The invention relates to austenitic heat resistant steel and its use for the fabrication of installations such as reactor vessels, forgings and pipelines operating at temperatures above 550° C. In particular, the invention pertains to a steel which is not susceptible to stress relaxation cracking.
Various industries, such as for example chemical industry, are using heat resistant steel types for applications operating at temperatures between 550 and 900° C., often under high pressures. The main degradation mechanisms at these temperatures are creep, chemical attack/oxidation and stress relaxation cracking. The first two degradation mechanisms have been thoroughly studied and taken into account in construction codes. Materials such as AISI 304H steel (whose main alloying elements are 18-20% Cr, 8-10.5% Ni), AISI 316H (16-18% Cr, 10-14% Ni, 2-3% Mo), 800H (19-23% Cr, 30-35% Ni) display high creep fracture strength. Under this respect, alloy 800H is favorable because it displays high fracture strength in the range 550-950° C. However, alloy 800H is expensive due to its high nickel content. In addition, the three aforementioned alloys are susceptible to stress relaxation cracking (SRC). Cracking occurs in intergranular mode, i.e. at grain boundaries. This phenomenon does not occur when susceptible alloys are subjected to thermal treatments to reduce residual stresses. It has been shown that heat treatments between 875 and 980° C. are effective to avoid SRC. However, these treatments at high temperature can hardly be performed on industrial sites. The components in the chemical industry are generally very complex and huge. It is also a cost consuming and risky procedure.
Thus, there is a need for a heat-resisting steel with high creep and oxidation resistance at high temperature, non-susceptible to stress relaxation cracking.
An object of the present invention may provide a heat resistant steel which is intrinsically not susceptible for relaxation cracking, so that extra heat treatments after manufacturing processes can be avoided.
Another object of the invention may provide a steel composition having excellent creep and oxidation properties in the large range of temperature range of 550 up to 900° C., especially in the temperature range between 550 and 750° C.
Another object of the invention may provide a steel composition which has high ductility at high temperature and which displays also satisfactory toughness at ambient temperature after a holding at high temperature.
A further object of the invention may provide a steel composition with limited amount of costly elements of additions such as nickel.
As a result of numerous tests and investigations, the inventors have found that when some elements, and in particular carbon, aluminum, chromium, nickel, molybdenum, boron, vanadium, nitrogen, are present in suitable ranges in steel , the aim of the invention may be attained.
The structure of the steel according to the invention is fully austenitic.
For this purpose, the subject of the invention provides an austenitic steel not susceptible to relaxation cracking, with composition comprising, in percentages by weight: 0.019%≤C≤0.030%, 0.5%≤Mn≤3%, 0.1%≤Si≤0.75%, Al≤0.25%, 18%≤Cr≤25%, 12%≤Ni≤20%, 1.5%≤Mo≤3%, 0.001%≤B≤0.008%, 0.25%≤V≤0.35%, 0.23%≤N≤0.27%, the balance being iron and unavoidable impurities, and wherein: Ni(eq.)≥1.11 Cr(eq.)−8.24, wherein: Cr(eq)=Cr+Mo+1.5Si+5V+3Al+0.02, Ni(eq)=Ni+30C+x(N−0.045)+0.87 wherein: x=22 for 0.23%≤N≤0.25%, x=20 for 0.25%<N≤0.27%.
According to a preferred embodiment, the steel composition may comprise: 14%≤Ni≤17%.
Another subject of the invention may provide a steel product with composition above and wherein the elongation is higher than 30% at the temperature of 750° C.
Another subject of the invention may provide a steel product with composition above wherein the lifetime under 36 MPa at 750° C. is higher than 0.5×105 h.
Another subject of the invention may provide the use of a steel product having a composition above, for the fabrication of reactor vessels, forgings and pipelines.
As regarding to steel composition, carbon is an effective element for forming fine M23C6 precipitates which will increase tensile and creep strength. When the carbon content is 0.019% in weight or less, these effects are not sufficient. But when carbon content exceeds 0.030%, excessive carbides precipitation occurs and the steel becomes susceptible to SRC. Furthermore, toughness is lowered as a consequence of the increased precipitation of carbonitrides, coarse sigma phases and M23C6 carbides.
Manganese is added as a deoxidizer of the molten steel. Manganese combines also with sulphur, thus improving hot workability. These effects are obtained when manganese content is higher than 0.5% in weight. When it exceeds 3%, the kinetics of formation of some undesirable phases, such as brittle sigma phase, is increased. A preferable range for manganese is 1.3-1.7%.
As manganese, silicon has also a deoxidizing effect. It enhances also oxidation resistance. Below 0.1%, these effects are not achieved. But when silicon exceeds 0.75%, steel toughness decrease. A preferable range for silicon is 0.2-0.55%.
Aluminum is a strong deoxidizing element of the molten steel. But when aluminum exceeds 0.25% in weight, precipitation of intermetallic is promoted at elevated temperatures during long holding times and toughness is decreased. The precipitation of undesirable AlN is also promoted. Thus, aluminum is maintained less than 0.25%. Preferably, the aluminum content is lower than 0.2% in order to fully avoid a precipitation of AlN.
Nickel is a gammagene element ensuring the stability of the austenitic structure together with other elements such as carbon and nitrogen. Taking into account the chromium content together with the other ferrite stabilizing elements such as molybdenum, the nickel content has to be higher than 12% in order to form a stable austenitic structure. If the nickel content exceeds 20%, its effect is saturated and production cost increases unnecessarily. A preferred range for nickel is 14-17%.
Molybdenum increases the strength at elevated temperatures as well as the resistance to hot cracking. Molybdenum additions less than 1.5% are not sufficient in order to obtain the desired creep strength at high temperature. But when Mo exceeds 3%, the effect for enhancing strength is saturated, and hot workability decreases. Precipitation of sigma-phase may also occur, reducing room-temperature ductility. A preferred range for molybdenum content is 2.2 to 2.8%.
At content higher than 0.001% in weight, boron increases the creep resistance by the precipitation of fine carbonitrides or borides in the matrix and strengthens also the grain boundaries. Above 0.008%, the risk of hot cracking is increased and weldability is reduced. The most preferable range for boron is 0.003 to 0.005%.
As carbon, nitrogen is an effective element for increasing yield, tensile and creep strengths. As a gammagene element, it contributes also to the formation of a fully austenitic structure. Less than 0.23%, nitrogen cannot form carbonitrides in a sufficient and optimum quantity for obtaining these effects. On the other hand, more than 0.27% nitrogen yields too much the formation of coarse nitrides which reduce temperature ductility and toughness. Nitrogen is also restricted together with aluminum for preventing AlN precipitation.
Apart from iron, steel of the invention may contain incidental impurities resulting from the elaboration or smelting. Among these impurities, sulphur, phosphorus and oxygen have adverse effects on ductility, either at ambient temperature or at high temperature, and on weldability. Thus, they should be restricted at quantities as low as possible. Preferably, sulphur should be lower than 0.005%, phosphorus lower than 0.030%, and oxygen lower than 0.010% in weight.
The steels according to the invention have an austenitic microstructure. Thus, no further decomposition of ferrite in brittle sigma phase is susceptible to occur at elevated temperatures. A fully austenitic structure is obtained when the “chromium equivalent” (Cr(eq)) and the “nickel equivalent” (Ni(eq)) are such as:
Thanks to vanadium addition, carbon and nitrogen contents, vanadium carbonitrides are present in the range of 550-950° C. These stable carbonitrides have a positive effect on creep strength without impairing SRC susceptibility.
The invention covers besides various products which can be obtained by the processes as well as their uses, such as:
The following examples are presented as an illustration of the present invention. It should be understood, however, that the invention is not limited to the particular details in these examples.
Steel compositions were elaborated, of which elements are indicated on table 1 with their compositions in weight %. Compositions of steels A and B correspond to the invention. Ingots were cast, pre-forged under the form of flat products and hot-rolled down to plates with thicknesses ranging from 15 to 40 mm. The plates were solution-annealed at 1100° C. and water-quenched.
Steels with references C to I are comparative steels.
11.9
0.29
0.072
25.9
0.351
0.06
31.3
0.16
0.065
0.015
17.0
0.049
0.12
0.064
10.5
0.05
The following tests were performed:
30
0.1
0.3
0.25
S
S
S
S
S
S
S
S
S
S
S
S
S
S = Susceptible to SRC
From the results above, steels according to the invention display a particular combination of properties: non susceptibility to relaxation cracking on the temperature range 500-900° C., excellent creep resistance, high ductility in a large range of temperatures. These steels display also good toughness at ambient temperature after a holding at high temperature, and limited scale thickness.
The susceptibility to hot cracking in welding for the steels according to the invention was also assessed by the following test : the surface of the plates was melted with Gas Tungsten Arc Welding with heat inputs ranging from 4.5 up to 10.3 kJ/cm and travelling speeds ranging from 5.7 up to 24.3 cm/mn. In all cases, no cracks were detected in the remelted material and in the Heat Affected Zones. Thus, the compositions according to the invention display good resistance to hot cracking.
By comparison, the results obtained on the reference steels are as follows:
In accordance with its inadequate contents in carbon, nickel, molybdenum, boron, vanadium, nitrogen, alloy I is susceptible to SRC at 600° C.
The steels according to the invention are used with profit for the fabrication of installations such as reactor vessels, forgings and pipelines operating at temperatures above 550° C.
Number | Date | Country | Kind |
---|---|---|---|
09290581 | Jul 2009 | EP | regional |
This is a continuation of U.S. application Ser. No. 15/991,428 filed on May 29, 2018, published as U.S. 2018/0274067 A1, which is a continuation of U.S. application Ser. No. 13/386,141 filed on Jun. 4, 2012, published as U.S. 2012/0237389 A1 on Sep. 20, 2012 which is a national phase of PCT/IB2010/001759 filed on Jul. 20, 2010 which claims priority to European Patent Application EP 09290581.9, filed on Jul. 22, 2009. All of the above applications are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2750283 | Loveless | Jun 1956 | A |
3649376 | Decroix | Mar 1972 | A |
4897132 | Yamamoto et al. | Jan 1990 | A |
7377989 | Matsuo | May 2008 | B2 |
8133431 | Osuki et al. | Mar 2012 | B2 |
20030136482 | Mayerbock et al. | Jul 2003 | A1 |
20040206427 | Iseda et al. | Oct 2004 | A1 |
20060243356 | Oikawa et al. | Nov 2006 | A1 |
20100230011 | Oikawa et al. | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
1637785 | Mar 2006 | EP |
1645649 | Apr 2006 | EP |
1605072 | Sep 2012 | EP |
1365773 | Sep 1974 | GB |
S60116750 | Jun 1985 | JP |
S61201760 | Sep 1986 | JP |
H0550288 | Mar 1993 | JP |
H09310157 | Dec 1997 | JP |
2246553 | Feb 2005 | RU |
1342940 | Oct 1987 | SU |
2004083476 | Sep 2004 | WO |
2009044802 | Apr 2009 | WO |
Entry |
---|
Espy R. H. Weldability of Nitrogen-Strengthened Stainless Steels // Welding Research Supplement.—May 1982.—Pags 149-156. |
Number | Date | Country | |
---|---|---|---|
20230040035 A1 | Feb 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15991428 | May 2018 | US |
Child | 17699324 | US | |
Parent | 13386141 | US | |
Child | 15991428 | US |