A container 10 suitable for hot-filling includes a neck portion 12, a bottom portion 18, and a body portion 22. As best shown in
Bottom portion 18 includes a heel 19 that extends downwardly from body portion 22 to a standing ring 20. A base 21, as shown in
Body portion 22 preferably includes a label portion 24 and a separate flex portion 26. Body portion 22 is essentially separated from dome 16 by a deep, circumferential groove 28 that provides hoop strength to the surrounding region. A label 17b, as partially schematically indicated in
Label portion 24 preferably has a round cross section that is interrupted only by circumferential ribs 30 that provide hoop strength to the label portion 24. Circumferential ribs 30 are not required to be as deep as groove 28, although the present invention is not limited to any particular relationship between groove 28 and ribs 30, or even to existence of such groove and ribs. Label 17b preferably, for aesthetic reasons, covers circumferential ribs 30.
Flex portion 26 preferably is disposed below label portion 24 to facilitate ease of labeling and gripping. Preferably, flex portion 26 is not covered with a label. Flex portion 26 includes plural flex panels 34 and support structure fields 36. Preferably, container 10 has at least three flex panels (as shown in the figures) although the present invention encompasses employing any number of flex panels according the particular parameters of the application (such as bottle diameter, wall thickness, hot-filling conditions, desired vacuum absorption, and the like).
Each flex panel 34 includes a rim 40, a central panel 42, and a recess sidewall 44. Rim 40 preferably comprises a pair of opposing lateral rims 46a and 46b, a top rim 48a, and a bottom rim 48b. Preferably, rim components 46a, 46b, 48a, and 48b are continuous, and formed by a thin, uniform strip or border.
Recess sidewall 44 preferably comprises a pair of opposing lateral recess walls 50a and 50b that extend from opposing edges of central panel 42 to lateral rims 46a and 46b, respectively. Similarly, a top recess wall 52a and a bottom recess wall 52b extend between top and bottom edges of central panel 42 to top rim 48a and bottom rim 48b, respectively.
Central panel 42 preferably is substantially flat in its as-molded state, and has rounded comers. Accordingly, rim 40 and recess sidewall 44 have rounded comers to essentially match the outline of central panel 42. Preferably, the plane of central panel 42 is parallel to the longitudinal axis of container 10. Such orientation, while not essential, enables lateral recess walls 50a and 50b to be approximately uniform in radial dimension, which may enhance the reinforcing function of recess sidewall 44.
Support structure field 36 preferably spans between rims 40 of adjacent flex panels 34, and includes non-vertical supports, such as flex area ribs 56. As shown in the figures, ribs 56 may be formed by multiple concave (as viewed from inside container 10) outer portions 58, each of which has an upper and lower inwardly directed end 60. An end 60 of one rib 56 joins an end 60 of an adjacent rib 56 at a ridge 62.
Preferably, at least some of the circumferential ends of flex area ribs 56 are disposed proximate to or in contact with lateral rims 46a, 46b of flex panel 34. Such configuration may support lateral rims 46a, 46b and may prevent deformation of rims 46a, 46b under vacuum conditions, and may also inhibit creasing. Such configuration is not essential—rather, the present invention encompasses any configuration set forth in the claims.
Flex ribs 56 are illustrated in the figures as a series of concave portions 58. The invention is not limited to such configuration of ribs, but rather encompasses any non-vertical structure, such as ribs that are oriented other than horizontally. For example,
The flex ribs shown in the figures are not vertical, or, where the ribs are not rectilinear, the longitudinal center line or best fit line through the planar projection of the rib is not vertical. The non-vertical structure of the ribs and spaces between ribs enhance the ability of the support structure field to bend relative to a horizontal axis even while such ribs will enhance hoop stiffness of the support structure field 36, 37a, 37b, 37c, or 37d. In this regard, the ribs of support structure field 36, 37a, 37b, 37c, or 37d stiffen such support structure field from flexing in a horizontal plane or about a vertical axis.
Central panels 42 of the flex panels 34 deform inwardly, as expected. As best shown in
The functional aspects of container 10 are further illustrated in
Stresses were calculated based on a 5 psi vacuum. The temperature variation under vacuum performance was ignored. The wall thickness of container 10 was assumed to be 0.015 inches uniform throughout container 10, except the neck and base 21, which were presumed to be 0.050 inches thick. As best shown in
As best shown in
Accordingly, because the support structure field 36 undergoes inward deflection in addition to the inward deflection of the center panel 42 of flex panel 34, vacuum absorption is enhanced. The label panel portion is stiffened by ribs 30, and generally retains its circular shape to enhance labeling and appearance.
The present invention is illustrated with respect to a preferred embodiment, and the present invention is not limited to the particular structure described in the preferred embodiment of container 10. For example, the present invention encompasses a container in which a label panel (such as label portion 24 of container body 22) undergoes some deformation under vacuum conditions, becomes out-of-round under vacuum conditions, and/or is not circular in its as-molded state—even though such structure or function is not shown in the figures.
Furthermore, it is not essential that the container have separate flex portions 26 and label portions 24. For example, the present invention encompasses the body portion 22 of container 10 or (other body configuration of other container covered by the appended claims) being covered by a label (such configuration not shown in the figures). The non-mechanical and subjectively attractive appearance of body portion 22 renders it suitable for use without a label, and the flex panels 34 disposed about the circumference of container 10 enhance gripping, but such advantages are optional.
It is understood that persons familiar with hot-fill container technology will recognize additional advantages and features that flow from the present disclosure, and the present invention encompasses such additional advantages and features such that the scope of the invention is limited only by the claims.
Number | Date | Country | Kind |
---|---|---|---|
11/091564 | Mar 2005 | US | national |
This application claims the benefit of U.S. Provisional Application No. 60/558,790, filed on Apr. 1, 2004 and also claims priority to a United States patent application entitled “Hot-Fill Bottle Having Flexible Portions” having docket no. CNST-3580 filed on Mar. 28, 2005, which also claims the benefit of U.S. Provisional Application No. 60/558,790, filed on Apr. 1, 2004, the disclosures of which are incorporated herein by reference in their entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US05/10556 | 3/30/2005 | WO | 00 | 9/6/2007 |
Number | Date | Country | |
---|---|---|---|
60558790 | Apr 2004 | US |