Ink delivery systems generally deliver ink from a reservoir to ports on a print head. The ink travels through umbilicals or tubing, enters the printhead and then ends up on a printing substrate as selected by the delivery system within the print head. In hot melt ink printers, the ink takes the form of solid ‘sticks’ of ink that is then melted into a first reservoir. Depending upon the configuration of the printer, the ink may travel from the first reservoir to a smaller reservoir closer to the print head until print demand requires delivery of the ink to the print head.
Some current implementations of piezoelectric ink jet (PIJ) printers may use an ink delivery system to deliver ink to 16 ports on the print head asynchronously. These systems may contain 16 solenoid valves, air router manifolds, low and high pressure chambers, check valve disks, check ball assemblies and fluid routing plates. An air pulse drives the ink from the solenoid in a single plug flow, in some embodiments the flow was only 0.6 grams per sec. The introduction of the pressurized air pulses can cause foaming, overfill, and print head leakage or ‘drooling’ if more than 2 colors are simultaneously delivered to a single head.
Further, this implementation has limitations as to the maximum flow rate of the ink and the number of colors that can be delivered to the print heads simultaneously. The print head also has a higher than desirable impulse pressure and several parts, as listed above.
The print head ink reservoir may actually consist of several ink reservoirs, one for each color standard to the color printing process, cyan, yellow, magenta and black. The ink travels from the reservoirs through a series of outlet plates and manifold plates that route the ink to an array of jets such as 12 on an aperture plate or jet stack 14. A control circuit 16 controls the exit of the ink through the jet stack to form drops of ink on a print substrate, subsequently forming an image. The control circuit 16 may consist of a flex circuit. The ink passes through all of these plates by pressurized air.
As mentioned previously, using pressurized air as a delivery system throughout the print head may cause performance issues, including limitations on max flow rate. Using a low-pressure reservoir to drip the ink into an internal pump assembly, one can maintain a higher flow rate without the issues presented by the use of pressurized air. An embodiment of such as print head is shown in
In
The diaphragm plate 34 comprises one part of an internal pump assembly discussed in more detail later. A lower diaphragm plate, or channel plate 36, mates with the diaphragm plate 34. A valve plate 38, such as that shown in
In operation, ink drips from the low pressure reservoirs into the port that feeds the reed valves on the reed plate 38 to the upper routing plate 40. The ink diverts into channels on the upper routing plate. The diaphragm plate 34 has an array of piezo diaphragm elements such as 46. When activated, the diaphragm element extends ‘upwards’ towards the low pressure reservoir 30, drawing the ink from the upper routing plate through intake one-way valves on the valve plate 38. When the diaphragm elements collapse, the intake one-way valves close, and the outlet one-way valves open, pushing the ink to the lower routing plate 42, which then channels the ink to the jet stack and ultimately onto the print substrate.
In order to facilitate the process, many of the plates have features that provide the necessary elements for correct operation of the pump assembly. In this embodiment, the pump assembly consists of the diaphragm plate, the channel plate and the valve plate. The side view of
For example, the backside of the low pressure housing 32 has clearance pockets such as 48 to allow the membranes elements to expand upward. As can be seen in the backside of the channel plate 36, seals are provided such as 50 for the one-way, or reed, valves. The importance of these seals will be discussed further.
The piezoelectric elements on the diaphragm plate correspond to channel regions such as 56 on the channel, or lower diaphragm, plate 36. The channel regions may consist of cavities having a concave shape to allow the diaphragm to collapse into the regions. The channel regions in this embodiment also have a port 60 and channel 58 in the concave region to allow ink flow and temporary pooling.
The valve plate 44 may consist of one-way valve pairs. The discussion may also refer to the one-way valves as reed valves. The valve pairs correspond to the channel regions such as 56 on the channel plate 36. One valve in each pair would be an intake or inlet valve and the other valve would be an outlet valve. As the membrane expands upwards, the intake valve would allow the ink to flow upwards. As the membrane collapses, the pressure would cause the intake valve to close and the outlet valve to open, pushing the ink to the lower routing plate, not shown in
In experiments, a voltage waveform at 525 volts at 25 to 35 Hz was applied to the elements with a 150 volt offset to bias the elements in compression to prevent piezo cracking. The bias limits the deflection height of the piezo reducing total tension strains. The waveform was optimized for a 40% dwell time with sinusoidal transitions to smooth the stress fluctuations and lower shock loads at the intake and pump processes. A flow rate of 4.4 grams per minute was achieved at 7 pounds per square inch with 20 inch head pumping through a 36 inch tube of 0.078 inch diameter, and a flow rate of 6.0 grams per minute was achieved at 7.4 pounds per square inch with 1 in head pumping through the same dimensioned tube. This produced a 75 micrometer diaphragm deflection with a piezo 5H material that has higher deflection/volt response than other materials. A lower priming frequency 15 to 25 Hz was required to develop the initial cavity fill and eject air bubbles in the pump. After the pump is primed it is ready for fluid delivery on demand at the higher pump rate. The piezo assembly was stiffened against fracture by laminating a 25 um thick aluminum foil with a high temperature Kapton adhesive.
Further experiments tested the life cycle of the valves. A life test was run on the reed valves for 1×109 cycles without cracking the valves at 474 volts with only a loss of 10 micrometers of deflection on the valves over the life test. These settings are measurements were merely to test one embodiment of the internal pump assembly. No limitation to these settings is required, nor should such a requirement be implied. The element was laminated with 0.001 inch thick aluminum foil and bonded with a heat cured polyimide Kapton tape to further stabilize stress responses, prevent cracking at high drive voltages.
It will be appreciated that several of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also that various presently unforeseen or unanticipated alternatives, modifications, variations, or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4882596 | Tsuzuki et al. | Nov 1989 | A |
5371529 | Eguchi et al. | Dec 1994 | A |
7837306 | Fujishiro | Nov 2010 | B2 |
20060152557 | Silverbrook et al. | Jul 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20090027458 A1 | Jan 2009 | US |