 308.
At a block 310, the user specifies the metrics, enables/disables metrics, specifies related parameters, specifies the metric order, and adds other configuration settings for the policy P1. In an embodiment, most of the parameters that can be configured for the global GSLB policy (stored in the storage unit 210) can also be configured for the host-level GSLB policy. For any parameter that can be defined in the global GSLB policy but not under the host-level policy, the GSLB switch 12 of an embodiment will use the parameter from the global GSLB policy for the host-level policy.
For the sake of brevity, not all of the host-level metric configuration and/or parameter configuration that can be performed at the block 310 will be described herein, since such configuration can be based at least in part on the global GSLB policy configuration. However, a description of configuration considerations for some metric parameters and other host-level policy configuration are nevertheless provided herein, so as to provide a thorough understanding of various embodiments:
Certain DNS parameters may also be configured at the block 310 for a host-level policy. For example:
The various parameter settings and other information described above may be configured into the GSLB switch 12 using CLI commands or other suitable user-entry technique. At a block 312, the GSLB switch 12 stores the host-level policy P1 and all the above information in the GSLB host-policy database at the storage unit 212.
Back at the block 306, if the GSLB switch 12 determines that the host-level policy P1 already does exist in the host-policy database, then the user may change the metrics, enable/disable metrics, specify/change related parameters, specify/change metric order, or add/change other configuration settings for the policy P1 at a block 314. Then, the GSLB switch 12 updates the above information for the policy P1 in the host-policy database at a block 316.
If, however, the GSLB controller 201 determines at the block 404 that the host H1 has been defined on the GSLB switch 12, then the user can specify at a block 408 the host-level policy (e.g., the policy P1) that the user wishes to associate with this host H1. At a block 410, the GSLB switch 12 checks the host-policy database to determine if the policy P1 has been defined by the user, such as depicted in
If, at the block 412, the policy P1 is determined to have been defined, then any previous policy associated with the host H1 is disassociated from that host at a block 416. The new policy P1 is associated with the host H1 at a block 418.
At a block 506, the GSLB switch 12 receives this reply, and needs to select the best IP address among the IP addresses listed in the reply. The GSLB switch 12 extracts the host/domain for the above query (e.g., the host H1). The GSLB switch 12 checks if there is a host-level GSLB policy associated with the host H1 at a block 508.
At a block 510, the GSLB switch 12 determines whether there is any host-level policy associated with the host H1. If it is determined that there is an associated host-level policy (e.g., the policy P1), then the GSLB switch 12 retrieves the information for the policy P1 from the GSLB host-policy database at a block 512. The GSLB switch 12 uses this host-level policy P1 for the selection of the best IP address for the client program 28 at a block 514.
Back at the block 510, if it is determined that there is no host-level policy associated with the host H1, then the GSLB switch 12 uses the global GSLB policy for the host H1 at a block 516. This global policy information is retrieved, and then used for the selection of the best IP address at the block 514.
A final illustration ties together the above-described concepts. Consider an example where the GSLB switch 12 is providing GSLB for the following three domains:
www.gslb1.com (IP addresses: 1.1.1.101 (Active), 1.1.1.23 (Down), 1.1.1.54 (Down)};
ftp.gslb1.com (IP addresses: 1.1.1.78 (Active), 1.1.1.76 (Down)}; and
ftp.foo.com (IP addresses: 1.1.1.101 (Active), 1.1.1.23 (Active), 1.1.1.63 (Down)}.
The user defines (and stores in the GSLB host-policy database) a host-level policy named “test” as follows:
The user now configures the following global GSLB policy as follows:
The user then applies the host-level policy “test” to the host “www” for the zone gslb1.com and to the host “ftp” for the zone foo.com. Since the user does not associate the domain ftp.gslb1.com with any host-level policy, this domain will be associated with the global GSLB policy by default according to an embodiment.
If the client program 28 queries for the domain www.gslb1.com, then the GSLB switch 12 evaluates the IP addresses in the response from the DNS server 16. In particular, an embodiment of the GSLB switch 12 extracts the host (“www”) and domain (“gslb.com”) and retrieves the policy associated with it (e.g., the host-level policy “test” in this example). The GSLB switch then evaluates the IP addresses 1.1.1.101, 1.1.1.23, and 1.1.1.54 using the metrics at a metric order specified in the host-policy “test” (e.g., health check, least response). Since 1.1.1.101 is the only IP address that passes the health check, this address is selected as the best IP address. Furthermore, the GSLB switch 12 returns only this address and discards the other two addresses, since DNS best-only is enabled in the host-level policy “test.” If the client program 28 queries for the domain ftp.gslb1.com, since the global policy is in effect for this host, the GSLB switch 12 will return all the IP addresses for this domain with the best IP address on the top (e.g., the GSLB switch 12 returns the IP addresses 1.1.1.78, 1.1.1.76).
All of the above U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet, are incorporated herein by reference, in their entirety.
The above description of illustrated embodiments, including what is described in the Abstract, is not intended to be exhaustive or to limit the invention to the precise forms disclosed. While specific embodiments and examples are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the invention and can be made without deviating from the spirit and scope of the invention.
For example, various embodiments have been described above in terms of IP addresses. It is appreciated that other embodiments for using GSLB host-level policies can be implemented for systems that use an addressing scheme that is not necessarily IP-address based.
These and other modifications can be made to the invention in light of the above detailed description. The terms used in the following claims should not be construed to limit the invention to the specific embodiments disclosed in the specification and the claims. Rather, the scope of the invention is to be determined entirely by the following claims, which are to be construed in accordance with established doctrines of claim interpretation.
The present application is a continuation that claims the benefit under 35 U.S.C. §120 to U.S. patent application Ser. No. 10/839,919, entitled “HOST-LEVEL POLICIES FOR GLOBAL SERVER LOAD BALANCING,” filed May 6, 2004, assigned to the same assignee as the present application, and which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5031094 | Toegel et al. | Jul 1991 | A |
5359593 | Derby et al. | Oct 1994 | A |
5948061 | Merriman et al. | Sep 1999 | A |
5951634 | Sitbon et al. | Sep 1999 | A |
6006269 | Phaal | Dec 1999 | A |
6006333 | Nielsen | Dec 1999 | A |
6092178 | Jindal et al. | Jul 2000 | A |
6112239 | Kenner et al. | Aug 2000 | A |
6115752 | Chauhan | Sep 2000 | A |
6119143 | Dias et al. | Sep 2000 | A |
6128279 | O'Neil et al. | Oct 2000 | A |
6128642 | Doraswamy et al. | Oct 2000 | A |
6148410 | Baskey et al. | Nov 2000 | A |
6167445 | Gai et al. | Dec 2000 | A |
6167446 | Lister et al. | Dec 2000 | A |
6182139 | Brendel | Jan 2001 | B1 |
6195691 | Brown | Feb 2001 | B1 |
6233604 | Van Horne et al. | May 2001 | B1 |
6286039 | Van Horne et al. | Sep 2001 | B1 |
6286047 | Ramanathan et al. | Sep 2001 | B1 |
6304913 | Rune | Oct 2001 | B1 |
6324580 | Jindal et al. | Nov 2001 | B1 |
6327622 | Jindal et al. | Dec 2001 | B1 |
6336137 | Lee et al. | Jan 2002 | B1 |
6381627 | Kwan et al. | Apr 2002 | B1 |
6389462 | Cohen et al. | May 2002 | B1 |
6393473 | Chu | May 2002 | B1 |
6405252 | Gupta et al. | Jun 2002 | B1 |
6427170 | Sitaraman et al. | Jul 2002 | B1 |
6434118 | Kirschenbaum | Aug 2002 | B1 |
6438652 | Jordan et al. | Aug 2002 | B1 |
6446121 | Shah et al. | Sep 2002 | B1 |
6449657 | Stanbach, Jr. et al. | Sep 2002 | B2 |
6470389 | Chung et al. | Oct 2002 | B1 |
6473802 | Masters | Oct 2002 | B2 |
6480508 | Mwikalo et al. | Nov 2002 | B1 |
6487555 | Bharat et al. | Nov 2002 | B1 |
6490624 | Sampson et al. | Dec 2002 | B1 |
6549944 | Weinberg et al. | Apr 2003 | B1 |
6578066 | Logan et al. | Jun 2003 | B1 |
6578077 | Rakoshitz et al. | Jun 2003 | B1 |
6606643 | Emens et al. | Aug 2003 | B1 |
6611861 | Schairer et al. | Aug 2003 | B1 |
6665702 | Zisapel et al. | Dec 2003 | B1 |
6681232 | Sistanizadeh et al. | Jan 2004 | B1 |
6681323 | Fontanesi et al. | Jan 2004 | B1 |
6691165 | Bruck et al. | Feb 2004 | B1 |
6725253 | Okano et al. | Apr 2004 | B1 |
6745241 | French et al. | Jun 2004 | B1 |
6748416 | Carpenter et al. | Jun 2004 | B2 |
6754699 | Swildens et al. | Jun 2004 | B2 |
6760775 | Anerousis | Jul 2004 | B1 |
6772211 | Lu et al. | Aug 2004 | B2 |
6779017 | Lamberton et al. | Aug 2004 | B1 |
6789125 | Aviani et al. | Sep 2004 | B1 |
6826198 | Turina et al. | Nov 2004 | B2 |
6839700 | Doyle et al. | Jan 2005 | B2 |
6850984 | Kalkunte et al. | Feb 2005 | B1 |
6874152 | Vermeire et al. | Mar 2005 | B2 |
6879995 | Chinta et al. | Apr 2005 | B1 |
6883028 | Johnson et al. | Apr 2005 | B1 |
6898633 | Lyndersay et al. | May 2005 | B1 |
6901081 | Ludwig | May 2005 | B1 |
6928485 | Krishnamurthy et al. | Aug 2005 | B1 |
6950848 | Yousefi'zadeh | Sep 2005 | B1 |
6963914 | Breibart et al. | Nov 2005 | B1 |
6963917 | Callis et al. | Nov 2005 | B1 |
6985956 | Luke et al. | Jan 2006 | B2 |
6987763 | Rochberger et al. | Jan 2006 | B2 |
6996615 | McGuire | Feb 2006 | B1 |
6996616 | Leighton et al. | Feb 2006 | B1 |
7000007 | Valenti | Feb 2006 | B1 |
7020698 | Andrews et al. | Mar 2006 | B2 |
7020714 | Kalyanaraman et al. | Mar 2006 | B2 |
7028083 | Levine et al. | Apr 2006 | B2 |
7032010 | Swildens et al. | Apr 2006 | B1 |
7032031 | Jungck et al. | Apr 2006 | B2 |
7036039 | Holland | Apr 2006 | B2 |
7058717 | Chao et al. | Jun 2006 | B2 |
7062642 | Langrind et al. | Jun 2006 | B1 |
7082102 | Wright | Jul 2006 | B1 |
7086061 | Joshi et al. | Aug 2006 | B1 |
7089293 | Grosner et al. | Aug 2006 | B2 |
7114008 | Jungck et al. | Sep 2006 | B2 |
7127713 | Davis et al. | Oct 2006 | B2 |
7136932 | Schneider et al. | Nov 2006 | B1 |
7139242 | Bays | Nov 2006 | B2 |
7177933 | Foth | Feb 2007 | B2 |
7185052 | Day | Feb 2007 | B2 |
7197547 | Miller et al. | Mar 2007 | B1 |
7206806 | Pineau | Apr 2007 | B2 |
7213068 | Kohli et al. | May 2007 | B1 |
7225272 | Kelley et al. | May 2007 | B2 |
7240015 | Karmouch et al. | Jul 2007 | B1 |
7240100 | Wein et al. | Jul 2007 | B1 |
7254626 | Kommula et al. | Aug 2007 | B1 |
7257642 | Bridger et al. | Aug 2007 | B1 |
7260645 | Bays | Aug 2007 | B2 |
7277954 | Stewart et al. | Oct 2007 | B1 |
7296088 | Padmanabhan et al. | Nov 2007 | B1 |
7321926 | Zhang et al. | Jan 2008 | B1 |
7330908 | Jungck | Feb 2008 | B2 |
7383288 | Miloushev et al. | Jun 2008 | B2 |
7423977 | Joshi et al. | Sep 2008 | B1 |
7441045 | Skene et al. | Oct 2008 | B2 |
7454500 | Hsu et al. | Nov 2008 | B1 |
7496651 | Joshi | Feb 2009 | B1 |
7573886 | Ono | Aug 2009 | B1 |
7574508 | Kommula | Aug 2009 | B1 |
7581009 | Hsu et al. | Aug 2009 | B1 |
7584262 | Wang et al. | Sep 2009 | B1 |
7584301 | Joshi | Sep 2009 | B1 |
7657629 | Kommula | Feb 2010 | B1 |
7676576 | Kommula | Mar 2010 | B1 |
7756965 | Joshi | Jul 2010 | B2 |
20010049741 | Skene et al. | Dec 2001 | A1 |
20010052016 | Skene et al. | Dec 2001 | A1 |
20020026551 | Kamimaki et al. | Feb 2002 | A1 |
20020038360 | Andrews et al. | Mar 2002 | A1 |
20020055939 | Nardone et al. | May 2002 | A1 |
20020059170 | Vange | May 2002 | A1 |
20020059464 | Hata et al. | May 2002 | A1 |
20020062372 | Hong et al. | May 2002 | A1 |
20020078233 | Biliris et al. | Jun 2002 | A1 |
20020087722 | Datta et al. | Jul 2002 | A1 |
20020091840 | Pulier et al. | Jul 2002 | A1 |
20020112036 | Bohannon et al. | Aug 2002 | A1 |
20020120743 | Shabtay et al. | Aug 2002 | A1 |
20020120763 | Miloushev et al. | Aug 2002 | A1 |
20020124096 | Loguinov et al. | Sep 2002 | A1 |
20020133601 | Kennamer et al. | Sep 2002 | A1 |
20020150048 | Ha et al. | Oct 2002 | A1 |
20020154600 | Ido et al. | Oct 2002 | A1 |
20020188862 | Trethewey et al. | Dec 2002 | A1 |
20020194324 | Guha | Dec 2002 | A1 |
20020194335 | Maynard | Dec 2002 | A1 |
20030018796 | Chou et al. | Jan 2003 | A1 |
20030031185 | Kikuchi et al. | Feb 2003 | A1 |
20030035430 | Islam et al. | Feb 2003 | A1 |
20030065711 | Acharya et al. | Apr 2003 | A1 |
20030065763 | Swildens et al. | Apr 2003 | A1 |
20030105797 | Dolev et al. | Jun 2003 | A1 |
20030115283 | Barbir et al. | Jun 2003 | A1 |
20030135509 | Davis et al. | Jul 2003 | A1 |
20030154239 | Davis et al. | Aug 2003 | A1 |
20030210686 | Terrell et al. | Nov 2003 | A1 |
20030210694 | Jayaraman et al. | Nov 2003 | A1 |
20030229697 | Borella | Dec 2003 | A1 |
20040019680 | Chao et al. | Jan 2004 | A1 |
20040024872 | Kelley et al. | Feb 2004 | A1 |
20040039847 | Persson et al. | Feb 2004 | A1 |
20040064577 | Dahlin et al. | Apr 2004 | A1 |
20040194102 | Neerdaels | Sep 2004 | A1 |
20040249939 | Amini et al. | Dec 2004 | A1 |
20040249971 | Klinker | Dec 2004 | A1 |
20040259565 | Lucidarme | Dec 2004 | A1 |
20050002410 | Chao et al. | Jan 2005 | A1 |
20050021883 | Shishizuka et al. | Jan 2005 | A1 |
20050033858 | Swildens et al. | Feb 2005 | A1 |
20050086295 | Cunningham et al. | Apr 2005 | A1 |
20050149531 | Srivastava | Jul 2005 | A1 |
20050169180 | Ludwig | Aug 2005 | A1 |
20050286416 | Shimonishi et al. | Dec 2005 | A1 |
20060020715 | Jungck | Jan 2006 | A1 |
20060036743 | Deng et al. | Feb 2006 | A1 |
20060209689 | Nakano et al. | Sep 2006 | A1 |
20070168547 | Krywaniuk | Jul 2007 | A1 |
20070180113 | Van Bemmel | Aug 2007 | A1 |
20080037420 | Tang | Feb 2008 | A1 |
20080123597 | Arbol et al. | May 2008 | A1 |
20080147866 | Stolorz et al. | Jun 2008 | A1 |
20100011120 | Kommula | Jan 2010 | A1 |
20100011126 | Hsu et al. | Jan 2010 | A1 |
20100061236 | Joshi | Mar 2010 | A1 |
20100082787 | Kommula et al. | Apr 2010 | A1 |
20100095008 | Joshi | Apr 2010 | A1 |
20100115133 | Joshi | May 2010 | A1 |
20100121932 | Joshi et al. | May 2010 | A1 |
20100153558 | Kommula | Jun 2010 | A1 |
20100223621 | Joshi | Sep 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20100010991 A1 | Jan 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10839919 | May 2004 | US |
Child | 12506130 | US |