The present invention relates, generally, to the field of containers, and to, more particularly, containers for use with hot-fill processes.
Today, many beverages are delivered to consumers in containers that are filled with the beverages via a hot-fill process. In a typical hot-fill process, the beverage is pasteurized and heated up to a hot-fill temperature in the range of 190° F. to 203° F. in a heat exchanger for at least 15 to 30 seconds in order to kill any microorganisms present in the beverage. The beverage is then cooled to a temperature in the range of 180° F. to 185° F. immediately prior to filling of the containers. After filling, the containers are closed with respective closures and are tilted over onto their sides before immersion in a cooling bath or spraying with cooling water, thereby exposing the internal structure of the closures to the beverage and sterilizing the closures. By virtue of the heating and cooling of the beverage prior to filling and tilting of the containers, the beverage, containers and closures are all sterilized. Cooling of the containers and beverage helps preserve the beverage's taste and nutritional properties. The cooling of the containers and beverage also creates a vacuum inside the containers, further preventing microbial growth.
Advantageously, due to the sterilization, hot-filling is a good option for many fruit and vegetable juices, enhanced water, and tea beverages as the process eliminates the need to add preservatives and provides an ambient temperature shelf life for the beverage of 6 to 12 months. Additionally, hot-fill compatible containers (also referred to herein as “hot-fill containers”) are readily available in a number of relatively inexpensive plastic materials such as, but not limited to, polyethylene terephthalate (PET).
Unfortunately, the vacuum created inside the containers during cooling of the containers and beverage produces a pressure differential across the containers' walls which can cause “paneling”—partial collapse of the containers' walls in an inward direction. The partial collapse of the containers' walls can leave the containers permanently deformed and distorted from their original shape. Such deformation and distortion may make the containers aesthetically unappealing and can render the subsequent application of labels to the containers difficult, if not impossible.
There is, therefore, a need in the industry for a container compatible for use in hot-fill processes which resists or eliminates paneling and which solves other related or unrelated problems, difficulties, or shortcomings of present hot-fill containers.
Broadly described, the present invention comprises a hot-fill container for use with a hot-filling process having at least one vacuum absorption section that resists partial collapse and uncontrolled deformation of the container's walls during the hot-filling process. According to an example embodiment, the hot-fill container comprises a body portion having at least one vacuum absorption section formed asymmetrically therein and having a periphery configured generally in the shape of the English alphabet capital letter “D”. With part of the vacuum absorption section and part of the surrounding body portion joining along a linear part of the edge portion of the vacuum absorption section to create a pivot axis, the vacuum absorption section deforms controllably through rotation relative to the body portion about the pivot axis during hot-filling of the hot-fill container.
Also, according the example embodiment, the hot-fill container further comprises a finish and a base portion with the at least one vacuum absorption section being located in the container's body portion intermediate the finish and base portion at a location where a user's fingers naturally grasp the container. Due at least in part to the periphery of the vacuum absorption section being configured generally in the shape of the English alphabet capital letter “D”, the pulp portions of a user's fingertips comfortably engage and fit within the curved part of the vacuum absorption section, thereby making grasping of the hot-fill container more ergonometric and sure.
Additionally, according to the example embodiment, the hot-fill container further comprises other similar vacuum absorption sections such that the plurality of vacuum absorption sections are arranged at respective angular locations about the container's central longitudinal axis and protrude into an internal cavity defined by the hot-fill container. Together, the vacuum absorption sections are arranged such that the container's wall has a substantially polygonal cross-sectional shape in the vicinity of the vacuum absorption sections as opposed to the otherwise generally circular cross-sectional shape of the hot-fill container's wall at each location along the central longitudinal axis not in the vicinity of the vacuum absorption sections. The vacuum absorption sections are also configured such that adjacent vacuum absorption sections define columns therebetween, providing enhanced structural strength and rigidity.
Other uses, advantages and benefits of the present invention may become apparent upon reading and understanding the present specification when taken in conjunction with the appended drawings.
Referring now to the drawings in which like numerals represent like elements or steps throughout the several views,
The hot-fill container 100 (also sometimes referred to herein as the “container 100”) comprises, according to the example embodiment, a finish portion 102 located at a first end 104 of the container 100, a base portion 106 located at a distant second end 108 of the container 100, and a body portion 110 located intermediate the finish portion 102. The finish portion 102, base portion 106, and body portion 110 are formed by a single wall 112 extending between the container's first and second ends 104, 108 and about a central longitudinal axis 114 of the container 100. The wall 112 (and, hence, the container 100) defines a cavity 116 for receiving and holding the content injected into the container 100 during a hot-fill process. The wall 112 is generally formed from a polyethylene terephthalate (PET) material using a blow-molding process. It should, however, be understood and appreciated that the wall 112 (and, therefore, the container 100) may be manufactured from other materials and through the use of other processes appropriate for polyethylene terephthalate (PET) or such other materials.
The finish portion 102 (also referred to herein as the “finish 102”) of the container 100 defines an opening 118 at the container's first end 104 that is in fluid communication with the cavity 116 (see
The base portion 106 of the container 100 is configured to rest on a generally planar surface and support the remainder of the container 100 and contents (if any) in an upright orientation without tipping or leaning of the container 100. The base portion 106, seen more clearly in the bottom plan view of
The base portion 106 also includes a concave dome portion 122 extending about central longitudinal axis 114 and inwardly toward the container's first end 104. The concave dome portion 122 flexes outward away from the container's first end 104 and allows the container's base portion 106 to compensate for pressure within the container 100 created during hot-filling of the container 100, thereby avoiding other deformation of the base portion 106 and ridge 120 that might render the container 100 unstable and more prone to tipping over. The concave dome portion 122 has a plurality of recesses 124 formed therein and protruding into the cavity 116 that are arranged at various angular locations about the container's central longitudinal axis 114. The recesses 124 have a generally teardrop shape with the smaller end of the teardrop nearest central longitudinal axis 114 and with the recesses 124 extending radially away from the central longitudinal axis 114. The recesses 124 enhance the structural rigidity of the container 100 and further enable the base portion 106 to compensate for pressure within the container 100 created during hot-filling of the container 100.
The container's body portion 110, as seen in
The label portion 128 of container's body portion 110 comprises a plurality of vacuum absorption sections 132 formed in the wall 112 at respective angular locations about the container's central longitudinal axis 114 and around the label portion's periphery. The vacuum absorption sections 132 are configured to compensate for the vacuum produced within the container 100 during the hot-fill process by deforming in a controlled, pre-planned manner relative to the remainder of the container 100. Each vacuum absorption section 132 is asymmetrically formed relative to the direction of the central longitudinal axis 114, comprises a portion of the container's wall 112, and protrudes into the container's cavity 116 relative to the surrounding portion of the wall 112 such that each vacuum absorption section 132 defines a recess in the outer surface 130 of the wall 112.
According to the example embodiment and as seen in the front and back views of
When a vacuum is created within the container 100 during a hot-fill process, a vacuum is created within the container's cavity 116 and the pressure differential between the wall's outer surface 130 and the wall's inner surface 142 causes the application of a force to the panel portion 134 of each vacuum absorption section 132 tending to push the panel portion 134 into the container's cavity 116. In turn, each vacuum absorption section 132 deforms in response to the applied force by rotating, or pivoting, of its panel portion 134 about the linear part 138 of the edge portion 136. Thus, during such deformation, the linear part 138 of the edge portion 136 acts as a rotation or pivot axis for the panel portion 134 of the vacuum absorption section 132 and allows the panel portion 134 to take on an arcuate shape (see
The vacuum absorption sections 132 are arranged, according to the example embodiment, about the container's central longitudinal axis 114 with their edge portion's linear and curvilinear parts 138, 140 oriented such that the curvilinear part 140 of each section's edge portion 136 is angularly adjacent about the central longitudinal axis 114 to the curvilinear part 140 of another section's edge portion 136. In such arrangement, the container's wall 112 extends between the angularly adjacent vacuum absorption sections 132 and forms an hourglass-shaped column 144 therebetween (see
Together, the hourglass-shaped columns 144 and stiffeners 146A and 146B improve the rigidity and structural strength of the hot-fill container 100 to better resist or withstand pressure differentials across the container's wall 112. Also, as seen in
By virtue of the arrangement of the vacuum absorption sections 132 with the curvilinear part 140 of each section's edge portion 136 being angularly adjacent to the curvilinear part 140 of another section's edge portion 136, the linear part 138 of the edge portion 136 of each vacuum absorption section 132 is angularly adjacent about the central longitudinal axis 114 and parallel to the linear part 138 of the edge portion 136 of another vacuum absorption section 132 (and parallel to the central longitudinal axis 114). In such arrangement and as seen in
As briefly described above and as perhaps best seen in the cross-sectional view of the container 100 in
According to the example embodiment, the container 100 comprises four (4) vacuum absorption sections 132 having the same size and shape and that are arranged at angular locations about the central longitudinal axis 114 ninety degrees (90°) apart. Due to such arrangement and as seen in
In the vicinity of the vacuum absorption sections 132 and as described briefly above, the container's wall 112 has an hourglass or concave shape. The hourglass or concave shape results from the container wall's outer surface 130 having a radius, “R” (see
Referring now to
At the respective locations of the above described outside diameters, the panel portion 134 of each vacuum absorption section 132 has a width, B0, B1 or B2, and a respective depth, C0, C1 or C2. Thus, at the vertical location of diameter D0, the panel portion 132 of the vacuum absorption section 132 has a width B0 and a depth C0. Similarly, at the vertical locations of diameters D1 and D2, the panel portions 134 of the vacuum absorption sections 132 have respective widths B1, B2 and respective depths C1, C2. Generally, the widths B0, B1, B2 of the panel portions 134 are related to the respective side lengths A0, A1, A2 of the polygon 152 formed by the panel portions 134 and have a measure between a minimum value of zero and a maximum value sufficiently less than the respective lengths A0, A1, A2. Particular values of widths B0, B1, B2 are selected such that the hourglass-shaped and rectangular-shaped columns 144, 150 provide the container 100 with sufficient strength and rigidity, while allowing inward deflection or deformation of the panel portions 134 sufficient to provide up to at least a three percent (3%) reduction in the container's volume during hot-filling. The depths C0, C1, C2 of the panel portions 134 correspond to the respective radial distances between the diameters D0, D1, D2 of the container wall's outer surface 130 and the diameters E0, E1, E2 of circles inscribed within the polygons 152 formed by the panel portions 134. Thus, the depths C0, C1, C2 have measures between a minimum value of zero and maximum values that are respectively proportional to the diameters D0, D1, D2 of the container wall's outer surface 130. Particular values of the depths C0, C1, C2 are selected to make the container 100 more easily gripped and held by a user, while permitting up to at least a three percent (3%) reduction in the container's volume during hot-filling.
It should be appreciated and understood that while the hot-fill container 100 described herein includes four (4) vacuum absorption sections 132, two (2) hourglass-shaped columns 144, two (2) rectangular-shaped columns 150, and a wall 112 having a square-shaped cross-section near the vertical midpoint of the vacuum absorption sections 132, the hot-fill container 100 may comprise a greater or lesser number of vacuum absorption panels 132 in other example embodiments and, hence, (i) a greater or lesser number of hourglass-shaped columns 144 and rectangular-shaped columns 150, and (ii) a wall 112 having a generally polygonal-shaped cross-section with a greater or lesser number of sides. Additionally, the hot-fill container 100 described herein includes vacuum absorption sections 132 having an edge portion 136 with a particular shape and panel portion 134 having a specific face area, but in other example embodiments, the vacuum absorption sections 132 may have a different size, shape, and/or face area. By varying the number of vacuum absorption sections 132 and their size, shape and area, the number of hourglass-shaped columns 144, the number of rectangular-shaped columns 150, and the shape and size of the wall's polygonal-shaped cross-section, the hot-fill container's resistance to internal pressure and uncontrolled deformation may be adapted or adjusted for particular hot-fill applications.
Whereas the present invention has been described in detail above primarily with respect to an example embodiment thereof, it should be appreciated that variations and modifications might be effected within the spirit and scope of the present invention.
This application is a national phase entry under 35 U.S.C. § 371 of PCT/162017/001464 filed on May 22, 2017, which claims priority to U.S. Provisional Patent Application No. 62/340,438, filed May 23, 2016, and U.S. patent application Ser. No. 15/417,359, filed Jan. 27, 2017, the disclosures of which are hereby incorporated by reference herein in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2017/001464 | 5/22/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/037287 | 3/1/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5067622 | Garver | Nov 1991 | A |
5704503 | Krishnakumar | Jan 1998 | A |
6036037 | Scheffer | Mar 2000 | A |
6044997 | Ogg | Apr 2000 | A |
D445693 | Rashid | Jul 2001 | S |
D445694 | Gans | Jul 2001 | S |
6257433 | Ogg et al. | Jul 2001 | B1 |
D446458 | Gans | Aug 2001 | S |
6273282 | Ogg et al. | Aug 2001 | B1 |
6513669 | Ozawa et al. | Feb 2003 | B2 |
7178684 | Budden | Feb 2007 | B1 |
7347339 | Bangi | Mar 2008 | B2 |
20020000421 | Ota | Jan 2002 | A1 |
20060131257 | Gatewood | Jun 2006 | A1 |
20060273064 | Haley | Dec 2006 | A1 |
20080041812 | Stowitts | Feb 2008 | A1 |
20080105645 | Boukobza | May 2008 | A1 |
20080190884 | Harris | Aug 2008 | A1 |
20090014407 | Strasser | Jan 2009 | A1 |
20100116778 | Melrose | May 2010 | A1 |
20110204070 | Pedmo | Aug 2011 | A1 |
20120187069 | Harris | Jul 2012 | A1 |
20160236845 | Boukobza | Aug 2016 | A1 |
20170334628 | Bangi | Nov 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20190084747 A1 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
62340438 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15417359 | Jan 2017 | US |
Child | 16304271 | US |