Hot press-formed product and process for producing same

Information

  • Patent Grant
  • 9475112
  • Patent Number
    9,475,112
  • Date Filed
    Friday, June 8, 2012
    12 years ago
  • Date Issued
    Tuesday, October 25, 2016
    8 years ago
Abstract
There is provided a hot press-formed product, including a thin steel sheet formed by a hot press-forming method, and having a metallic structure that contains bainitic ferrite at 70% to 97% by area, martensite at 27% by area or lower, and retained austenite at 3% to 20% by area, the remainder structure of which is at 5% by area or lower, whereby balance between strength and elongation can be controlled in a proper range and high ductility can be achieved.
Description
TECHNICAL FIELD

The present invention relates to a hot press-formed product required to have high strength, such as used for structural members of automobile parts, a process for producing the same, and a thin steel sheet for hot press forming. In particular, the present invention relates to a hot press-formed product that can be provided with a prescribed shape and at the same time heat treated to have prescribed strength when a preheated steel sheet (blank) is formed into the prescribed shape, a process for producing such a hot press-formed product, and a thin steel sheet for hot press forming.


BACKGROUND ART

As one of the measures for fuel economy improvement of automobiles beginning from global environmental problems, automobile body lightening has proceeded, and steel sheets to be used for automobiles need to be strengthened as highly as possible. However, highly strengthening of steel sheets for automobile lightening lowers elongation EL or r value (Lankford value), resulting in the deterioration of press formability or shape fixability.


To solve such a problem, a hot press-forming method has been adopted for production of parts, in which method a steel sheet is heated to a prescribed temperature (e.g., a temperature for change in austenite phase) to lower its strength (i.e., make it easily formable) and then formed with a press tool at a temperature (e.g., room temperature) lower than that of the thin steel sheet, whereby the steel sheet is provided with a shape and at the same time heat treated by rapid cooling (quenching), which makes use of a temperature difference between both, to secure its strength after forming.


According to such a hot pressing method, a steel sheet is formed in a state of low strength, and therefore, the steel sheet has decreased springback (favorable shape fixability). In addition, the use of a material having excellent hardenability, to which alloy elements such as Mn and B have been added, thereby obtaining a strength of 1500 MPa class in terms of tensile strength by rapid cooling. Such a hot press-forming method has been called with various names, in addition to a hot press method, such as a hot forming method, a hot stamping method, a hot stamp method, and a die quench method.



FIG. 1 is a schematic explanatory view showing the structure of a press tool for carrying out hot press forming as described above (hereinafter represented sometimes by “hot stamp”). In this FIGURE, reference numerals 1, 2, 3, and 4 represent a punch, a die, a blank holder, and a steel sheet (blank), respectively, and abbreviations BHF, rp, rd, and CL represent a blank holding force, a punch shoulder radius, a die shoulder radius, and a clearance between the punch and the die, respectively. In these parts, punch 1 and die 2 have passage 1a and passage 2a, respectively, formed in the inside thereof, through which passages a cooling medium (e.g., water) can be allowed to pass, and the press tool is made to have a structure so that these members can be cooled by allowing the cooling medium to pass through these passages.


When a steel sheet is subjected to hot stamp (e.g., hot deep drawing) with such a press tool, the forming is started in a state where steel sheet (blank) 4 is softened by heating to a temperature within single-phase region, which is not lower than Ac3 transformation point. More specifically, steel sheet 4 is pushed into a cavity of die 2 (between the parts indicated by reference numerals 2 and 2 in FIG. 1) by punch 1 with steel sheet 4 in high-temperature state being sandwiched between die 2 and blank holder 3, thereby forming steel sheet 4 into a shape corresponding to the outer shape of punch 1 while reducing the outer diameter of steel sheet 4. In addition, heat is removed from steel sheet 4 to the press tool (punch 1 and die 2) by cooling punch 1 and die 2 in parallel with the forming, and the hardening of the material is carried out by further retaining and cooling steel sheet 4 at the lower dead point in the forming (the point of time when the punch head is positioned at the deepest level: the state shown in FIG. 1). Formed products with high dimension accuracy and strength of 1500 MPa class can be obtained by carrying out such a forming method. Furthermore, such a forming method results in that the volume of a pressing machine can be made smaller because a forming load can be reduced as compared with the case where parts of the same strength class are formed by cold pressing.


As steel sheets for hot stamp, which have widely been used at present, there are known steel sheets based on 22MnB5 steel. These steel sheets have tensile strengths of 1500 MPa and elongations of about 6% to 8%, and have been applied to impact-resistant members (members neither deformed nor fractured as much as possible at the time of impact). In addition, some developments have also proceeded for C content increase and further highly strengthening (in 1500 to 1800 MPa class) based on 22MnB5 steel.


However, there is almost no application of steel grades other than 22MnB5 steel. One can find a present situation where little consideration is made on steel grades or methods for controlling the strength and elongation of parts (e.g., strength lowering to 980 MPa class and elongation enhancement to 20%) to extend their application range to other than impact-resistant members.


In middle or higher class automobiles, taking into consideration compatibility (function of, when a small class automobile comes to collide, making safe of the other side) at the time of side or back impact, both functions as an impact-resistant portion and an energy-absorbing portion may sometimes be provided in parts such as B pillars or rear side members. To produce such members, there has mainly been used so far, for example, a method in which ultra-high tensile strength steel sheets having high strength of 980 MPa class and high tensile strength steel sheets having elongation of 440 MPa class are laser welded (to prepare a tailor welded blank, abbreviated as TWB) and then cold press formed. However, in recent years, the development of a technique has proceeded, in which parts are each provided with different strengths by hot stamp.


For example, Non-patent Document 1 has proposed a method of laser welding 22MnB5 steel for hot stamp and a material that does not have high strength even if quenched with a press tool (to prepare a tailor welded blank, abbreviated as TWB), followed by hot stamp, in which method different strengths are provided so that tensile strength at a high strength side (i.e., impact-resistant portion side) becomes 1500 MPa (and elongation becomes 6% to 8%) and tensile strength at a low strength side (i.e., energy-absorbing portion side) becomes 440 MPa (and elongation becomes 12%). In addition, as the technique of providing parts each with different strengths, some techniques have also been proposed, such as disclosed in Non-patent Documents 2 to 4.


The techniques disclosed in Non-patent Documents 1 and 2 provide a tensile strength of not higher than 600 MPa and an elongation of about 12% to 18% at an energy-absorbing portion side, in which techniques, however, laser welding (to prepare a tailor welded blank, abbreviated as TWB) is needed previously, thereby increasing the number of steps and resulting in high cost. In addition, it results in the heating of energy-absorbing portions, which need not to be hardened originally. Therefore, these techniques are not preferred from the viewpoint of energy consumption.


The technique disclosed in Non-patent Document 3 is based on 22MnB5 steel, in which boron addition, however, adversely affects the robustness of strength after quenching against heating to a temperature within two-phase region, making difficult the control of strength at an energy-absorbing portion side, and further making it possible to obtain only an elongation as low as 15%.


The technique disclosed in Non-patent Document 4 is based on 22MnB5 steel, and therefore, this technique is not economic in that control is made in such a manner that 22MnB5, which originally has excellent hardenability, is not hardened (control of press tool cooling).


PRIOR ART DOCUMENTS
Non-Patent Documents



  • Non-patent Document 1: Klaus Lamprecht, Gunter Deinzer, Anton Stich, Jurgen Lechler, Thomas Stohr, Marion Merklein, “Thermo-Mechanical Properties of Tailor Welded Blanks in Hot Sheet Metal Forming Processes”, Proc. IDDRG2010, 2010.

  • Non-patent Document 2: Usibor1500P(22MnB5)/1500 MPa-8%-Ductibor500/550-700 MPa-17% [searched on Apr. 27, 2013] Internet <http://www.arcelormittal.com/tailoredblanks/pre/seifware.pl>

  • Non-patent Document 3: 22MnB5/above AC3/1500 MPa-8%-below AC3/Hv190-Ferrite/Cementite Rudiger Erhardt and Johannes Boke, “Industrial application of hot forming process simulation”, Proc, of 1st Int. Conf. on Hot Sheet Metal Forming of High-Performance steel, ed. By Steinhoff, K., Oldenburg, M, Steinhoff, and Prakash, B., pp 83-88, 2008.

  • Non-patent Document 4: Begona Casas, David Latre, Noemi Rodriguez, and Isaac Valls, “Tailor made tool materials for the present and upcoming tooling solutions in hot sheet metal forming”, Proc, of 1st Int. Conf. on Hot Sheet Metal Forming of High-Performance steel, ed. By Steinhoff, K., Oldenburg, M, Steinhoff, and Prakash, B., pp 23-35, 2008.



SUMMARY OF THE INVENTION
Problems to be Solved by the Invention

The present invention has been made in view of the above-described circumstances, and its object is to provide a hot press-formed product in which balance between strength and elongation can be controlled in a proper range and high ductility can be achieved, a process useful for producing such a hot press-formed product, and a thin steel sheet for hot press forming.


Means for Solving the Problems

The hot press-formed product of the present invention, which can achieve the above object, is a hot press-formed product, characterized by comprising a thin steel sheet formed by a hot press method, and having a metallic structure that contains bainitic ferrite at 70% to 97% by area, martensite at 27% by area or lower, and retained austenite at 3% to 20% by area, the remainder structure of which is at 5% by area or lower.


In the hot press-formed product of the present invention, the chemical element composition thereof is not particularly limited, typical examples of which may include the following chemical element composition: C at 0.15% to 0.4% (where “%” means “% by mass”, and the same applies to the below with respect to the chemical element composition); Si at 0.5% to 3%; Mn at 0.5% to 2%; P at 0.05% or lower (not including 0%); S at 0.05% or lower (not including 0%); Al at 0.01% to 0.1%; Cr at 0.01% to 1%; B at 0.0002% to 0.01%; Ti at (N content)×4% to 0.1%; and N at 0.001% to 0.01%, and the remainder consisting of iron and unavoidable impurities.


In the hot press-formed product of the present invention, it is also useful to allow additional elements to be contained, when needed; for example, (a) one or more selected from the group consisting of Cu, Ni, and Mo at 1% or lower (not including 0%) in total; and (b) V and/or Nb at 0.1% or lower (not including 0%) in total. Depending on the kind of element to be contained, the hot press-formed product may have further improved characteristics.


When the hot press-formed product of the present invention is produced, the following steps may be used, i.e., heating a thin steel sheet to a temperature not lower than Ac3 transformation point and not higher than 1000° C.; and then starting the forming of the thin steel sheet with a press tool to produce the hot press-formed product, during which forming an average cooling rate of 20° C./sec or higher is kept in the press tool and the thin steel sheet is cooled to a temperature range of not higher than (bainite transformation starting temperature Bs−100° C.) and not lower than martensite transformation starting temperature Ms, and which forming is finished after retention in the temperature range for 10 seconds or longer.


The present invention further includes a thin steel sheet for hot press forming, which is intended for producing a hot press-formed product as described above, and this thin steel sheet is characterized by having a chemical element composition as described above.


Effects of the Invention

The present invention makes it possible that: retained austenite can be allowed to exist at a proper fraction in the metallic structure of a hot press-formed product by properly controlling the conditions of a hot press-forming method; a hot press-formed product having more enhanced ductility (retained ductility) inherent to the formed product as compared with the case where conventional 22MnB5 steel is used; and strength and elongation can be controlled by a combination of heat treatment conditions and pre-forming steel sheet structure (initial structure).





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic explanatory view showing the structure of a press tool for carrying out hot press forming.





MODE FOR CARRYING OUT THE INVENTION

The present inventors have studied from various angles to realize a hot press-formed product having high strength and further exhibiting excellent ductility (elongation) after forming when a thin steel sheet is heated to a prescribed temperature and then hot press formed to produce the formed product.


As a result, the present inventors have found that a hot press-formed product having excellent balance between strength and ductility can be achieved when heating temperature and forming condition are controlled so that its structure is adjusted to contain retained austenite at 3% to 20% by area in the press forming of a thin steel sheet with a press tool to produce the hot press-formed product, thereby completing the present invention.


The reasons for setting the ranges of the respective structures (basic structure) in the hot press-formed product of the present invention are as follows:


[Bainitic Ferrite at 70% to 97% by Area]


Both high strength and high ductility of a hot press-formed product can be achieved by making its structure composed mainly of high-strength and high-ductility bainitic ferrite. From this viewpoint, the area fraction of bainitic ferrite may preferably be controlled to 70% by area or higher. However, when this fraction is higher than 97% by area, the fraction of retained austenite becomes insufficient, resulting in the lowering of ductility (retained ductility). The fraction of bainitic ferrite may preferably be not lower than 75% by area as the preferred lower limit (more preferably not lower than 80% by area) and not higher than 95% by area as the preferred upper limit (more preferably not higher than 90% by area).


[Martensite at 27% by Area or Lower]


Highly strengthening of a hot press-formed product can be achieved by allowing high-strength martensite to be contained in part. However, when its fraction becomes high, ductility (retained ductility) is lowered. From this viewpoint, the area fraction of martensite may preferably be controlled to 27% by area or lower. The fraction of martensite may preferably be not lower than 5% by area as the preferred lower limit (more preferably not lower than 10% by area) and not higher than 20% by area as the preferred upper limit (more preferably not higher than 15% by area).


[Retained Austenite at 3% to 20% by Area]


Retained austenite is transformed into martensite during plastic deformation, thereby having the effect of increasing work hardening rate (transformation-inducing plasticity) to improve the ductility of a formed product. To make such an effect exhibited, the fraction of retained austenite should be controlled to 3% by area or higher. When the fraction of retained austenite is higher, ductility becomes more excellent. In a composition to be used for automobile steel sheets, retained austenite that can be secured is limited, of which upper limit becomes about 20% by area. The fraction of retained austenite may preferably be not lower than 5% by area as the preferred lower limit (more preferably not lower than 7% by area) and not higher than 17% by area as the preferred upper limit (more preferably not higher than 15% by area).


[Remainder Structure at 5% by Area or Lower]


Besides the above structures, the metallic structure of a hot press-formed product may contain ferrite, pearlite, and/or bainite as the remainder structure, but may preferably contain the remainder structure as low as possible, because these structures are softer than martensite and have lower contributions to strength as compared with the other structures. However, the fraction of the remainder structure up to 5% by area may be acceptable. The fraction of the remainder structure may more preferably be not higher than 3% by area, still more preferably 0% by area.


When the hot press-formed product of the present invention is produced, a thin steel sheet may be used (which has the same chemical element composition as that of the hot press-formed product), and when the thin steel sheet is press formed with a press tool, the thin steel sheet may be heated to a temperature not lower than Ac3 transformation point and not higher than 1000° C., and then the forming of the thin steel sheet may be started, during which forming an average cooling rate of 20° C./sec or higher may be kept in the press tool and the thin steel sheet is cooled to a temperature range of not higher than (bainite transformation starting temperature Bs−100° C., sometimes abbreviated as “Bs−100° C.”) and not lower than martensite transformation starting temperature Ms, and which forming may be finished after retention in the temperature range for 10 seconds or longer. The reasons for defining the respective requirements in this process are as follows:


[Heating a Thin Steel Sheet to a Temperature not Lower than Ac3 Transformation Point and not Higher than 1000° C., and then Starting the Forming]


To properly adjust the structure of a hot press-formed product, the heating temperature should be controlled in a prescribed range. The proper control of the heating temperature makes it possible to cause transformation into a structure composed mainly of bainitic ferrite while securing a prescribed fraction of retained austenite in the subsequent cooling step to provide the final hot press-formed product with a desired structure. When the heating temperature of the thin steel sheet is lower than Ac3 transformation point, a sufficient fraction of austenite cannot be obtained during heating, and therefore, a prescribed fraction of retained austenite cannot be secured in the final structure (the structure of a formed product). When the heating temperature of the thin steel sheet is higher than 1000° C., the grain size of austenite becomes increased during heating, thereby causing a rise of martensite transformation starting temperature (Ms point) and martensite transformation finishing temperature (Mf point), and retained austenite cannot be secured during quenching, thereby making it impossible to achieve excellent formability.


[During Forming, an Average Cooling Rate of 20° C./Sec or Higher is Kept in the Press Tool, and the Thin Steel Sheet is Cooled to a Temperature Range of not Higher than (Bs−100° C.) and not Lower than Martensite Transformation Starting Temperature Ms]


To change the austenite, which was formed in the above heating step, into a desired structure, while preventing the formation of structures such as ferrite and pearlite, the average cooling rate during forming and the cooling stopping temperature should properly be controlled. From this viewpoint, the average cooling rate during forming should be controlled to 20° C./sec or higher, and the cooling stopping temperature should be controlled to a temperature not higher than (Bs−100° C.) and not lower than martensite transformation starting temperature Ms (this controlled temperature may sometimes be referred to as “cooling rate changing temperature”). The average cooling rate may preferably be 30° C./sec or higher (more preferably 40° C./sec or higher). The control of the average cooling rate during forming can be achieved by a means of, for example, (a) controlling the temperature of a press tool (using a cooling medium shown in FIG. 1 above) or (b) controlling the thermal conductivity of a press tool.


[Forming is Finished after Retention in the Temperature Range for 10 Seconds or Longer]


The bainite transformation can proceed from super-cooled austenite to form a structure composed mainly of bainitic ferrite by once stopping the cooling in the above temperature range and retaining the thin steel sheet in the above temperature range (i.e., a temperature range of not higher than (Bs−100° C.) and not lower than martensite transformation starting temperature Ms). The retention time may preferably be 50 seconds or longer (more preferably 100 seconds or longer). When the retention time becomes too long, austenite starts to decompose, so that the fraction of retained austenite cannot become secured. Therefore, the retention time may preferably be 1000 seconds or shorter (more preferably 800 seconds or shorter).


A retention step as described above may be any of isothermal retention, monotonic cooling, and re-heating step, so long as it is in the above temperature range. With regard to a relationship between such retention and forming, retention as described above may be added at the stage when forming is finished. Alternatively, a retention step may be added within the above temperature range during the finish of forming. After forming is finished in such a manner, the thin steel sheet may be left as it is for cooling or cooled at a proper cooling rate to room temperature.


The process for producing the hot press-formed product of the present invention can be applied, not only to the case where a hot press-formed product having a simple shape as shown in FIG. 1 above is produced (i.e., direct method), but also to the case where a formed product having a relatively complicated shape is produced. However, in the case of a complicated product shape, it may be difficult to provide a product with the final shape by a single press forming step. In such a case, there can be used a method of cold press forming in a step prior to hot press forming (this method has been referred to as “indirect method”). This method includes previously forming a difficult-to-form portion into an approximate shape by cold processing and then hot press forming the other portions. When such a method is used to produce, for example, a formed product having three projections (profile peaks) by forming, two projections are formed by cold press forming and the third projection is then formed by hot press forming.


The present invention is intended for a hot press-formed product made of a high-strength steel sheet, the steel grade of which is acceptable, if it has an ordinary chemical element composition as a high-strength steel sheet, in which, however, C, Si, Mn, P, S, Al, Cr, B, Ti, and N contents may preferably be controlled in their respective proper ranges. From this viewpoint, the preferred ranges of these chemical elements and the grounds for limiting their ranges are as follows:


[C at 0.15% to 0.4%]


C is an important element for making fine bainitic ferrite to be formed in the cooling step and improving strength by increasing dislocation density in bainitic ferrite. In addition, it is an element highly related to hardenability, and it exhibits the effect of suppressing the formation of other soft structures such ferrite during cooling after heating by increasing C content. Furthermore, it is an important element even for securing retained austenite. When C content is lower than 0.15%, bainite transformation starting temperature Bs increases, so that the hot press-formed product cannot be secured to have high strength. When C content becomes higher than 0.4%, it results in that strength becomes too high, so that excellent ductility cannot be obtained. C content may more preferably be not lower than 0.18% as the more preferred lower limit (still more preferably not lower than 0.20%) and not higher than 0.35% as the more preferred upper limit (still more preferably not higher than 0.3% and further still more preferably not higher than 0.25%).


[Si at 0.5% to 3%]


Si exhibits the action of forming retained austenite during quenching. It further exhibits the action of enhancing strength by solid solution enhancement without deteriorating ductility too much. When Si content is lower than 0.5%, retained austenite cannot be secured at a prescribed fraction, making it impossible to obtain excellent ductility. When Si content becomes higher than 3%, the degree of solid solution enhancement becomes too high, resulting in the drastic deterioration of ductility. Si content may more preferably be not lower than 1.15% as the more preferred lower limit (still more preferably not lower than 1.20%) and not higher than 2.7% as the more preferred upper limit (still more preferably not higher than 2.5%).


[Mn at 0.5% to 2%]


Mn is an element useful for suppressing the formation of ferrite and pearlite during primary cooling. In addition, it is an element useful for making fine structure units of bainitic ferrite by lowering (Bs−100° C.) and enhancing bainitic ferrite strength by increasing dislocation density in bainitic ferrite. Furthermore, it is an element effective for increasing the fraction of retained austenite by stabilizing austenite. To make such effects exhibited, Mn may preferably be contained at 0.5% or higher. Mn content may be preferred when it is higher, in the case where only characteristics are taken into consideration, but Mn content may preferably be controlled to 2% or lower, because of a cost increase by alloy element addition. In addition, a considerable improvement of austenite strength increases a hot rolling load, thereby making it difficult to produce steel sheets, and therefore, even from the viewpoint of productivity, it is not preferable that Mn is contained at higher than 2%. Mn content may more preferably be not lower than 0.7% as the more preferred lower limit (still more preferably not lower than 0.9%) and not higher than 1.8% as the more preferred higher limit (still more preferably not higher than 1.6%).


[P at 0.05% or Lower (not Including 0%)]


P is an element unavoidably contained in steel and deteriorates ductility. Therefore, P content may preferably be reduced as low as possible. However, extreme reduction causes an increase of steel production cost, and reduction to 0% is difficult in the actual production. Therefore, P content may more preferably be controlled to 0.05% or lower (not including 0%). P content may more preferably be not higher than 0.045% as the more preferred upper limit (still more preferably not higher than 0.040%).


[S at 0.05% or Lower (not Including 0%)]


S is also an element unavoidably contained in steel and deteriorates ductility, similarly to P. However, extreme reduction causes an increase of steel production cost, and reduction to 0% is difficult in the actual production. Therefore, S content may preferably be controlled to 0.05% or lower (not including 0%). S content may more preferably be not higher than 0.045% as the more preferred upper limit (still more preferably not higher than 0.040%).


[Al at 0.01% to 0.1%]


Al is useful as a deoxidizing element and further useful for fixation of dissolved N in steel as AlN to improve ductility. To make such an effect effectively exhibited, Al content may preferably be controlled to 0.01% or higher. However, when Al content becomes higher than 0.1%, it results in the excessive formation of Al2O3 to deteriorate ductility. Al content may more preferably be not lower than 0.013% as the more preferred lower limit (still more preferably not lower than 0.015%) and not higher than 0.08% as the more preferred upper limit (still more preferably not higher than 0.06%).


[Cr at 0.01% to 1%]


Cr has the action of suppressing ferrite transformation and pearlite transformation, and therefore, it is an element to prevent the formation of ferrite and pearlite during cooling, thereby contributing to the securement of retained austenite. To make such an effect exhibited, Cr may preferably be contained at 0.01% or higher. Even if Cr is contained at higher than 1%, it results in a cost increase. In addition, a considerable improvement of austenite strength increases a hot rolling load, thereby making it difficult to produce steel sheets, and therefore, even from the viewpoint of productivity, it is not preferable that Cr is contained at higher than 1% Cr content may more preferably be not lower than 0.02% as the more preferred lower limit (still more preferably not lower than 0.05%) and not higher than 0.8% as the more preferred higher limit (still more preferably not higher than 0.5%).


[B at 0.0002% to 0.01%)]


B has the action of enhancing hardenability and suppressing ferrite transformation and pearlite transformation, and therefore, it is an element to prevent the formation of ferrite and pearlite during primary cooling after heating, thereby contributing to the securement of bainitic ferrite and retained austenite. To make such an effect exhibited, B may preferably be contained at 0.0002% or higher, but even if B is contained beyond 0.01%, the effect is saturated. B content may more preferably be not lower than 0.0003% as the more preferred lower limit (still more preferably not lower than 0.0005%) and not higher than 0.008% as the more preferred upper limit (still more preferably not higher than 0.005%).


[Ti at (N Content)×4% to 0.1%]


Ti fixes N and maintains B in solid solution state, thereby exhibiting the effect of improving hardenability. To make such an effect exhibited, Ti may preferably be contained at least 4 times higher than N content. However, when Ti content becomes excessive beyond 0.1%, it results in excessive formation of TiC, thereby causing an increase of strength by precipitation enhancement but a deterioration of ductility. Ti content may more preferably be not lower than 0.05% as the more preferred lower limit (still more preferably not lower than 0.06%) and not higher than 0.09% as the more preferred higher limit (still more preferably not higher than 0.08%).


[N at 0.001% to 0.01%]


N is an element to fix B as BN, thereby lowering the effect of hardenability improvement, and a reduction of N content as low as possible may be preferred, which has, however, a limitation in actual process. Therefore, the lower limit of N content was set to 0.001%. When N content becomes excessive, it results in the formation of coarse TiN, which becomes the origin of fracture, thereby deteriorating ductility. Therefore, the upper limit of N content was set to 0.01%. N content may more preferably be not higher than 0.008% as the more preferred upper limit (still more preferably not higher than 0.006%).


The basic chemical components in the press-formed product of the present invention are as described above, and the remainder consists essentially of iron. The wording “consists essentially of iron” means that the press-formed product of the present invention can contain, in addition to iron, minor components (e.g., besides Mg, Ca, Sr, and Ba, REM such as La, and carbide-forming elements such as Zr, Hf, Ta, W, and Mo) in such a level that these minor components do not inhibit the characteristics of the steel sheet of the present invention, and can further contain unavoidable impurities (e.g., O, H) other than P and S.


It is also useful to allow the press-formed product of the present invention to contain additional elements, when needed; for example, (a) one or more selected from the group consisting of Cu, Ni, and Mo at 1% or lower (not including 0%) in total; and (b) V and/or Nb at 0.1% or lower (not including 0%) in total. The press-formed product may have further improved characteristics depending on the kinds of elements contained. When these elements are contained, their preferred ranges and grounds for limitation of their ranges are as follows:


[One or More Selected from the Group Consisting of Cu, Ni, and Mo at 1% or Lower (not Including 0%) in Total]


Cu, Ni, and Mo suppress ferrite transformation and pearlite transformation to prevent the formation of ferrite and pearlite during primary cooling, and effectively act the securement of retained austenite. To make such an effect exhibited, these elements may preferably be contained at 0.01% or higher in total. Taking only characteristics into consideration, their content may be preferable when it is higher, but may preferably be controlled to 1% or lower in total because of a cost increase by alloy element addition. In addition, these elements have the action of considerably enhancing the strength of austenite, thereby increasing a hot rolling load so that the production of steel sheets becomes difficult. Therefore, even from the viewpoint of productivity, their content may preferably be controlled to 1% or lower. These elements' content may more preferably be not lower than 0.05% as the more preferred lower limit (still more preferably not lower than 0.06%) in total and not higher than 0.9% as the more preferred upper limit (still more preferably not higher than 0.8%) in total.


[V and/or Nb at 0.1% or Lower (not Including 0%) in Total]


V and Nb have the effect of forming fine carbide and make structure fine by pinning effect. To make such an effect exhibited, these elements may preferably be contained at 0.001% or higher in total. However, when these elements' content becomes excessive, it results in the formation of coarse carbide, which becomes the origin of fracture, thereby deteriorating ductility in contrast. Therefore, these elements' content may preferably be controlled to 0.1% or lower in total. These elements' content may more preferably be not lower than 0.005% as the more preferred lower limit (still more preferably not lower than 0.008%) in total and not higher than 0.08% as the more preferred upper limit (still more preferably not higher than 0.06%) in total.


The thin steel sheet for hot press forming of the present invention may be either a non-plated steel sheet or a plated steel sheet. When it is a plated steel sheet, the type of plating may be either ordinary galvanization or aluminium coating. The method of plating may be either hot-dip plating or electroplating. After the plating, alloying heat treatment may be carried out, or additional plating may be carried out as multilayer plating.


According to the present invention, the characteristics of formed products, such as strength and elongation, can be controlled by properly adjusting press forming conditions (heating temperature and cooling rate), and in addition, hot press-formed products having high ductility (retained ductility) can be obtained, so that they can be applied even to parts (e.g., energy-absorbing members), to which conventional hot press-formed products have hardly been applied; therefore, the present invention is extremely useful for extending the application range of hot press-formed products. The formed products, which can be obtained in the present invention, have further enhanced residual ductility as compared with formed products, of which structure was adjusted by ordinary annealing after cold press forming.


The following will describe the advantageous effects of the present invention more specifically by way of Examples, but the present invention is not limited to the Examples described below. The present invention can be put into practice after appropriate modifications or variations within a range capable of meeting the gist described above and below, all of which are included in the technical scope of the present invention.


The present application claims the benefit of priority based on Japanese Patent Application No. 2011-130637 filed on Jun. 10, 2011. The entire contents of the specification of Japanese Patent Application No. 2011-130637 filed on Jun. 10, 2011 are hereby incorporated by reference into the present application.


EXAMPLES

Steel materials having respective chemical element compositions shown in Table 1 below were formed into slabs for experimental use by a vacuum fusion method, after which the slabs were hot rolled, followed by cooling, and then wound. These rolled sheets were further cold rolled into thin steel sheets. In Table 1, Ac3 transformation point, Ms point, and Bs point were determined respectively using formulas (1) to (3) described below (see, e.g., the Japanese translation of “The Physical Metallurgy of Steels” originally written by William C. Leslie, published by Maruzen, 1985).

Ac3 transformation point(° C.)=910−203×[C]1/2+44.7×[Si]−30×[Mn]+700×[P]+400×[Al]+400×[Ti]+104×[V]−11×[Cr]+31.5×[Mo]−20×[Cu]−15.2×[Ni]  (1)
Ms point(° C.)=550−361×[C]−39×[Mn]−10×[Cu]−17×[Ni]−20×[Cr]−5×[Mo]+30×[Al]  (2)
Bs point(° C.)=830−270×[C]−90×[Mn]−37×[Ni]−70×[Cr]−83×[Mo]  (3)

where [C], [Si], [Mn], [P], [Al], [Ti], [V], [Cr], [Mo], [Cu], and [Ni] indicate C, Si, Mn, P, Al, Ti, V, Cr, Mo, Cu, and Ni contents (% by mass), respectively. When some element indicated in a certain term of formulas (1) to (3) above is not contained, calculation is carried out under the assumption that the term does not exist in the formula.
























TABLE 1














Chemical element composition*


Steel
(% by mass)






















grade
C
Si
Mn
P
S
Cu
Ni
Cr
Mo
V
Nb
Ti
B
Al
N





A
0.232
1.19
1.41
0.014
0.0021








0.053
0.0047


B
0.231
1.21
1.39
0.014
0.0021


0.21



0.027
0.0033
0.053
0.0047


C
0.222
1.20
1.29
0.014
0.0021


0.21



0.027
0.0033
0.053
0.0047


D
0.225
1.31
1.33
0.014
0.0021
0.15

0.21



0.027
0.0033
0.053
0.0047


E
0.234
1.10
1.52
0.014
0.0021

0.22
0.21



0.027
0.0033
0.053
0.0047


F
0.229
1.04
1.41
0.014
0.0021
0.07

0.21



0.027
0.0033
0.053
0.0047


G
0.219
1.20
1.14
0.014
0.0021


0.21
0.03


0.027
0.0033
0.053
0.0047


H
0.225
1.23
1.26
0.014
0.0021


0.21
0.17


0.027
0.0033
0.053
0.0047


I
0.217
1.41
1.44
0.014
0.0021


0.20

0.03

0.027
0.0033
0.053
0.0047


J
0.230
0.89
1.37
0.014
0.0021


0.19


0.03
0.027
0.0033
0.053
0.0047


K
0.047
0.89
1.25
0.014
0.0021


0.19


0.03
0.027
0.0033
0.053
0.0047


L
0.230
0.01
1.22
0.014
0.0021


0.19


0.03
0.027
0.0033
0.053
0.0047


M
0.311
1.20
1.29
0.014
0.0021


0.21



0.027
0.0033
0.053
0.0047

















Steel
Ac3transformation
Ms point
Bs-














grade
point (° C.)
(° C.)
100° C. (° C.)

















A
854
413
540














B
864
410
528














C
869
417
539














D
869
413
535














E
852
400
507














F
855
409
527














G
875
424
551














H
876
416
527














I
878
413
528














J
851
411
531














K
908
482
592














L
816
417
545














M
851
385
515





*The remainder consists of iron and unavoidable impurities other than P and S.






The steel sheets thus obtained were heated under the respective conditions shown in Table 2 below, and then subjected to forming and cooling treatment using a high speed heat treatment testing system for steel sheets (CAS series, available from ULVAC-RIKO, Inc.), which can control an average cooling rate. The steel sheets to be subjected to cooling treatment had a size of 190 mm×70 mm (and a sheet thickness of 1.4 mm). The production conditions (heating temperature, average cooling rate in primary cooling, cooling rate changing temperature, average cooling rate in secondary cooling, and retention time between (Bs−100° C.) and Ms point) at this time are shown in Table 2 below. When needed, the steel sheet was subjected to hot-dip galvanization to obtain a hot-dip galvanized steel sheet.











TABLE 2









Production conditions

















Average cooling


Average cooling
Retention time





rate
Cooling rate

rate
between




Heating
in primary
changing

in secondary
(Bs-100° C.) and


Test
Steel
temperature
cooling
temperature
Retention time
cooling
Ms point


No.
grade
(° C.)
(° C./sec)
(° C.)
(sec)
(° C./sec)
(sec)

















 1
A
900
50
480
0
5
14.6


 2
B
900
50
480
0
5
15.0


 3
C
900
50



2.4


 4
C
900
50
480
0
30
3.3


 5
C
900
50
480
0
5
13.8


 6
C
900
50
430
10
5
14.8


 7
C
780
50
480
0
5
13.8


 8
C
900
10
480
0
5
18.5


 9
C
900
50
600
0
5
24.5


10
C
900
50
380
0
5
2.4


11
D
900
50
480
0
5
14.5


12
E
900
50
480
0
5
16.6


13
F
900
50
480
0
5
15.1


14
G
900
50
480
0
5
12.7


15
H
900
50
480
0
5
13.7


16
I
900
50
480
0
5
14.3


17
J
900
50
480
0
5
14.8


18
K
900
50
480
0
5
1.8


19
L
900
50
480
0
5
13.9


20
M
900
50
480
0
5
19.7









For the respective steel sheets after the above treatments (heating, forming, and cooling), measurement of tensile strength (TS) and elongation (total elongation EL), and observation of metallic structure (fraction of each structure), were carried out by the methods described below.


[Tensile Strength (TS) and Elongation (Total Elongation EL)]


JIS No. 5 specimens were used for tensile tests to measure tensile strength (TS) and elongation (EL). At that time, strain rate in the tensile tests was set to 10 mm/sec. In the present invention, the specimens were evaluated as “passing” when fulfilling any of the conditions that: (a) tensile strength (TS) is from 980 to 1179 MPa and elongation (EL) is 15% or higher; and (b) tensile strength (TS) is 1180 MPa or higher and elongation (EL) is 12% or higher.


[Observation of Metallic Structure (Fraction of Each Structure)]


(1) For bainitic ferrite and other structures (ferrite and pearlite) in the steel sheets, the steel sheets were each subjected to nital etching, and then observed by SEM (with a magnification of 1000× or 2000×), in which the respective structures were distinguished to determine their respective fractions (area fractions).


(2) For the fraction (area fraction) of retained austenite in the steel sheets, the steel sheets were each measured by an X-ray diffraction method, after grinding to one-quarter thicknesses of the steel sheets and subsequent chemical polishing (see, e.g., ISJJ Int. Vol. 33 (1933), No. 7, p. 776).


(3) For the fraction of martensite (as-quenched martensite), the steel sheets were each subjected to repera etching, and assuming white contrast as a mixed structure of as-quenched martensite and retained austenite by SEM observation, the area fraction of the mixed structure was measured. The fraction of as-quenched martensite was calculated by subtracting the fraction of retained austenite, which had been determined by an X-ray diffraction method, from the area fraction of the mixed structure.


These results are shown in Table 3 below.













TABLE 3









Structure of formed product
Tensile





(% by area)
strength















Test
Steel

As-quenched


TS
Elongation


No
grade
Bainitic ferrite
martensite
Retained austenite
Other structures*
(MPa)
EL (%)

















 1
A
78
5
2
α: 15
1150
13


 2
B
86
5
6
α: 3 
1272
13


 3
C

94
6

1562
11


 4
C

95
5

1490
11


 5
C
75
20
5

1251
14


 6
C
87
6
7

1244
14


 7
C
60

8
α: 32
934
16


 8
C
35
13
2
α: 35, P: 15
951
14


 9
C
45
13
2
α: 30, P: 10
934
13


10
C

96
4

1511
10


11
D
83
10
7

1318
14


12
E
84
9
7

1302
14


13
F
85
7
8

1342
14


14
G
80
14
6

1288
14


15
H
82
12
6

1362
15


16
I
80
13
7

1311
14


17
J
85
10
5

1283
12


18
K
23
8
7
α: 62
821
16


19
L
100



1254
8


20
M
80
12
8

1530
13





*α and P indicate ferrite and pearlite, respectively.






From these results, discussions can be made as follows: Test Nos. 2, 5, 6, 11 to 17, and 20 are Examples fulfilling the requirements defined in the present invention, thereby indicating that parts having satisfactory balance between strength and ductility were obtained.


In contrast, Test Nos. 1, 3, 4, 7 to 10, 18, and 19 are Comparative Examples not fulfilling any of the requirements defined in the present invention, thereby deteriorating any of the characteristics. More specifically, Test No. 1 was the case where Cr, Ti, and B as essential components were not contained in steel grade A, so that the formed product had a structure having a low fraction of austenite, thereby obtaining only low elongation (EL). Test Nos. 3 and 4 were the cases where retention time between (Bs−100° C.) and Ms point was low, so that the fraction of martensite became high in the structure of the formed product, thereby obtaining only low elongation (EL).


Test No. 7 was the case where heating temperature was low, so that the formed product had a structure having a low fraction of bainitic ferrite, thereby obtaining only low tensile strength (TS). Test No. 8 was the case where average cooling rate in primary cooling was low, so that the formed product had a structure having a low fraction of bainitic ferrite and a low fraction of retained austenite, thereby, obtaining only low tensile strength (TS).


Test No. 9 was the case where cooling rate changing temperature was high, so that the fraction of bainitic ferrite was not secured and the fraction of retained austenite was also low by the formation of ferrite, thereby obtaining only low tensile strength (TS). Test No. 10 was the case where cooling rate changing temperature was low, so that the fraction of bainitic ferrite was not secured by the formation of martensite, thereby obtaining only low elongation (EL).


Test No. 18 was the case where C content was low in the steel element composition and the fraction of bainitic ferrite was not secured by the formation of ferrite, thereby lowering strength. Test No. 19 was the case where Si content was low in the steel element composition, so that retained austenite was not formed in the formed product, even when the cooling conditions were proper, thereby obtaining only low elongation (EL).


INDUSTRIAL APPLICABILITY

The present invention makes it possible to provide a hot press-formed product, including a thin steel sheet formed by a hot press-forming method, and having a metallic structure that contains bainitic ferrite at 70% to 97% by area, martensite at 27% by area or lower, and retained austenite at 3% to 20% by area, the remainder structure of which is at 5% by area or lower, whereby balance between strength and elongation can be controlled in a proper range and high ductility can be achieved.


DESCRIPTION OF REFERENCE NUMERALS






    • 1 Punch


    • 2 Die


    • 3 Blank holder


    • 4 Steel sheet (Blank)




Claims
  • 1. A hot press-formed product, comprising a thin steel sheet formed by a hot press-forming method, and having a metallic structure that contains bainitic ferrite at 70% to 97% by area, as-quenched martensite at 5% to 27% by area, and retained austenite at 3% to 20% by area, the remainder structure of which is at 5% by area or lower, having the following chemical element composition: C at 0.15% to 0.4% (where “%” means “% by mass”, and the same applies to the below with respect to the chemical element composition);Si at 0.5% to 3%;Mn at 0.5% to 2%;P at 0.05% or lower (not including 0%);S at 0.05% or lower (not including 0%);Al at 0.01% to 0.1%;Cr at 0.01% to 1%;B at 0.0002% to 0.01%;Ti at (N content)×4% to 0.1%; andN at 0.001% to 0.01%,and the remainder consisting of iron and unavoidable impurities.
  • 2. The hot press-formed product according to claim 1, further comprising, as additional elements, one or more selected from the group consisting of Cu, Ni, and Mo at 1% or lower (not including 0%) in total.
  • 3. The hot press-formed product according to claim 1, further comprising, as additional elements, V and/or Nb at 0.1% or lower (not including 0%) in total.
  • 4. A process for producing a hot press-formed product as set forth in claim 1, comprising: heating a thin steel sheet to a temperature not lower than Ac3 transformation point and not higher than 1000° C.; and thenstarting the forming of the thin steel sheet with a press tool to produce the hot press-formed product, during which forming an average cooling rate of 20° C./sec or higher is kept in the press tool and the thin steel sheet is cooled to a temperature range of not lower than martensite transformation starting temperature (Ms), and which forming is finished after retention in the temperature range for 10 seconds or longer.
Priority Claims (1)
Number Date Country Kind
2011-130637 Jun 2011 JP national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/JP2012/064849 6/8/2012 WO 00 10/24/2013
Publishing Document Publishing Date Country Kind
WO2012/169638 12/13/2012 WO A
US Referenced Citations (11)
Number Name Date Kind
9121087 Matsuda Sep 2015 B2
20060137768 Yuse et al. Jun 2006 A1
20080000555 Nonaka et al. Jan 2008 A1
20080023112 Kashima Jan 2008 A1
20080251161 Kashima et al. Oct 2008 A1
20090314395 Nonaka et al. Dec 2009 A1
20110132502 Bian Jun 2011 A1
20110146852 Matsuda et al. Jun 2011 A1
20110249995 Uchida et al. Oct 2011 A1
20130048161 Matsuda et al. Feb 2013 A1
20130192726 Chen et al. Aug 2013 A1
Foreign Referenced Citations (15)
Number Date Country
101035921 Sep 2007 CN
101155940 Apr 2008 CN
1676932 Jul 2006 EP
1490535 Nov 1973 GB
1490535 Nov 1974 GB
2438618 Dec 2007 GB
2004-190050 Jul 2004 JP
2006104526 Apr 2006 JP
2006-224162 Aug 2006 JP
2007-169679 Jul 2007 JP
2010090475 Apr 2010 JP
2010174280 Aug 2010 JP
2011184758 Sep 2011 JP
2006106733 Oct 2006 WO
2012048841 Apr 2012 WO
Non-Patent Literature Citations (7)
Entry
Ryu H-B et al., “Effect of thermomechanical processing on the retained austenite content in a Si—Mn transformation induced-plasticity steel”, Metallurgical and Materials Transactions A: Physical Metallurgy & Materials Science, ASM International, Materials Park, OH, US, vol. 33A, No. 9, Sep. 1, 2002, pp. 2811-2816, XP002584719.
K. Lamprecht et al., “Thermo-Mechanical Properties of Tailor Welded Blanks in Hot Sheet Metal Forming Processes”, Proc. IDDRG2010, 2010, pp. 1-12,Germany.
Usibor1500P(22MnB5)/1500MPa-8%-Ductibor500/500-700MPa-17% [searched on Apr. 27, 2013] Internet <http://www.arcelormittal.com/tailoredblanks/pre/seifware.pl>, 4 pages.
B. Casas et al., “Tailor made tool materials for the present and upcoming tooling solutions in hot sheet metal forming”, Proc. of 1st Int. Conf. on Hot Sheet Metal Forming of High-Performance steel, pp. 23-35, 2008.
R. Erhardt et al., “Industrial application of hot forming process simulation”, Proc. of 1st Int. Conf. on Hot Sheet Metal Forming of High-Performance steel, pp. 83-88, 2008.
International Search Report from ISA/Japanese Patent Office in a corresponding International Application No. PCT/JP2012/064849 dated Sep. 4, 2012, 2 page in Japanese and 1 page of translation in English.
The International Preliminary Report on Patentability and Written Opinion of the International Searching Authority from the International Bureau of WIPO in a corresponding International Application No. PCT/JP2012/064849 dated Dec. 10, 2013, 4 pages in Japanese and 7 page in English.
Related Publications (1)
Number Date Country
20140056754 A1 Feb 2014 US