The present invention relates to plastic containers, including plastic molded containers that are hot fillable and include a flexible base portion that may be configured to facilitate resistance to deformation and improve the aesthetic display of a label.
Hot-fill containers are known in the art. When liquid contents that fill a container at elevated temperatures are permitted to cool, a strong internal pressure or vacuum is generated. Conventional hot-fill containers generally accommodate the vacuum pressure, which can be significant, by employing a rigid base portion (which may further include strengthening ribs or other formations) and flex panels that are configured in the sidewall portion of the container to accommodate the change in internal pressure.
A problem that sometimes occurs in connection with the use of flex panels in the sidewall of the container concerns labeling. Indentations, voids or spaces can sometimes be intentionally or unintentionally formed at or about the label mounting portion of the container. Such structural features can cause the label to wrinkle, tear, or otherwise distort and, among other things, can inhibit or prevent the prominent display of an aesthetically pleasing label. Moreover, some consumers may desire a container that is filled with product wherein a label is wrapped tightly around the container and is adhered to what feels like a solid and more rigid container sidewall.
Further, conventional hot fillable containers are commonly produced at a first location by a manufacturer and are then shipped or transported to a second location (often at the customer's facility) where they are filled with product contents and then labeled. In the case of hot-filled product containers, as the product contents cool, a vacuum pressure is created. Typically, the vacuum is accommodated at the second (“filling”) location by formations in the portions of the side wall of the container that are permitted to collapse or flex inwardly. In many instances employing conventional sidewall configurations, the internal vacuum can cause significant labeling problems, including those previously mentioned.
A plastic container comprised of a closed base, a body portion, and a neck portion. The closed base includes a substantially rigid support portion and a flexible portion, and may further include a transition segment located between the support portion and the flexible portion. The body portion includes a substantially rigid wall portion that includes a plurality of reinforcement formations and, if desired, the body portion may further include a shoulder portion. The neck portion includes a dispensing opening that can be used to fill or dispense product contents. The container is configured so that the flexible portion of the base contracts or moves upwardly about the support portion in response to vacuum pressures generated within the container, while the substantially rigid portion of the sidewall remains substantially rigid, for example, to accept or receive a label. Further, to accommodate additional vacuum effect, other portions of the container, such as the shoulder portion, may also include vacuum or pressure relief formations.
A method for producing hot-fillable, labeled containers, including the production of hot fillable, labeled containers at a first (e.g., “manufacturer's”) site before being shipped to a second (e.g., “customer's”) location for filling, is also disclosed.
Referring to
The wall portion 18 provides at least partial support for the body portion 14 and includes a substantially rigid portion 24. Preferably, rigid portion 24 is configured to provide increased resistance to internal pressures (e.g., an internal pressure or vacuum) and substantially maintains its original shape under pressure. Further, as desired, the rigid portion 24 may be configured to receive and support a label, such as for example, a spot label or wrap-around label.
The body portion 14 may include an image, symbol, or other visual features or formations, such as a logo 26, and/or one or more pressure relief formations 28. As discussed further hereinafter, such features, if included, may provide a partial relief for vacuum forces that are internally generated within the container. Moreover, if such features are included, they preferably are, but are not required to be, included in a shoulder portion 20.
Typically, a vacuum or other internal pressure will cause the container to at least initially collapse at portions of the container that are not reinforced or are otherwise comparatively less rigid. As such, it is desirable that the rigid portion 24 is sufficiently stiff or firm so that the substantial majority of an internal vacuum pressure (such as caused by the cooling of a hot filled liquid content) is first accommodated or absorbed by a less, rigid, more flexible portion of the base 12.
In a preferred embodiment, the rigid portion 24 includes one or more structural reinforcements that, among other things, can serve to strengthen and/or improve the firmness or rigidity of the associated or corresponding wall portion 18. Moreover, in portions of the container associated with support of a label and/or gripping, the rigid portion 24 is preferably at least as rigid, if not more rigid, than other portions of the body portion 14. The structural reinforcement features may include, but are not limited to, strengthening ribs, posts, panel structures and/or various formations, including features and configurations known in the art for improving wall strength or resistance to deformation.
The closed base 12 is configured to support the container 10 on a surface. In a preferred configurations, the base 12 is comprised of at least two components a rigid component and a flexible component. As illustrated in
The second position, shown in phantom line as 36′, generally represents the position of the flexible portion 36 after an internal vacuum force has been created (such as by the cooling of a filled content) and substantially accommodated by the base 12. The volumetric area, designated as V, represents an amount of internal volume that is intended to be accommodated or absorbed by the base 12 in response to the internal vacuum or pressure. In a preferred embodiment, the accommodated volume is substantially equivalent to the volume difference between the flexible portion as shown in positions 36 and 36′.
Base 12 is preferably designed and configured to accommodate an anticipated vacuum volume and, to the extent desired, to eliminate or reduce the amount of internal pressure falling upon the body portion 14 of the container, particularly the portion associated with a label. For example, without limitation, certain containers will experience a normal shrinkage of from about 0-5% volume (and more commonly from about 2-3% volume) upon cooling of a hot-filled liquid. The design of the base 12, including the size and shape of the flexible portion 36, can be configured to accommodate the volumetric shrinkage by adjusting the associated volumetric area V. While to those experienced in the art, this may be too large a volume to overcome in just the base for some larger container sizes, this usefulness will be obvious to those involved, particularly, in the new smaller, single serve containers that are now starting to reach the market.
The structural design or shape of the flexible portion 36 of the base 12 is preferably substantially rounded or hemispherical in cross-section, although other geometries, such an oval, square or rectangle, may also be employed. In a preferred embodiment, the final, i.e., post-internal-pressure, form of the base 12 is a champagne-style, such as shown in
In addition to the flexible portion 36, the body portion 14 of the container 10 may optionally include one or more additional pressure relief formations for accommodating, or being available to accommodate, additional or excess internal vacuum pressure. Although such relief formations may be used with any size of container, generally, such additional pressure relief formations are less important or necessary for use in smaller sized container packages (e.g., 12 oz., 20, oz., 24 oz.) and are more desirable or beneficial with containers holding a larger content volume (e.g., 32 oz., 64 oz., 1 gal., etc.).
Such additional pressure relief formations may, for example, function as “back-up” or “correction” features to accommodate internal vacuum pressures that, whether intentionally or unintentionally, exceed the amount or rate of vacuum that can be accommodated by the flexible portion 36 of the base 12. Typically, less rigid structural portions of a container will tend to deform first in response to internal vacuum pressures. Therefore, at least with respect to the more rigid body portions of the container (such as the rigid portion 24), the relief formations can be configured to generally accommodate all or substantially all of the vacuum pressure before such pressure would typically act to deform other body portions of the container where deformation is less desirable, such as the rigid portion 24.
The pressure relief formations may take the form of a wide variety of structural shapes and forms including, without limitation, round, oval, square, triangular, or rectangular formations that can move inwardly with response to an internal pressure. The pressure relief formations may also take the form of a logo, logo panel, or a wide variety of other formations or features that can collapse in response to an internal pressure that is not otherwise accommodated by other portions of the container 10, including the flexible portion 36 of the base 12.
b depict cross-sectional views of the shoulder portion of a container, which includes a sample pressure relief formation 40.
Further, although not required, the container—particularly those that encounter pressurization—may be subjected to other processes to impart additional properties. For example, without limitation, the container may additionally be heat set to impart further resistance to deformation. However, heat setting is not required and, in a number of instances, such as the case with non-pressurized containers, no heat setting may be desired or necessary.
Preferably, the container 10 is comprised of plastic material. However, it should be noted that the invention is not limited to a specific material or combination of materials and, without limitation, may be comprised of a wide variety or plastic materials, including polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), or a number of other thermoplastic materials in virgin, recycled, or blended forms or other combinations. Further, the container 10 is not limited to a specific formation or configuration and may be formed, for example, in various monolayer or multilayer configurations. Moreover, if desired, the container may optionally include layers, or portions of layers, that serve particular functions. Such functional layers may include, without limitation, a barrier layer, a scavenger layer, or other known functional materials or layers.
The present invention also includes an improved process or method for manufacturing and filling containers. Generally, a container will have a given product content volume, e.g., 12 oz., 20 oz., 24 oz., 64 oz., etc. As previously noted, when a container is filled with contents at an elevated temperature and the contents are allowed to cool, there is some internal volume shrinkage associated with the contents and a corresponding internal vacuum pressure is created. Through calculations and/or testing, the amount of anticipated volume reduction can be estimated or determined. Consequently, the bottle manufacturer can design and configure the container to include a flexible base portion that initially extend outwardly from the contents and, after experiencing all or a portion of an anticipated vacuum pressure, is moved toward the contents to at least partially accommodate the associated internal vacuum pressure and volume reduction. Depending upon the circumstances and the desired of the container designer, the internal pressure accommodation may be partial or fairly subtle and/or may take the form of a more noticeable or defined all-or-nothing-type “pop,” which could occur as the flexible portion abruptly moves from a pre-vacuum position to a post-vacuum position.
If desired, additional stress relief portions can be included in the body portion to offer additional capacity and/or corrections for anticipated volumes, including differences that have an inherent measure of variation associated with the contents and process. Further, the strength of the rigid portion of the container and the volume accommodation associated with the base and, if present, any pressure relief formations may be modified (in the form of an iterative process) until the label or labels adhered to the body portion of the container, including the rigid portion, have a desired look and feel and aesthetic quality after the vacuum and other internal pressures have been accommodated. Consequently, a container having a tightly wrapped and aesthetically pleasing label can be more easily produced.
In accordance with an embodiment of the invention, a hot fillable container that includes a strengthened body portion for receiving a label and a flexible portion in the base is molded by a manufacturer at a first location. At the first location a flexible base portion is positioned in a first, at least partially downwardly (i.e., toward the support surface) extending position. The container may also include one or more stress relief formations, which are in a pre-vacuum-pressure position. The strengthened body portion of the container is labeled at the first location prior to filling. Further, if desired, in-mold labeling systems may be employed and the label may be applied to the container during the molding/production process.
Once the manufactured container is labeled, it is moved or shipped some time thereafter to a second location (which is commonly a customer's facility, but may be at a different location in the same facility) for filling with product content. When the container is filled with product content at an elevated temperature, or an internal vacuum pressure is otherwise created, the internal pressure is accommodated by the container by the flexible portion of the base (and, if present, possibly one or more pressure relief formations in the side wall of the container that are intended to flex inwardly). The process permits the container to be filled with content at a second location, without requiring it to be labeled during or after filling and without the associated internal pressure causing significant deformation of the rigid portion of the body or the associated label affixed thereto.
While the present invention has been particularly shown and described with reference to the foregoing preferred and alternative embodiments, it should be understood by those skilled in the art that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention without departing from the spirit and scope of the invention as defined in the following claims. It is intended that the following claims define the scope of the invention and that the method and apparatus within the scope of these claims and their equivalents be covered thereby. This description of the invention should be understood to include all novel and non-obvious combinations of elements described herein, and claims may be presented in this or a later application to any novel and non-obvious combination of these elements. The foregoing embodiments are illustrative, and no single feature or element is essential to all possible combinations that may be claimed in this or a later application. Where the claims recite “a” or “a first” element of the equivalent thereof, such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements.
This application is a divisional application of application Ser. No. 10/354,590, filed Jan. 30, 2003, the entire contents of which are herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 10354590 | Jan 2003 | US |
Child | 11325045 | Jan 2006 | US |