The present invention relates to a plastics material container which can be filled with hot liquid.
It is advantageous to be able to fill a container, such as a bottle, with a drink, such as a fruit juice, when hot, because the heat of the liquid both renders it sterile itself and sterilises the bottle. However, there is the disadvantage that the heat may cause the stress held in the bottle to be relieved, with the result that the bottle distorts. For instance PET (Polyethylene Terephthalate) bottle are normally temperature stable up to only 60° C.
Techniques for sterilising bottles are as follows:
PP (Polypropylene) is heat resistant, but not generally suitable for foods, due to taste and lack of transparency. PET is a food grade material, being approved by the FDA. It has high transparency and no smell nor taste, but it is not heat reistant at least not in conventional bottle form.
Many attempts have been made to improve the temperature resistance of PET. Chief amongst these are:
The object of the present invention is to provide an improved hot-fill bottle and similar containers.
According to a first aspect of the invention there is provided a method of forming a body of plastics material container consisting in the steps of.
By “solidification temperature” is intended the temperature at or below which the container retains its finish formed shape in ambient temperature.
Desirably, elevated pressure, conveniently the blowing pressure, is maintained in the container during the first period.
Preferably, the inside of the container is cooled whilst it is held in contact with the mould during the second period. Conveniently this inside cooling is by means of cool pressure air circulated within the container body during the second period.
Preferably the container is of PET material.
Preferably the elevated temperature at which the mould—and the container in contact with the mould—is held is 130° C.±30°. Further, this step is preferably held for 5±2 second.
Preferably the reduced temperature to which the mould—and the container in contact with the mould—is cooled is 90° C.±30°. Further, this step is preferably held for 6±2 second.
Usually, the temperature of the mould will be dropped—from the elevated temperature to the reduced temperature—by between 40 & 50 Centigrade degrees.
In the preferred embodiment, the drop in temperature between the two periods is achieved by passing water through cooling passages in the mould. Thereafter, air is passed through cooling passages in the mould to maintain the mould temperature for the rest of the cooling period. During the mould cooling period, the interior of the container is cooled by circulation of cool air in the container, although this air is still maintained under pressure.
Preferably cooling air is passed through the container during the second, cooling period. At the end of the cycle, the mould is reheated, by ohmic heaters, to the elevated temperature.
According to a second aspect of the invention there is provided a plastics material container, the container being substantially free of internal, formation stresses whereby it is suitable for hot filling, the container having been formed by the method of the first aspect of the invention.
According to a third aspect of the invention there is a provided a mould tool for use in the method of formation and treatment of the body of a container of the second aspect of the invention, the mould tool having:
Preferably, the stretch pin has a plurality of small air circulation apertures for internal cooling of the container.
The cooling water passages are preferably adapted for circulation of air subsequent to the circulation of water during each moulding cycle.
The heating means may be configured as a plurality of heating passages.
Whilst it is envisaged that the heating passages may be adapted for circulation of a heating fluid such as oil, in the preferred embodiment they are adapted to house a plurality of ohmic heaters.
According to a fourth aspect of the invention there is provided a method of treating the inner neck of a plastics material container, the treatment consisting in the steps of:
Normally, the heating and cooling of the inner neck will cause it to become heat stable by crystallisation of its inner neck material.
Where the preform is moulded in a production line common with the blowing of the container, the external support may comprise part of a mould cavity for the moulding of the neck of the preform. Alternatively the neck support will be complementarily shaped to the neck for tight support thereof. In the preferred embodiment, the support is radially split and itself externally supported by a neck plate.
To help understanding of the invention, a specific embodiment thereof will now be described by way of example and with reference to the accompanying drawings, in which:
Referring first to
Opening of the mould to release the bottle at this temperature would result in it being too hot to maintain its finish formed shape. Accordingly, the mould is cooled to between 60° C. and 120° C. for 4 to 8 seconds, see FIG. 4. During this period cool air is circulated into the container and out through the small apertures in stretch pin, with pressure being maintained in the container. This solidifies it without introducing stresses—so that it can be removed from the mould. The resulting bottle is heat stable when filled with water close to its boiling point, namely at 92 to 98° C.
For the rapid heating and cooling of the mould, it is provided with two series of passages 16, 17. The former house ohmic heaters 18, whilst the latter are connected to water and air supply lines 19, 20.
After opening of the mould, the heaters 18 are switched on to rapidly heat it to the elevated temperature. A preform is assembled at its neck in the mouth of the mould, with the support 12 abutting a seat 21 in the re-closed mould. The preform is stretched and blown. The mould is thermostatically controlled to the elevated temperature, with the heaters being switched off at the end of the first period. By operation of ganged valves 22, cooling water is immediately passed through the cooling passages 17 to drop the temperature to its reduced level, to solidify fully the body of the container. In order to avoid dropping the temperature too much, in view of the need to reheat it again for the next cycle, the valves are operated during the cooling period to replace the water circulation by air circulation in the passages 17. At the same time, the cool air is circulated under pressure inside the bottle to cool the inside of the body.
Turning now to
Once the cooling pin has been withdrawn, the new preheated preform is moved with the support 53 to the mould 14 for stretch-blowing and heat treatment. Once the support 53 is positioned at the mouth of the blow mould, a blowing pin 65 is advanced into the neck of bottle. The stretch pin 15 is then advanced through the blowing pin, as shown in
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCTIB00/00208 | 2/25/2000 | WO | 00 | 8/22/2002 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO0162471 | 8/30/2001 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4039641 | Collins | Aug 1977 | A |
4385089 | Bonnebat et al. | May 1983 | A |
4512948 | Jabarin | Apr 1985 | A |
4839127 | Ajmera et al. | Jun 1989 | A |
4871507 | Ajmera | Oct 1989 | A |
4883631 | Ajmera | Nov 1989 | A |
4934918 | Outland | Jun 1990 | A |
5730914 | Ruppman, Sr. | Mar 1998 | A |
5989008 | Wytkin | Nov 1999 | A |
Number | Date | Country |
---|---|---|
57212033 | Dec 1982 | JP |
63280615 | Nov 1988 | JP |
01310933 | Dec 1989 | JP |
02127023 | May 1990 | JP |
06297552 | Oct 1994 | JP |
08174552 | Jul 1996 | JP |