Hot Melt Apparatus and Method of Use

Information

  • Patent Application
  • 20200398498
  • Publication Number
    20200398498
  • Date Filed
    September 02, 2020
    3 years ago
  • Date Published
    December 24, 2020
    3 years ago
Abstract
In various embodiments, a hot melt device comprising a heating device that is automatically or manually triggered is configured so as to have its melt surface applied bringing a thermoplastic material in its solid form into contact with a surface via mechanical extrusion; using a heater to heat the thermoplastic material to a temperature above a melting temperature of the thermoplastic material while maintaining the contact of the thermoplastic material with the surface; allowing the heated thermoplastic material to cool to a temperature that is below the thermoplastic material's melting temperature; and allowing the heated thermoplastic material to bond the hot melt apparatus to the contacted surface without a solvent or use of a curing chemical reaction when the heated thermoplastic material is cooled to below the thermoplastic material's melting temperature while remaining connected to the structural body.
Description
BACKGROUND OF THE INVENTION

A hot melt device comprising a heating device that is automatically or manually triggered to heat a pre-formed thermoplastic feedstock is recognized as an existing technology. Applications using such devices allow connection of objects to provide mechanical and./or electrical bonding and incorporate flexibility, repeatability and reusability of the connections.


A hot melt apparatus typically includes a structural body, a heating element of various designs, and an automatic or manual control system to melt thermoplastic materials. In operation, mechanical extrusion of a heated thermoplastic material onto a surface to be joined as the thermoplastic material cools and solidifies is used.





FIGURES

Various figures are included herein which illustrate aspects of embodiments of the disclosed inventions.



FIG. 1 is a block diagrammatic view in partial perspective of a first exemplary system;



FIG. 2 is an illustration of various shapes adapted to improve a bond of thermoplastic material 2 with a the contacted surface;



FIG. 3 is a block diagrammatic view in partial perspective of a second exemplary system where one or more interchangeable interfaces 5 are disposed intermediate structural body 3 and heater 4 and comprises upper portion 5a connected to structural body 3 and lower portion 5b connected to heater 4, where upper portion 5a and lower portion 5n are selectively disconnectable from each other;



FIG. 4 is a block diagrammatic view in partial perspective of a further exemplary system illustrating a separable interface;



FIG. 5 is a block diagrammatic view in partial perspective of a further exemplary system illustrating a mechanical integrator;



FIG. 6 is a block diagrammatic view in partial perspective of a further exemplary system illustrating an electrical integrator;



FIG. 7 is a block diagrammatic view in partial perspective of a further exemplary system illustrating a mechanical integrator;



FIG. 8 is a block diagrammatic view in partial perspective of a further exemplary system illustrating a mechanical integrator and an electrical integrator;



FIG. 9 is a block diagrammatic view in partial perspective of a further exemplary system illustrating use of a cable manager;



FIG. 10 is a block diagrammatic view in partial perspective of a further exemplary system illustrating an electrical integrator and various electrical ground paths;



FIG. 11 is a block diagrammatic view in partial perspective of a further exemplary system;



FIG. 12 is a block diagrammatic view in partial perspective of an exemplary system;



FIG. 13 is a block diagrammatic view in partial perspective of a further exemplary system integrated within a common structural body 3 with thermoplastic material 2 at both ends to create a double sided hot melt apparatus 15; and



FIG. 14 is a view in partial perspective of an exemplary system illustrating that system in use.





DESCRIPTION OF EXEMPLARY EMBODIMENTS

Referring now to FIG. 1, in a first embodiment hot melt apparatus 1 comprises structural body 3; thermoplastic material 2, in a solid form, connected to structural body 3, where the solid form thermoplastic material 2 is mechanically extrudable onto a surface to be joined as the heated solid form thermoplastic material 2 cools and solidifies; and controllable heater 4 connected to the structural body and to the solid form thermoplastic material 2, heater 4 controllable to heat the solid form thermoplastic material 2 to a temperature above its melting temperature and to allow the heated solid form thermoplastic material 2 to cool and solidify without the use of a solvent.


Referring additionally to FIG. 2, solid form thermoplastic material 2 may comprise a shaped thermoplastic material 2, where the shape is adapted to improve a bond of thermoplastic material 2 with a the contacted surface. By way of example and not limitation, the shape may comprises a geometric profile and/or pattern and may further comprise varying thicknesses when melted wherein the connection of rough or uneven surfaces are completed.


Heater 4 may be an electro-chemical heater activated using a low power electrical signal. In other embodiments, heater 4 may be chemical based and activated through mixing of various chemicals.


Referring additionally to FIG. 3, in embodiments hot melt apparatus 1 may further comprise one or more interchangeable interfaces 5 disposed intermediate structural body 3 and heater 4. Interchangeable interface 5 may comprises upper portion 5a connected to structural body 3 and lower portion 5b connected to heater 4, where upper portion 5a and lower portion 5n are selectively disconnectable from each other. In some of these embodiments, heater 4 and thermoplastic material 2 are integral and may be integrated to, but remain separable from, structural body 3.


Referring additionally to FIG. 4, in embodiments separable interface 6 is present and disposed intermediate heater 4 and thermoplastic material 2. Typically, separable interface 6 is adapted to create an evenly distributed thermal transfer of heat into thermoplastic material 2. Separable interface 6 comprises a metal, a plastic, a ceramic, or a composite, or the like, or a combination thereof.


In certain of these embodiments, separable interface 6 comprises upper portion 6a connected to heater 4 and lower portion 6b selectively detachable from upper portion 6a, where lower portion 6b is substantially permanently attached to thermoplastic material 2.


In embodiments separable interface 6 further comprises a thermally conductive material and a heating element operative to melt thermoplastic material by transferring heat to the hot melt pad.


In other embodiments, separable interface 6 comprises an electrically conductive material and the hot melt pad comprises a heater. For some of these embodiments, separable interface 6 further comprises an electrically conductive separable interface configured to provide a grounding path through the hot melt apparatus.


Referring additionally to FIGS. 5 and 7, in further embodiments hot melt apparatus 1 comprises mechanical integrator 7 which is configured to allow hot melt apparatus 1 to be mechanically integrated to object 8 such as to become a tool or structural extension of object 8.


Referring additionally to FIGS. 6 and 10 in further embodiments hot melt apparatus 1 comprises electrical integrator 9 which is configured to allow hot melt apparatus 1 to be electrically integrated to object 8. Electrical integrator 9 provides a power and/or a ground path where power, and/or a ground, may be obtained from object 8 to support the operation of hot melt apparatus 1. Electrically conductive cable 13 may also be present in such embodiments and operatively in communication with electrical integrator 9 at a first end and with object 8 at a second end. Electrically conductive cable 13 may be used to implement an electrical ground path between object 8 and secondary object 14 (FIG. 10).


Referring additionally to FIG. 11, in embodiments comprising a pair of hot melt apparatuses 1, electrical integrators 9 of the pair of hot melt apparatuses 1 may be operatively connected by electrically conductive cable 13 which may further be operative to create an electrical ground path when the pair of hot melt apparatuses 1 are bonded separately to object 8 and secondary object 14.


In other embodiments where there is a plurality of hot melt apparatuses 1, the plurality of hot melt apparatuses 1 may be connected by mechanical integrators 7 and electrical integrators 9 and one or more of the plurality of hot melt apparatuses 1 used to bond object 8 to secondary object 14. These multiple hot melt apparatus 1 may be integrated in a number equal to the number of objects 8,14 to be joined. The plurality of paired hot melt apparatuses may be equal in number to a number of objects 8 to be joined.


Referring additionally to FIG. 13, the plurality of hot melt apparatus 1, which may be a pair, may further be integrated within a common structural body 3 with thermoplastic material 2 at both ends to create a double sided hot melt apparatus 15 which may be used to bond object 8 to secondary object 14. Double sided hot melt apparatus 15 may achieve an electrical ground path between object 8 and secondary object 14.


Referring additionally to FIG. 9, for embodiments with cables, cable manager 11 may be present and operatively connected to hot melt apparatus 1, where cable manager 11 is configured to provide positioning, placement and retention of cables, ropes, or tethers. In certain embodiments, cable manager 11 comprises a hook shape.


Still referring to FIG. 9, in one or more embodiments hot melt apparatus 1 further comprises material manager 12 operatively connected to hot melt apparatus 1. Material manager 12 may comprise a plow or similar shape to aid in providing for the movement, lifting, and retention of moveable surface materials of object 8.


In most of these embodiments, thermoplastic material 2 may comprise an electrically conductive material which may further provide a grounding path through thermoplastic material 2.


In the operation of exemplary embodiments, referring generally to FIG. 14, a thermoplastic material may be applied to a surface using hot melt apparatus 1 as described above in its various embodiments, where the various embodiments and their application methods illustrate a departure from the current art.


Thermoplastic material 2 is brought in its solid form into contact with a surface via mechanical extrusion of thermoplastic material 2 and heater 4 used to heat thermoplastic material 2 to a temperature at or above a melting temperature of thermoplastic material 2 while maintaining the contact of thermoplastic material 2 with the surface. Thermoplastic material 2 may be electrically conductive and providing a grounding path through the electrically conductive thermoplastic material 2.


Once applied, as illustrated in FIG. 2, heated thermoplastic material 2 is allowed to cool to a temperature that is below thermoplastic material's 2 melting temperature and the heated thermoplastic material 2 allowed to bond hot melt apparatus 1 to the contacted surface 14 without a solvent or use of a curing chemical reaction when the heated thermoplastic material 2 is cooled to below the melting temperature of thermoplastic material 2.


Thermoplastic material 2 in solid form may further comprise a predetermined shape selected to comprise as shape that improves the bond of thermoplastic material 2 with the contacted surface. The shape typically comprises a predetermined geometric pattern. Where the surface comprises a rough or uneven surface, the method may further comprise varying a thickness of the selected shape of thermoplastic material 2 wherein the connection of rough or uneven surfaces are completed.


If present, as illustrated in FIG. 4, separable interface 6 may be disposed intermediate heater 4 and thermoplastic material 2, where separable interface 6 comprises upper portion 6a connected to heater 4 and lower portion 6b selectively attachable and detachable from upper portion 6a which is substantially permanently attached to thermoplastic material 2. In such embodiments, separable interface 6 may be used to create an evenly distributed thermal transfer of heat into thermoplastic material 2.


In embodiments comprising mechanical integrator 7 and referring generally to FIG. 5, hot melt apparatus 1 may be mechanically integrated onto and/or in to object 8 using mechanical integrator 7 to become a tool or structural extension of object 8.


In other embodiments, hot melt apparatus 1 may be temporarily attached to placement device 10 using mechanical integrator 7 and subsequently disconnected from placement device 10 after a bond comprising thermoplastic material 2 is created to object 8.


In embodiments where hot melt apparatus 1 further comprises electrical integrator 9, and as generally illustrated in FIG. 8, hot melt apparatus 1 may be electrically integrated with object 8 using electrical integrator 9 and one or more electrical pathways provided from object 8 to support the operation of hot melt apparatus 1. This may include temporarily attaching hot melt apparatus 1 to placement device 10 using electrical integrator 9 disconnecting placement device 10 from hot melt apparatus 1 after a bond comprising thermoplastic material 2 is created to object 8.


In embodiments comprising a plurality of hot melt apparatuses 1, and as generally illustrated in FIG. 11, one or more electrically conductive cables 13 may be used to operatively interconnect electrical integrator 9 of a first hot melt apparatus 1 of the plurality of hot melt apparatuses 1 to electrical integrator 9 a second hot melt apparatus 1 of the plurality of hot melt apparatuses 1. Additionally, one or more electrical ground paths may be created through electrically conductive cable 13 when one or more of the plurality of hot melt apparatuses 1 are bonded separately to object 8 and, optionally, secondary object 14. In other of these embodiments, two or more of the plurality of hot melt apparatuses 1 may be interconnected by mechanical integrators 7 and electrical integrators 9 and used to bond object 8 to secondary object 1.


In other contemplated embodiments, and as generally illustrated in FIGS. 13 and 14, two or more hot melt apparatus 1 may be integrated within a common structural body 3 with thermoplastic material 2 at both ends to create a double-sided hot melt apparatus 15. The double-sided hot melt apparatus 15 may be used to bond object 8 to secondary object 14.


Where heater 4 comprises an electro-chemical heater, heater 4 may be activated using a low power electrical signal.


Where heater 4 comprises a chemical based heater, heater 4 may be activated through mixing of chemicals in heater 4.


In most of the contemplated embodiments, cooled thermoplastic material 2 may be reheated to allow removal of hot melt apparatus 1 from surface to which the thermoplastic material 2 has been bonded. In these embodiments, multiple heating and cooling cycles of hot melt apparatus 1 may be allowed, further allowing use and reuse of hot melt apparatus 1 multiple times.


The foregoing disclosure and description of the inventions are illustrative and explanatory. Various changes in the size, shape, and materials, as well as in the details of the illustrative construction and/or an illustrative method may be made without departing from the spirit of the invention.

Claims
  • 1. A method of applying a thermoplastic material to a surface using a hot melt apparatus comprising a structural body, a solid form thermoplastic material connected to the structural body, the solid form thermoplastic material mechanically extrudable onto a surface to be joined when the solid form thermoplastic material is heated where the solid form thermoplastic material solidifies while remaining connected to the structural body as the heated solid form thermoplastic material cools, and a controllable heater connected to the structural body and to the solid form thermoplastic material where the controllable heater comprises a heat generator which is adapted to actively heat the solid form thermoplastic material to a temperature above its melting temperature and which is able to actively cool to a temperature which allows the heated solid form thermoplastic material to cool and solidify without the use of a solvent, the method comprising: a. bringing the thermoplastic material in its solid form into contact with a surface to be joined;b. using the controllable heater to actively heat the thermoplastic material to a temperature above a melting temperature of the thermoplastic material while maintaining the contact of the thermoplastic material with the surface;c. mechanically extruding the solid form thermoplastic material when the solid form thermoplastic material is heated;d. after being mechanically extruded, using the selectively controllable heater to actively cool the heated thermoplastic material to a temperature that is below the thermoplastic material's melting temperature;e. as the heated solid form thermoplastic material cools, allowing the heated thermoplastic material to solidify while remaining connected to the structural body; andf. allowing the heated thermoplastic material to bond the hot melt apparatus to the contacted surface without a solvent or use of a curing chemical reaction when the heated thermoplastic material is cooled to below the thermoplastic material's melting temperature while remaining connected to the structural body.
  • 2. The method of applying a thermoplastic material to a surface using a hot melt apparatus of claim 1, wherein the thermoplastic material in solid form further comprises a predetermined shape, the method further comprising selecting the predetermined shape as shape a that improves the bond of the thermoplastic material with the contacted surface, the shape comprising a geometric profile when the connection of complex surfaces are completed.
  • 3. The method of applying a thermoplastic material to a surface using a hot melt apparatus of claim 2, wherein the surface comprises a rough or uneven surface, the method further comprising varying a thickness of the selected shape of the thermoplastic material wherein the connection of rough or uneven surfaces are completed.
  • 4. The method of applying a thermoplastic material to a surface using a hot melt apparatus of claim 1, the hot melt apparatus further comprising a separable interface disposed intermediate the selectively controllable heater and the thermoplastic material, the separable interface comprising an upper portion connected to the heating mechanism and a lower portion selectively detachable from the upper portion, the lower portion permanently attached to the thermoplastic material, the method further comprising using the separable interface to create an evenly distributed thermal transfer of heat into the thermoplastic material.
  • 5. The method of applying a thermoplastic material to a surface using a hot melt apparatus of claim 1, further comprising reheating the cooled thermoplastic material to allow removal of the hot melt apparatus from the surface to which the thermoplastic material is bonded.
  • 6. The method of applying a thermoplastic material to a surface using a hot melt apparatus of claim 5, further comprising: a. allowing multiple heating and cooling cycles of the hot melt apparatus; andb. reusing the hot melt apparatus a plurality of times.
  • 7. The method of applying a thermoplastic material to a surface using a hot melt apparatus of claim 1, the hot melt apparatus further comprising a mechanical integrator, the method further comprising mechanically integrating the hot melt apparatus to an object to become a tool or structural extension of the object.
  • 8. The method of applying a thermoplastic material to a surface using a hot melt apparatus of claim 7, further comprising: a. temporarily attaching the hot melt apparatus to a placement device using the mechanical integrator; andb. disconnecting the placement device from the hot melt apparatus after the thermoplastic material bond is created to a surface.
  • 9. The method of applying a thermoplastic material to a surface using a hot melt apparatus of claim 1, the hot melt apparatus further comprising an electrical integrator, the method further comprising: a. electrically integrating the hot melt apparatus with an object; andb. providing an electrical pathway from the object to support the operation of the hot melt apparatus.
  • 10. The method of applying a thermoplastic material to a surface using a hot melt apparatus of claim 9, further comprising: a. temporary attachment of the hot melt apparatus to any placement device using the electrical integrator; andb. disconnecting the placement device from the hot melt device after the thermoplastic material bond is created to any object.
  • 11. The method of applying a thermoplastic material to a surface using a hot melt apparatus of claim 9, further comprising using a pair of hot melt apparatuses, the method further comprising: a. using an electrically conductive cable to operatively interconnect the electrical integrator of a first hot melt apparatus of the pair of hot melt apparatus to electrical integrator a second hot melt apparatus of the pair of hot melt apparatus; andb. creating an electrical ground path through the electrically conductive cable when the hot melt apparatuses are bonded separately to any object and any secondary object.
  • 12. The method of applying a thermoplastic material to a surface using a hot melt apparatus of claim 1, wherein the hot melt apparatuses are connected by mechanical integrators and electrical integrators and used to bond the object to any other secondary object.
  • 13. The method of applying a thermoplastic material to a surface using a hot melt apparatus of claim 1, further comprising: a. integrating a pair of hot melt apparatus within a common structural body with thermoplastic material at both ends to create a double sided hot melt apparatus; andb. using the double-sided hot melt apparatus to bond the object to any other secondary object.
  • 14. The method of applying a thermoplastic material to a surface using a hot melt apparatus of claim 13, further comprising using a plurality of pairs of hot melt apparatuses, the plurality of paired hot melt apparatuses equal in number to a number of objects to be joined.
  • 15. The method of applying a thermoplastic material to a surface using a hot melt apparatus of claim 14, further comprising: a. using a thermoplastic material that is electrically conductive; andb. providing a grounding path through the electrically conductive thermoplastic material.
  • 16. The method of applying a thermoplastic material to a surface using a hot melt apparatus of claim 1, the selectively controllable heater comprising an electro-chemical heater, the method further comprising activating the electro-chemical heater using a low power electrical signal.
  • 17. The method of applying a thermoplastic material to a surface using a hot melt apparatus of claim 1, the selectively controllable heater comprising a chemical-based selectively controllable heater, the method further comprising activating the chemical-based selectively controllable heater through mixing of chemicals in the chemical-based selectively controllable heater.
RELATION

This application is a divisional application of U.S. patent application Ser. No. 16/037,930 filed on 17 Jul. 2018 and claims priority through U.S. Provisional Application 62/533,608, filed Jul. 17, 2017.

Divisions (1)
Number Date Country
Parent 16037930 Jul 2018 US
Child 17010641 US