HOT STAMPED BODY

Abstract
Provided is a hot stamped body having a chemical composition comprising, by mass %, C: 0.40 to 0.70%, P: 0.100% or less, S: 0.0100% or less, N: 0.0200% or less, O: 0.0200% or less, Al: 0.0010 to 0.500%, Nb: 0.0010 to 0.100%, Ti: 0.010 to 0.200%, Mo: 0.010 to 2.000%, B: 0.0005 to 0.0200%, etc., and balance of Fe and impurities, and a microstructure with a total amount of segregation of at least one of Mo, W, Ta, Re, Os, Ir, and Tc at prior austenite grain boundaries of 0.10 atm % or more.
Description
FIELD

The present invention relates to a hot stamped body.


BACKGROUND

In recent years, in the automobile industry, lighter weight of car bodies has been sought from the viewpoint of improvement of fuel economy. To achieve both lighter weight of car bodies and collision safety, one effective method is to increase the strength of the steel sheet used. A high strength steel sheet is being developed due to such a background.


If making a steel sheet high in strength, the formability falls, and therefore it is generally difficult to achieve both strength and formability in the steel sheet. Hot stamping (hot pressing) is known as a technique for press-forming a material, which is difficult to form, such as a high strength steel sheet. Hot stamping is a technique of hot forming which heats then forms a material to be formed. This technique heats then forms the material, and therefore at the time of forming, the steel material is soft and has good formability. Therefore, even a high strength steel material can be formed into a complex shape with a good precision. Further, it is hardened at the same time as being formed by the press dies, and therefore a formed steel material is known to have sufficient strength.


In relation to this, PTL 1 describes a hot stamped body having a predetermined chemical composition, an average size of prior austenite grains in the microstructure of 5.0 m or less, and an average Mn concentration at the grain boundaries of the prior austenite grains of 1.0 mass % or less. Further, PTL 1 describes that according to above constitution, it is possible to provide a hot stamped body having a tensile strength of 2000 MPa or more and an excellent toughness.


CITATIONS LIST
Patent Literature



  • [PTL 1] WO 2020/189767



SUMMARY
Technical Problem

In a hot stamped body having such a high strength described in PTL 1, sometimes hydrogen embrittlement cracking (also referred to as “delayed fracture”, etc.) becomes a problem. “Hydrogen embrittlement cracking” is the phenomenon where a steel member which is acted on by a high stress under conditions of use suddenly fractures due to hydrogen penetrating the steel from the environment. In general, it is known that hydrogen embrittlement cracking occurs more easily the higher the strength of the steel material. On the other hand, in the automobile industry, etc., further reduction of weight of the steel material is sought. To achieve such lighter weight, a need arises to raise the strength more than the past. Therefore, there is a great need for a steel material, more specifically a hot stamped body, able to solve the problem of hydrogen embrittlement even if raising the strength equal to the past or more than the same.


Therefore, the present invention has as its object to provide a hot stamped body which is high in strength and able to suppress hydrogen embrittlement by a novel constitution.


Solution to Problem

The inventors discovered that, to achieve the above object, it is possible to reduce the content of Mn and make specific elements segregate at the grain boundaries to reinforce the grain boundaries and discovered that, as a result, it is possible to remarkably improve the hydrogen embrittlement resistance regardless of the hot stamped body having a high tensile strength and thereby completed the present invention.


The present invention able to achieve this object is as follows:

    • (1) A hot stamped body having a chemical composition comprising, by mass %,
      • C: 0.40 to 0.70%,
      • P: 0.100% or less,
      • S: 0.0100% or less,
      • N: 0.0200% or less,
      • O: 0.0200% or less,
      • Al: 0.0010 to 0.500%,
      • Nb: 0.0010 to 0.100%,
      • Ti: 0.010 to 0.200%,
      • Mo: 0.010 to 2.000%,
      • B: 0.0005 to 0.0200%,
      • Si: 0 to 3.00%,
      • Mn: 0 to less than 0.50%,
      • Cr: 0 to 1.00%,
      • Co: 0 to 4.00%,
      • Ni: 0 to 3.00%,
      • Cu: 0 to 3.00%,
      • V: 0 to 3.00%,
      • Ca: 0 to 1.000%,
      • Mg: 0 to 1.000%,
      • REM: 0 to 1.000%,
      • Sb: 0 to 1.00%,
      • Zr: 0 to 1.00%,
      • Sn: 0 to 1.00%,
      • As: 0 to 0.100%,
      • W: 0 to 3.000%,
      • at least one of Ta, Re, Os, Ir, and Tc: 0 to 1.00% in total,
      • Se: 0 to 1.00%,
      • Bi: 0 to 1.00%, and
      • balance: Fe and impurities, and
      • a microstructure with a total amount of segregation of at least one of Mo, W, Ta, Re, Os, Ir, and Tc at prior austenite grain boundaries of 0.10 atm % or more.
    • (2) The hot stamped body according to the above (1), comprising, by area ratio, at least one of martensite, bainite, and tempered martensite: 70% or more in total.
    • (3) The hot stamped body according to the above (1) or (2), wherein the amount of segregation of Mo at the prior austenite grain boundaries is 0.10 atm % or more.
    • (4) The hot stamped body according to the above (1) or (2), wherein the amount of segregation of W at the prior austenite grain boundaries is 0.10 atm % or more.
    • (5) The hot stamped body according to any one of the above (1) to (4), wherein the total amount of segregation is 0.15 atm % or more.
    • (6) The hot stamped body according to any one of the above (1) to (5), having a covering on the surface.
    • (7) The hot stamped body according to the above (6), wherein the covering is mainly comprised of an Fe—Al-based alloy.
    • (8) The hot stamped body according to the above (6), wherein the covering is mainly comprised of an Fe—Zn-based alloy.


Advantageous Effects of Invention

According to the present invention, it is possible to provide a hot stamped body which is high in strength and able to suppress hydrogen embrittlement.







DESCRIPTION OF EMBODIMENTS
<Hot Stamped Body>

The hot stamped body according to an embodiment of the present invention has a chemical composition comprising, by mass %,

    • C: 0.40 to 0.70%,
    • P: 0.100% or less,
    • S: 0.0100% or less,
    • N: 0.0200% or less,
    • O: 0.0200% or less,
    • Al: 0.0010 to 0.500%,
    • Nb: 0.0010 to 0.100%,
    • Ti: 0.010 to 0.200%,
    • Mo: 0.010 to 2.000%,
    • B: 0.0005 to 0.0200%,
    • Si: 0 to 3.00%,
    • Mn: 0 to less than 0.50%,
    • Cr: 0 to 1.00%,
    • Co: 0 to 4.00%,
    • Ni: 0 to 3.00%,
    • Cu: 0 to 3.00%,
    • V: 0 to 3.00%,
    • Ca: 0 to 1.000%,
    • Mg: 0 to 1.000%,
    • REM: 0 to 1.000%,
    • Sb: 0 to 1.00%,
    • Zr: 0 to 1.00%,
    • Sn: 0 to 1.00%,
    • As: 0 to 0.100%,
    • W: 0 to 3.000%,
    • at least one of Ta, Re, Os, Ir, and Tc: 0 to 1.00% in total,
    • Se: 0 to 1.00%,
    • Bi: 0 to 1.00%, and
    • balance: Fe and impurities, and
    • a microstructure with a total amount of segregation of at least one of Mo, W, Ta, Re, Os, Ir, and Tc at prior austenite grain boundaries of 0.10 atm % or more.


As explained above, it is known that hydrogen embrittlement cracking becomes easier to occur the higher the strength of the steel material. In particular, in a steel material having an extremely high strength such as a tensile strength of 2000 MPa or more, to secure high strength, the microstructure of a steel material generally contains martensite. On the other hand, in the case of such a high strength steel material, it is believed that hydrogen embrittlement mainly occurs due to hydrogen segregation at the prior austenite grain boundaries in the martensite structure. Therefore, the inventors conducted studies focusing on specific elements contained in the hot stamped body from the viewpoint of strengthening the prior austenite grain boundaries forming the starting points of hydrogen embrittlement cracking in the microstructure to thereby deal with the drop in hydrogen embrittlement resistance relating to such grain boundary cracking in a steel material having an extremely high strength such as a tensile strength of 2000 MPa or more, more specifically a hot stamped body. First, the inventors conducted studies from the viewpoint of suppressing embrittlement of the prior austenite grain boundaries and thereby strengthening the prior austenite grain boundaries. Explained in more detail, in general, sometimes a relatively large amount of Mn is added so as to improve the hardenability of the steel material along with the increase in strength of the steel material. However, in this research of the inventors, it was learned that if containing a relatively large amount of Mn, the hardenability is improved, but due to the Mn, the prior austenite grain boundaries are embrittled and hydrogen embrittlement cracking at the prior austenite grain boundaries is promoted and, as a result, the hydrogen embrittlement resistance of the hot stamped body may deteriorate. As opposed to this, the inventors discovered that by limiting the Mn content to less than 0.50 mass % in the hot stamped body, it is possible to sufficiently suppress or reduce embrittlement of the prior austenite grain boundaries due to Mn and as a result strengthen the prior austenite grain boundaries and improve the hydrogen embrittlement resistance of the hot stamped body compared with the case of containing a relatively large amount of Mn.


Next, the inventors conducted further studies from the viewpoint of positively strengthening the prior austenite grain boundaries and discovered that by making specific elements, more specifically at least one of Mo, W, Ta, Re, Os, Ir, and Tc, in particular Mo and W, segregate at the prior austenite grain boundaries to give a total amount of segregation of 0.10 atm % or more, it is possible to strengthen the prior austenite grain boundaries in the microstructure of the hot stamped body. In addition, the inventors discovered that due to the grain boundary segregation of these grain boundary strengthening elements, regardless of the Mn content being limited to less than 0.50 mass %, not only is the drop in hardenability simply suppressed, but also it is possible to make the hardenability equal to that of the case of a high Mn content or a level above the same and, as a result, regardless of the less than 0.50 mass % relatively low Mn content, possible to reliably achieve, for example, a high tensile strength of 2200 MPa or more.


While not intending to be bound to any specific theory, it is believed that by making the above grain boundary strengthening elements segregate at the prior austenite grain boundaries, it is possible to remarkably lower the grain boundary energy. By lowering the grain boundary energy, it is generally possible to suppress the formation of nuclei of ferrite. For this reason, it is believed that by making the above grain boundary strengthening elements segregate at the prior austenite grain boundaries, it is possible to suppress the drop in hardenability due to the relatively low Mn content and achieve a hardenability equal to or higher than the case of a high Mn content. In the past, for example, from the viewpoint of improvement of the hardenability, etc., it is known to add part of the grain boundary strengthening elements to the hot stamped body. However, in a hot stamped body of a high strength such as a tensile strength of more than 2000 MPa, the C content of the hot stamped body becomes higher, and therefore in the conventional method of production, these grain boundary strengthening elements form carbides and/or intermetallic compounds. These grain boundary strengthening elements could not be sufficiently made to segregate at the prior austenite grain boundaries in the dissolved state. This time, as explained later in detail in relation to the method of production of the hot stamped body, the inventors discovered that by suitably controlling the heat treatment conditions in particular in the preheating step before the hot stamping step and in the hot stamping step, it is possible to make at least one of Mo, W, Ta, Re, Os, Ir, and Tc segregate at the prior austenite grain boundaries in a predetermined total amount of segregation. Therefore, the fact that in a high strength hot stamped body containing carbon in a 0.40 mass % or more relatively high amount, by making at least one of Mo, W, Ta, Re, Os, Ir, and Tc segregate at the prior austenite grain boundaries in a predetermined total amount of segregation to strengthen the grain boundaries, regardless of the low Mn content, it is possible to maintain a high strength while improving the hydrogen embrittlement resistance was first clarified this time by the inventors. Therefore, according to the hot stamped body according to an embodiment of the present invention, regardless of the hot stamped body having a high tensile strength, for example, a high tensile strength of 2200 MPa or more, it is possible to remarkably improve the hydrogen embrittlement resistance by combination of suppression of embrittlement of the prior austenite grain boundaries based on the reduced Mn content and the positive strengthening of the prior austenite grain boundaries and improvement of hardenability by grain boundary segregation of grain boundary strengthening elements selected from at least one of Mo, W, Ta, Re, Os, Ir, and Tc.


Below, the hot stamped body according to the embodiment of the present invention will be explained in more detail. In the following explanation, the “%” of the units of content of the elements, unless otherwise indicated, means “mass %”. Further, in this Description, “to” showing a numerical range, unless otherwise indicated, is used in the sense including the numerical values described before and after it as the upper limit value and lower limit value.


[C: 0.40 to 0.70%]

C is an element improving the strength of a hot stamped body. If the C content is less than 0.40%, it is not possible to obtain the desired strength at the hot stamped body. For this reason, the C content is 0.40% or more. The C content is preferably more than 0.40%, 0.42% or more, 0.44% or more, or 0.45% or more.


On the other hand, if the C content is more than 0.70%, the strength becomes too high and sometimes excellent hydrogen embrittlement resistance cannot be obtained. For this reason, the C content is 0.70% or less. Preferably, the C content is 0.68% or less, 0.67% or less, 0.65% or less, or 0.60% or less.


[P: 0.100% or Less]

P is an impurity element and segregates at the grain boundaries to cause the hydrogen embrittlement resistance to deteriorate. For this reason, the P content is 0.100% or less. The P content is preferably 0.070% or less, 0.050% or less, or 0.010% or less.


The lower limit of the P content is not particularly prescribed, but if less than 0.0001%, the dephosphorization cost greatly rises making this not preferable economically. For this reason, the P content may also be 0.0001% or more.


[S: 0.0100% or Less]

S is an impurity element and forms inclusions in the steel. The inclusions cause the hydrogen embrittlement resistance to deteriorate, therefore the S content is 0.0100% or less. The S content is preferably 0.0080% or less, 0.0050% or less, 0.0030% or less, or 0.0020% or less.


The lower limit of the S content is not particularly prescribed, but if less than 0.0001%, the desulfurization cost greatly rises making this not preferable economically. For this reason, the S content may also be 0.0001% or more.


[N: 0.0200% or Less]

N is an impurity element and forms nitrides in the steel. The nitrides cause the hydrogen embrittlement resistance to deteriorate, therefore the N content is 0.0200% or less. The N content is preferably 0.0180% or less, 0.0150% or less, 0.0100% or less, 0.0060% or less, or 0.0040% or less.


The lower limit of the N content is not particularly prescribed, but if reducing this to less than 0.0001%, the denitridation cost greatly rises making this not preferable economically. For this reason, the N content may also be 0.00010% or more.


[O: 0.0200% or Less]

O, if contained in a large amount in the steel, forms coarse oxides and causes the hydrogen embrittlement resistance to deteriorate. For this reason, the O content is 0.0200% or less. The O content is preferably 0.0150% or less, 0.0100% or less, 0.0070% or less, or 0.0040% or less.


From the viewpoint of reducing the refining costs, the O content may also be 0.0001% or more. To make a large number of fine oxides disperse at the time of deoxidation of the molten steel, the O content may be 0.0005% or more.


[Al: 0.0010 to 0.500%]

Al is an element having the action of deoxidizing the molten steel and making the steel sounder. If the Al content is less than 0.0010%, the deoxidation will not sufficiently proceed and coarse oxides will be formed causing the hydrogen embrittlement resistance to deteriorate. For this reason, the Al content is 0.0010% or more. The Al content is preferably 0.003% or more, 0.005% or more, 0.010% or more, or 0.030% or more.


On the other hand, if the Al content is more than 0.500%, coarse oxides will form in the steel causing the hydrogen embrittlement resistance of the hot stamped body to fall. For this reason, the Al content is 0.500% or less. The Al content is preferably 0.400% or less, 0.300% or less, 0.200% or less, 0.150% or less, or 0.100% or less.


[Nb: 0.0010 to 0.100%]

Nb is an element forming carbonitrides in steel and improving the strength of the hot stamped body by precipitation strengthening. Further, it is an element contributing to the refinement of the structure by the pinning effect. If the Nb content is less than 0.0010%, these effects cannot be sufficiently obtained. For this reason, the Nb content is 0.0010% or more. The Nb content is preferably 0.005% or more, 0.009% or more, or 0.015% or more.


On the other hand, if the Nb content is more than 0.100%, coarse carbonitrides are formed in the steel and the hydrogen embrittlement resistance of the hot stamped body falls. For this reason, the Nb content is 0.100% or less. The Nb content is preferably 0.080% or less, 0.060% or less, or 0.050% or less.


[Ti: 0.010 to 0.200%]

Ti is an element forming carbonitrides in steel and improving the strength of the hot stamped body by precipitation strengthening. Further, it is an element contributing to the refinement of the structure by the pinning effect. If the Ti content is less than 0.010%, these effects cannot be sufficiently obtained. For this reason, the Ti content is 0.010% or more. The Ti content is preferably 0.015% or more, 0.020% or more, or 0.025% or more.


On the other hand, if the Ti content is more than 0.200%, coarse carbonitrides are formed in the steel and the hydrogen embrittlement resistance of the hot stamped body falls. For this reason, the Ti content is 0.200% or less. The Ti content is preferably 0.180% or less, 0.150% or less, 0.100% or less, 0.060% or less, or 0.050% or less.


[Mo: 0.010 to 2.000%]

Mo is an element segregating at the austenite grain boundaries at the time of heating in the hot stamping step to thereby raise the hardenability and making the strength of the prior austenite grain boundaries rise to raise the hydrogen embrittlement resistance in the hot stamped body. If the Mo content is less than 0.010%, sometimes such an effect cannot be sufficiently obtained and the desired hydrogen embrittlement resistance cannot be obtained. For this reason, the Mo content is 0.010% or more. The Mo content is preferably 0.050% or more, 0.100% or more, 0.150% or more, 0.200% or more, 0.300% or more, or 0.500% or more.


On the other hand, if the Mo content is more than 2.000%, in the hot stamped body, coarse intermetallic compounds and carbides are formed and the hydrogen embrittlement resistance of the hot stamped body deteriorates. For this reason, the Mo content is 2.000% or less. The Mo content is preferably 1.800% or less, 1.500% or less, 1.300% or less, 1.000% or less, or 0.800% or less.


[B: 0.0005 to 0.0200%]

B is an element improving the hardenability of steel. If the B content is less than 0.0005%, the desired strength cannot be obtained. For this reason, the B content is 0.0005% or more. The B content is preferably 0.0010% or more, 0.0015% or more, or 0.0020% or more. On the other hand, if the B content is more than 0.0200%, coarse borides are formed at the hot stamped body and the hydrogen embrittlement resistance of the hot stamped body falls. For this reason, the B content is 0.0200% or less. The B content is preferably 0.0150% or less, 0.0100% or less, 0.0050% or less, 0.0040% or less, or 0.0030% or less.


The basic chemical composition of the hot stamped body according to an embodiment of the present invention is as explained above. Furthermore, the hot stamped body may, if necessary, contain at least one of the following optional elements in place of part of the Fe of the balance. For example, the hot stamped body may contain at least one element selected from the group comprising Si: 0 to 3.00%, Mn: 0 to less than 0.50%, Cr: 0 to 1.00%, Co: 0 to 4.00%, Ni: 0 to 3.00%, Cu: 0 to 3.00%, and V: 0 to 3.00%. Further, the hot stamped body may contain at least one element selected from the group comprising Ca: 0 to 1.000%, Mg: 0 to 1.000%, and REM: 0 to 1.000%. Further, the hot stamped body may also have at least one element selected from the group comprising Sb: 0 to 1.00%, Zr: 0 to 1.00%, and Sn: 0 to 1.00%. Further, the hot stamped body may contain As: 0 to 0.100%. Further, the hot stamped body may contain W: 0 to 3.000%. Further, the hot stamped body may contain at least one element of Ta, Re, Os, Ir, and Tc in a total of 0 to 1.00%. Further, the hot stamped body may contain at least one element selected from the group selected from Se: 0 to 1.00% and Bi: 0 to 1.00%. Below, these optional elements will be explained in detail.


[Si: 0 to 3.00%]

Si is an element improving the strength of the hot stamped body by solid solution strengthening. The Si content may also be 0.001% or more, but to reliably obtain this effect, the Si content is preferably 0.01% or more. The Si content may also be 0.05% or more, 0.10% or more, 0.20% or more, 0.30% or more, or 0.40% or more.


On the other hand, if excessively containing Si, at the hot stamped body, sometimes the amount of ferrite increases and the desired strength cannot be obtained. For this reason, the Si content is 3.00% or less. The Si content may also be 2.50% or less, 2.00% or less, 1.00% or less, or 0.70% or less.


[Mn: 0 to Less Than 0.50%]

Mn is an element raising the hardenability of steel and contributing to the improvement of the strength. The Mn content may be 0.001% or more, but to reliably obtain this effect, the Mn content is preferably 0.01% or more. The Mn content may also be 0.05% or more, 0.10% or more, 0.15% or more, or 0.20% or more.


On the other hand, if excessively containing Mn, sometimes the prior austenite grain boundaries become brittle and hydrogen embrittlement cracking at the prior austenite grain boundaries is promoted. For this reason, the Mn content is less than 0.50%. The Mn content may also be, 0.49% or less, 0.48% or less, 0.47% or less, 0.46% or less, 0.45% or less, 0.43% or less, 0.40% or less, 0.35% or less, or 0.30% or less.


[Cr: 0 to 1.00%]

Cr is an element dissolving in the prior austenite grains at the time of heating before hot stamping and thereby raises the strength of the hot stamped body. The Cr content may also be 0.001% or more, but to reliably obtain this effect, the Cr content is preferably 0.01% or more or 0.05% or more.


On the other hand, if excessively containing Cr, sometimes coarse carbides are formed at the hot stamped body and the hydrogen embrittlement resistance of the hot stamped body falls. For this reason, the Cr content is 1.00% or less. The Cr content may also be 0.80% or less, 0.50% or less, 0.30% or less, 0.15% or less, or 0.08% or less.


[Co: 0 to 4.00%]

Co is an element improving the strength of the hot stamped body by solid solution strengthening. The Co content may be 0.001% or more, but to reliably obtain this effect, the Co content is preferably 0.01% or more or 0.05% or more.


On the other hand, even if made to be contained in a large amount, the effect becomes saturated, therefore the Co content is preferably 4.00% or less. The Co content may also be 3.00% or less, 2.00% or less, 1.00% or less, 0.50% or less, or 0.10% or less.


[Ni: 0 to 3.00%]

Ni has the action of dissolving in the austenite grains at the time of heating in the hot stamping step and thereby raising the strength of the hot stamped body. The Ni content may be 0.001% or more, but to reliably obtain this effect, the Ni content is preferably 0.01% or more or 0.05% or more.


On the other hand, even if made to be contained in a large amount, the effect becomes saturated, therefore the Ni content is preferably 3.00% or less. The Ni content may also be 2.00% or less, 1.00% or less, 0.60% or less, 0.30% or less, or 0.10% or less.


[Cu: 0 to 3.00%]

Cu has the action of dissolving in the austenite grains at the time of heating in the hot stamping step and thereby raising the strength of the hot stamped body. The Cu content may be 0.001% or more, but to reliably obtain this effect, the Cu content is preferably 0.01% or more or 0.05% or more.


On the other hand, even if made to be contained in a large amount, the effect becomes saturated, therefore the Cu content is preferably 3.00% or less. The Cu content may also be 2.00% or less, 1.00% or less, 0.60% or less, 0.30% or less, or 0.10% or less.


[V: 0 to 3.00%]

V has the effect of forming carbonitrides in the steel to thereby improve the strength of the hot stamped body by precipitation strengthening. The V content may be 0.001% or more, but to reliably obtain this effect, the V content is preferably 0.01% or more or 0.05% or more.


On the other hand, even if made to be contained in a large amount, the effect becomes saturated, therefore the V content is preferably 3.00% or less. The V content may also be 2.00% or less, 1.00% or less, 0.60% or less, 0.30% or less, or 0.10% or less.


[Ca: 0 to 1.000%]

Ca is an element able to suppress the formation of oxides. The Ca content may be 0.0001% or more, but to reliably obtain this effect, the Ca content is preferably 0.0005% or more or 0.001% or more.


On the other hand, even if made to be contained in a large amount, the effect becomes saturated, therefore the Ca content is preferably 1.000% or less. The Ca content may also be 0.500% or less, 0.100% or less, 0.050% or less, 0.010% or less, 0.005% or less, or 0.002% or less.


[Mg: 0 to 1.000%]

Mg forms oxides and sulfides in the molten steel to suppress the formation of coarse MnS, causes dispersion of large number of fine oxides, and contributes to increased fineness of the metallographic structure. The Mg content may be 0.00010% or more, but to reliably obtain this effect, the Mg content is preferably 0.0005% or more or 0.001% or more.


On the other hand, even if made to be contained in a large amount, the effect becomes saturated, therefore the Mg content is preferably 1.000% or less. The Mg content may also be 0.500% or less, 0.100% or less, 0.050% or less, 0.010% or less, 0.005% or less, or 0.002% or less.


[REM: 0 to 1.000%]

REM is an element suppressing the formation of oxides. The REM content may be 0.0001% or more, but to reliably obtain this effect, the REM content is preferably 0.0005% or more or 0.001% or more.


On the other hand, even if made to be contained in a large amount, the effect becomes saturated, therefore the REM content is preferably 1.000% or less. The REM content may be 0.500% or less, 0.100% or less, 0.050% or less, 0.010% or less, 0.005% or less, or 0.002% or less.


In the present embodiment, “REM” is the general term for the 17 elements of atomic number 21 scandium (Sc), atomic number 39 yttrium (Y), and the lanthanoids of atomic number 57 lanthanum (La) to atomic number 71 lutetium (Lu). The REM content is the total content of these elements.


[Sb: 0 to 1.00%]

Sb is an element inhibiting the formation of oxides. To reliably obtain this effect, the Sb content is preferably 0.001% or more or 0.005% or more.


On the other hand, even if made to be contained in a large amount, the effect becomes saturated, therefore the Sb content is preferably 1.00% or less. The Sb content may also be 0.80% or less, 0.50% or less, 0.20% or less, or 0.10% or less.


[Zr: 0 to 1.00%]

Zr is an element suppressing the formation of oxides. To reliably obtain this effect, the Zr content is preferably 0.001% or more or 0.005% or more.


On the other hand, even if contained in a large amount, the above effect is saturated, therefore the Zr content is preferably 1.00% or less. The Zr content may also be 0.80% or less, 0.50% or less, 0.20% or less, or 0.10% or less.


[Sn: 0 to 1.00%]

Sn is an element suppressing the formation of oxides. If reliably obtaining this effect, the Sn content is preferably 0.001% or more or 0.005% or more.


On the other hand, even if contained in a large amount, the above effect is saturated, therefore the Sn content is preferably 1.00% or less. The Sn content may also be 0.80% or less, 0.50% or less, 0.20% or less, or 0.10% or less.


[As: 0 to 0.100%]

As causes the temperature for forming an austenite single phase to fall and thereby contributes to refinement of the prior austenite grains. If reliably obtaining this effect, the As content is preferably 0.001% or more or 0.005% or more.


On the other hand, even if contained in a large amount, the above effect is saturated, therefore the As content is preferably 0.100% or less. The As content may be 0.080% or less, 0.050% or less, 0.020% or less, or 0.010% or less.


[W: 0 to 3.000%]

W is an element segregating at the austenite grain boundaries at the time of heating in the hot stamping step to thereby raise the hardenability and causing the strength of the prior austenite grain boundaries to rise to thereby raise the hydrogen embrittlement resistance at the hot stamped body. The W content may also be 0.001% or more, but if reliably obtaining this effect, the W content is preferably 0.005%. The W content may also be 0.010% or more, 0.050% or more, 0.100% or more, 0.200% or more, 0.400% or more, 0.500% or more, or 0.800% or more.


On the other hand, even if contained in a large amount, sometimes the effect become saturated and/or the W unable to segregate in the dissolved state forms intermetallic compounds and carbides. Sometimes such intermetallic compounds and carbides act as starting points of cracking and the hydrogen embrittlement resistance of the hot stamped body falls. For this reason, the W content is preferably 3.000% or less. The W content may also be 2.500% or less, 2.000% or less, 1.800% or less, 1.500% or less, or 1.000% or less.


[At Least One of Ta, Re, Os, Ir, and Tc: 0 to 1.00% in Total]

Ta, Re, Os, Ir, and Tc are elements segregating at the prior austenite grain boundaries at the time of heating in the hot stamping step in the same way as Mo and W to raise the hardenability and raising the strength of the prior austenite grain boundaries to raise the hydrogen embrittlement resistance at the hot stamped body. The total of the content of the at least one element of Ta, Re, Os, Ir, and Tc may be 0%, but to obtain such an effect, is preferably 0.001% or more. The total of the content of the at least one element of Ta, Re, Os, Ir, and Tc is preferably 0.01% or more, more preferably 0.10% or more, still more preferably 0.15% or more. On the other hand, even if excessively containing these elements, the effect becomes saturated. Therefore, including these elements in the steel material more than necessary is liable to invite a rise in the production costs. Therefore, the total of the contents of the at least one of Ta, Re, Os, Ir, and Tc is preferably 1.00% or less and may also be 0.80% or less, 0.60% or less, or 0.40% or less.


[Se: 0 to 1.00%]

Se is an element improving the hydrogen embrittlement resistance. For this reason, Se may be included. To obtain the above effect, the Se content is preferably 0.001% or more or 0.01% or more.


On the other hand, if the Se content exceeds 1.00%, the effect becomes saturated and the costs increase. Therefore, if including Se, the Se content is preferably 1.00% or less. The Se content may also be 0.80% or less, 0.50% or less, 0.20% or less, or 0.10% or less.


[Bi: 0 to 1.00%]

Bi is an element improving the hydrogen embrittlement resistance. For this reason, Bi may be included. To obtain the above effect, the Bi content is preferably 0.001% or more or 0.01% or more.


On the other hand, if the Bi content exceeds 1.00%, the effect becomes saturated and the costs increase. Therefore, if including Bi, the Bi content is preferably 1.00% or less. The Bi content may also be 0.80% or less, 0.50% or less, 0.20% or less, or 0.10% or less.


In the hot stamped body according to an embodiment of the present invention, the balance besides the above elements is comprised of Fe and impurities. The “impurities” are constituents, etc., entering due to various factors in the production process starting from materials such as ore and scrap, etc., when industrially producing hot stamped bodies. The method for industrial production is the blast furnace steelmaking method or electric furnace steelmaking method and includes levels entering at the time of production by either method (impurity level).


The chemical composition of the above hot stamped body may be measured by a general analysis method. For example, it may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). C and S may be measured using the combustion-infrared absorption method, N may be measured using the inert gas melting-thermal conductivity method, and O may be measured by the inert gas melting-nondispersion type infrared absorption method.


If the surface of the hot stamped body is provided with a plating layer, mechanical polishing may be used to remove the plating layer, then the chemical composition may be analyzed.


[At Least One of Martensite, Bainite, and Tempered Martensite: 70% or More in Total]

The microstructure of the hot stamped body preferably includes, by area ratio, at least one of martensite, bainite, and tempered martensite in a total of 70% or more. The remaining structure is not particularly limited, but may also be comprised of at least one of 30% or less of ferrite, retained austenite, and pearlite. Martensite, bainite, and tempered martensite are extremely hard structures, therefore by the hot stamped body containing at least one of martensite, bainite, and tempered martensite in an area ratio of a total of 70% or more, a high tensile strength, specifically a tensile strength of 2200 MPa or more, can be achieved. The total of the area ratios of the least one of martensite, bainite, and tempered martensite is preferably 75% or more, 80% or more, 85% or more, 90% or more, 92% or more, or 94% or more, more preferably 95% or more or 97% or more. The upper limit of the total of the area ratios of the at least one of martensite, bainite, and tempered martensite is not particularly prescribed and may also be 100%.


[Identification of Microstructure and Calculation of Area Ratios]

The microstructure in the hot stamped body is identified and the area ratios are calculated in the following way. First, a sample is cut out from any position 50 mm or more away from the ends of the steel material (if not possible to obtain a sample from this position, a position away from the ends) so as to enable a cross-section of thickness vertical to the surface to be examined. The size of the sample depends on the measurement device, but is a size enabling 10 mm or so to be examined in a direction vertical to the thickness direction.


The cross-section of the sample is polished using #600 to #1500 silicon carbide paper, then a liquid comprised of particle size 1 to 6 m diamond powder dispersed in alcohol or other diluent or pure water is used to polish the surface to a mirror finish. Next, the examined surface is finished by electrolytic polishing. An area of a length 50 m and 50 m in the sheet thickness direction centered at a ¼ depth position of the sheet thickness at any position in the long direction of the sample cross-section is measured at 0.1 m measurement intervals by electron backscatter diffraction to obtain crystal orientation information. For the measurement, an EBSD analysis apparatus comprised of a thermal field emission type scan electron microscope and EBSD detector may be used. For example, an EBSD analysis apparatus comprised of a JSM-7001F made by JEOL and a DVC5 model detector made by TSL may be used. At that time, the vacuum degree inside the EBSD analysis apparatus may be 9.6×10−5 Pa or less, the acceleration voltage may be 15 kV, and the beam current level may be made 13.


The obtained crystal orientation information is analyzed using the “Phase Map” function included in the software “OIM Analysis®” attached to the EBSD analysis apparatus. Structures with fcc crystal structures are judged to be retained austenite. The area ratio of the retained austenite is obtained by calculating the area ratio of this retained austenite. Next, regions with bcc crystal structures are judged to be bainite, tempered martensite, martensite, and ferrite. In these regions, using the “Grain Average Misorientation” function included in the software “OIM Analysis®” attached to the EBSD analysis apparatus, under conditions deeming a 5° grain boundary as a crystal grain boundary, a region having a “Grain Average Misorientation” of 0.5° or less is extracted as ferrite. The area ratio of ferrite is obtained by calculating the area ratio of the extracted ferrite.


Next, the remaining region (region with “Grain Average Misorientation” of more than 0.5°) is made the area ratio of the total of martensite, tempered martensite, and bainite. The area ratio of pearlite is calculated by subtracting from 100% the area ratio of the retained austenite and the area ratios of the bainite, tempered martensite, martensite, and ferrite.


[Total Amount of Segregation of at Least One of Mo, W, Ta, Re, Os, Ir, and Tc at Prior Austenite Grain Boundaries: 0.10 Atm % or More]

In an embodiment of the present invention, the total amount of segregation of at least one of Mo, W, Ta, Re, Os, Ir, and Tc at the prior austenite grain boundaries is 0.10 atm % or more. By making at least one of Mo, W, Ta, Re, Os, Ir, and Tc segregate at the prior austenite grain boundaries to give a total amount of segregation of 0.10 atm % or more, it is possible to raise the hardenability and strengthen the prior austenite grain boundaries at the microstructure of the hot stamped body. According to an embodiment of the present invention, by combination of suppression of embrittlement of the prior austenite grain boundaries by limiting the Mn content of the hot stamped body to less than 0.50% and the positive strengthening of the prior austenite grain boundaries by segregation of specific grain boundary strengthening elements, it is possible to remarkably improve the strength of the prior austenite grain boundaries compared with the case of using only one method. Therefore, even if the hot stamped body has an extremely high tensile strength, for example, an extremely high tensile strength of 2200 MPa or more, the resistance to grain boundary cracking is extremely high, therefore it is possible to remarkably improve the hydrogen embrittlement resistance. From the viewpoint of grain boundary strengthening, the higher the total amount of segregation of the at least one of Mo, W, Ta, Re, Os, Ir, and Tc at the prior austenite grain boundaries, the more preferable. For example, it may be 0.13 atm % or more, 0.15 atm % or more, 0.18 atm % or more, or 0.20 atm % or more. The upper limit of the above total content is not particularly limited, but for example the total amount of segregation may be 3.00 atm % or less and may also be 2.00 atm % or less, 1.50 atm % or less, 1.00 atm % or less, 0.80 atm % or less, 0.60 atm % or less, or 0.40 atm % or less.


In one embodiment, the amount of segregation of Mo at the prior austenite grain boundaries may be 0.10 atm % or more, 0.13 atm % or more, 0.15 atm % or more, 0.18 atm % or more, or 0.20 atm % or more. Similarly, the amount of segregation of Mo at the prior austenite grain boundaries may be 3.00 atm % or less, 2.00 atm % or less, 1.50 atm % or less, 1.00 atm % or less, 0.80 atm % or less, 0.60 atm % or less, or 0.40 atm % or less. In another embodiment, the amount of segregation of W at the prior austenite grain boundaries may be 0.10 atm % or more, 0.13 atm % or more, 0.15 atm % or more, 0.18 atm % or more, or 0.20 atm % or more. Similarly, the amount of segregation of W at the prior austenite grain boundaries may be 3.00 atm % or less, 2.00 atm % or less, 1.50 atm % or less, 1.00 atm % or less, 0.80 atm % or less, 0.60 atm % or less, or 0.40 atm % or less. In still another embodiment, the total amount of segregation of the amount of segregation of Mo and the amount of segregation of W at the prior austenite grain boundaries may be 0.10 atm % or more, 0.13 atm % or more, 0.15 atm % or more, 0.18 atm % or more, or 0.20 atm % or more and/or may be 3.00 atm % or less, 2.00 atm % or less, 1.50 atm % or less, 1.00 atm % or less, 0.80 atm % or less, 0.60 atm % or less, or 0.40 atm % or less. In a still further embodiment, the total amount of segregation of the amount of segregation of Mo, the amount of segregation of W, and the at least one of Ta, Re, Os, Ir, and Tc at the prior austenite grain boundaries may be 0.10 atm % or more, 0.13 atm % or more, 0.15 atm % or more, 0.18 atm % or more, or 0.20 atm % or more and/or may be 3.00 atm % or less, 2.00 atm % or less, 1.50 atm % or less, 1.00 atm % or less, 0.80 atm % or less, 0.60 atm % or less, or 0.40 atm % or less.


[Method of Measurement of Total Amount of Segregation of At Least One of Mo, W, Ta, Re, Os, Ir, and Tc at Prior Austenite Grain Boundaries]

The total amount of segregation of the at least one of Mo, W, Ta, Re, Os, Ir, and Tc at the prior austenite grain boundaries is determined as follows: First, a test piece is taken from a position 50 mm or more away from the end faces of the hot stamped body. At that time, the front and back surfaces of the test piece are finished by machine polishing. Further, if there is a plating layer at the steel sheet surface, the plating layer is removed and then the front and back surfaces of the test piece of the steel sheet are finished by machine polishing. At that time, the sheet thickness is not particularly designated if the ¼ depth position of the sheet thickness can be measured, but the same amounts of the front and back surfaces of the test piece may also be removed by machine grinding so that the sheet thickness becomes 1.2 mm. The test piece is worked to a length of 20 mm and a width of 3.2 mm and formed with a V-notch of an angle of 450 at a position of a length of 11.5 mm. The test piece is dipped in a 20%-ammonium thiocyanate solution. At this time, the dipping time is not particularly limited. It is sufficient that the prior austenite grain boundaries are exposed when set inside an Auger electron emission spectrometer and fracturing. For example, it may be 48 hours. The front and back surfaces of the test piece are galvanized within 10 minutes after ending the dipping. After plating, the test piece is quickly subjected to Auger electron emission spectrometry and fractured. At that time, the time after plating to fracture of the test piece is preferably within 1.5 hours, more preferably within 0.5 hour. The test piece is set within the Auger electron emission spectrometer and fractures from the notch portion of the test piece to expose the prior austenite grain boundaries. At this time, the apparatus may be an Auger electron emission spectrometer. The model is not particularly limited, but a PHI680 made by ULVAC-PHI may be used. As the measurement conditions, the accelerating voltage may be 10 keV and the beam current may be 10 nA. An electron beam is fired at the exposed prior austenite grain boundaries by a 1 to 30 kV accelerating voltage and the atm % of specific elements at the grain boundaries (specifically at least one of Mo, W, Ta, Re, Os, Ir, and Tc) are measured. The measurement is performed at the prior austenite grain boundaries at 10 locations at a position of ¼ depth of the sheet thickness from the surface. To prevent contamination of the grain boundaries, quickly ending the measurement after fracture is preferable. The measurement should be ended within 30 minutes. The average value of the atm % of the obtained specific elements is calculated and determined as the total value of segregation of the at least one of Mo, W, Ta, Re, Os, Ir, and Tc.


[Average Size of Prior Austenite Grains: 15 m or Less]

In an embodiment of the present invention, the average size of the prior austenite grains is not particularly limited, but may for example be 15 m or less. The hot stamped body according to an embodiment of the present invention contains Nb and Ti. These elements form carbides, nitrides, and/or carbonitrides. They contribute to refinement of the structure by their pinning effect. Further, in the hot stamped body according to an embodiment of the present invention, the grain boundary strengthening elements selected from at least one of Mo, W, Ta, Re, Os, Ir, and Tc segregate at the grain boundaries, therefore it is possible to slow the speed of grain growth by the so-called “solute drag” effect. Therefore, in the hot stamped body according to an embodiment of the present invention, it is possible to refine the prior austenite grains by the pinning effect due to Nb and Ti and the solute drag effect due to grain boundary segregation of specific grain boundary strengthening elements. For example, the average size of the prior austenite grains may be 12 m or less, 10 m or less, or 8 m or less. The lower limit is not particularly prescribed, but the average size of the prior austenite grains may be for example 1 μm or more, 2 m or more, or 3 m or more.


[Method of Determination of Average Size of Prior Austenite Grains]

The average size of prior austenite grains is determined in the following way. First, a sample is cut out from any position 50 mm or more from an end face of the hot stamped body (if a sample cannot be taken from this position, a position away from the end parts) so as to enable a sheet thickness cross-section vertical to the surface to be examined. The size of the sample, while depending also on the measuring device, is made a size enabling 10 mm or so to be examined in a direction vertical to the sheet thickness direction. The cross-section of the sample is polished using #600 to #1500 silicon carbide paper, then a liquid comprised of particle size 1 to 6 m diamond powder dispersed in alcohol or other diluent or pure water is used to polish the surface to a mirror finish. Next, the examined surface is finished by electrolytic polishing. An area of a length 50 m and 50 m in the sheet thickness direction at a ¼ depth position of the sheet thickness at any position in the long direction of the sample cross-section is measured at 0.1 m measurement intervals by electron backscatter diffraction to obtain crystal orientation information. For the measurement, an EBSD analysis apparatus comprised of a thermal field emission type scan electron microscope and EBSD detector may be used. For example, an EBSD analysis apparatus comprised of a JSM-7001F made by JEOL and a DVC5 model detector made by TSL may be used. At that time, the vacuum degree inside the EBSD analysis apparatus may be 9.6×10−5 Pa or less, the acceleration voltage may be 15 kV, and the beam current level may be made 13. The obtained crystal orientation information is used to calculate the crystal orientation of the prior austenite grains from the crystallographic orientation relationship of general prior austenite grains and crystal grains having body-centered cubic structures after transformation. For the method of calculating the crystal orientations of the prior austenite grains, the following method is used. First, a crystal orientation map of the prior austenite grains is prepared by the method described in Acta Materialia, 58(2010), 6393-6403. The average value between the shortest diameter and the longest diameter of one prior austenite grain included in the examined field is calculated. That average value is made the size of the prior austenite grain. The above operation is performed for all of the prior austenite grains except for the prior austenite grains where the crystal grains as a whole are not included in the captured field, such as at the end parts of the captured field, to find the sizes of all of the prior austenite grains in the captured field. From the obtained sizes of all prior austenite grains, the average size is calculated whereupon the average size of prior austenite grains is determined.


[Covering]

The hot stamped body according to an embodiment is provided with a covering at part or all of the surface.


The covering may be a covering mainly comprised of an Fe—Al-based alloy or may be a covering mainly comprised of an Fe—Zn-based alloy. The “covering” means a film, alloyed plating layer, or intermetallic compound layer.


A “covering mainly comprised of an Fe—Al-based alloy” is a covering containing Fe and Al in a total of 70 mass % or more, while a “covering mainly comprised of an Fe—Zn-based alloy” is a covering containing Fe and Zn in a total of 70 mass % or more. A covering mainly comprised of an Fe—Al-based alloy may further contain, in addition to the Fe and Al, Si, Mg, Ca, Sr, Ni, Cu, Mo, Mn, Cr, C, Nb, Ti, B, V, Sn, W, Sb, Zn, Co, In, Bi, Zr, Se, As, and REM and have a balance of impurities. A “covering mainly comprised of an Fe—Zn-based alloy” may further contain, in addition to the Fe and Zn, Si, Mg, Ca, Sr, Ni, Cu, Mo, Mn, Cr, C, Nb, Ti, B, V, Sn, W, Sb, Al, Co, In, Bi, Zr, Se, As, and REM and have a balance of impurities.


By having the covering, corrosion resistance is given, therefore the effect of improvement of the hydrogen embrittlement resistance at use in an automobile is obtained.


The thickness of the covering is preferably 10 to 100 m.


[Shape of Hot Stamped Body]

The shape of the hot stamped body according to an embodiment is not particularly limited. That is, the hot stamped body may be a flat shape or the steel sheet may be formed into a predetermined 3D shape. A hot stamped (hot shaped) steel member is in many cases a 3D shape, but in the present embodiment, a case of a 3D shape and a case of a flat shape are both included and referred to as a “hot stamped body”. Further, the hot stamped body may be a tailored property material having different strengths depending on the location. In this case, at least part of the hot stamped body has to have a tensile strength of 2200 MPa or more. The tailored property material may be comprised of steel sheets of differing chemical compositions, strengths, and thicknesses joined together and, further, may be comprised of a steel sheet which is heated treated at parts. Further, the hot stamped body may be provided with a decarburized layer or softened layer at part of its surface layer.


[Mechanical Properties]

According to the hot stamped body of an embodiment of the present invention, excellent mechanical properties, for example, a tensile strength of 2200 MPa or more, can be achieved. The tensile strength is preferably 2300 MPa or more, more preferably 2400 MPa or more, most preferably 2500 MPa or more. The upper limit is not particularly prescribed, but, for example, the tensile strength may be 3500 MPa or less, 3300 MPa or less, or 3000 MPa or less. The tensile strength of the hot stamped body is measured by preparing a No. 5 test piece and conducting a tensile test based on JIS Z 2241: 2011. At this time, for the purpose of removing roughness at the surface of the test piece, the surface layer parts of the front and back surfaces may be removed by machining or chemical polishing.


The hot stamped body according to an embodiment of the present invention, despite as explained above having, for example, a high tensile strength of 2200 MPa or more, is excellent in hydrogen embrittlement resistance, and therefore is extremely useful for use as, for example, a frame member or bumper of an automobile or other structural member and reinforcing member where strength is required.


<Method of Production of Hot Stamped Body>

Next, a preferable method of production of the hot stamped body according to an embodiment of the present invention will be explained. The following explanation is intended to illustrate the characteristic method for producing the hot stamped body according to the embodiment of the present invention and is not intended to limit the hot stamped body to one produced by the method of production such as explained below.


In order to make specific grain boundary strengthening elements segregate at the prior austenite grain boundaries, in particular, the method of production of the hot stamped body according to an embodiment of the present invention is characterized by suitably controlling coiling conditions of the hot rolling step and the heat treatment conditions at the preheating step before the hot stamping step and at the hot stamping step. More specifically, the method of production of the hot stamped body according to an embodiment of the present invention comprises:

    • hot rolling a slab having a chemical composition explained above in relation to the hot stamped body, then coiling it at a temperature of 450° C. or less (hot rolling step),
    • preheating the obtained steel sheet to a temperature of more than 1200° C., then cooling it by an average cooling speed of 10° C./s or more down to less than 350° C. (preheating step), and
    • hot stamping the steel sheet, wherein the hot stamping includes heating the steel sheet to a temperature region of 800 to 1000° C. and then holding it there for 60 to 600 seconds (hot stamping step). Below, the steps will be explained in detail.


[Hot Rolling Step]

In the hot rolling step, first, a slab having the chemical composition explained above in relation to the hot stamped body is heated. The method of casting the molten steel is not particularly limited. The slab may be produced by continuous casting, ingot forming, or thin slab casting. The heating before the hot rolling is not particularly limited, but the slab used contains a relatively large amount of alloying elements for obtaining a high strength steel sheet. For this reason, the slab may also be heated before being sent on for hot rolling. For the purpose of making the alloying elements dissolve in the slab, the heating temperature may be 1100° C. or more. Further, the heated slab may optionally be rough rolled before the finish rolling so as to adjust the sheet thickness, etc. The rough rolling need only be able to secure the desired sheet bar dimensions. The conditions are not particularly limited. The heated slab or the slab additionally rough rolled as needed is next subjected to finish rolling. The finish rolling is not particularly limited, but in general is performed under conditions giving an end temperature of the finish rolling of 650° C. or more. If the end temperature of the finish rolling is too low, the rolling reaction force becomes higher and it is difficult to stably obtain the desired sheet thickness. The upper limit is not particularly prescribed, but in general the end temperature of finish rolling is 950° C. or less.


[Coiling]

Next, the finish rolled hot rolled steel sheet is coiled at a temperature of 450° C. or less. Grain boundary strengthening elements selected from at least one of Mo, W, Ta, Re, Os, Ir, and Tc are present in the steel sheet in the form of carbides or intermetallic compounds before the preheating step and hot stamping step. As such carbides, carbides formed by the above grain boundary strengthening elements bonding with carbon alone (for example, WC) or carbides with grain boundary strengthening elements partially dissolved in the cementite of their microstructures (Fe3C), etc., may be mentioned. As explained in detail later, in the present method, in the preheating step, the carbides or intermetallic compounds of the grain boundary strengthening elements are made to sufficiently melt and the grain boundary strengthening elements are made to dissolve in the steel sheet, then the grain boundary strengthening elements dissolved in the steel sheet are made to disperse and segregate at the austenite grain boundaries in the next hot stamping step, whereby at the finally obtained hot stamped body, it is possible to realize a microstructure where the grain boundary strengthening elements are segregated at the prior austenite grain boundaries. However, carbides or intermetallic compounds of grain boundary strengthening elements are thermally stable, therefore sometimes cannot be made to sufficiently melt by just the heat treatment at the preheating step. In such a case, the grain boundary strengthening elements can no longer be made to sufficiently dissolve in the steel sheet. Therefore, to promote the melting operation at the preheating step, it becomes extremely important to refine the carbides and/or intermetallic compounds of the grain boundary strengthening elements and render them easier to melt before the preheating step. In relation to this, by making the coiling temperature after the finish rolling 450° C. or less, it is possible to refine the carbides and/or intermetallic compounds of the grain boundary strengthening elements at the hot rolled steel sheet after coiling. For example, in the case of carbides in which grain boundary strengthening elements dissolve partially in the cementite, the carbides are formed by the grain boundary strengthening elements concentrating in the cementite at the time of coiling. Therefore, by controlling the coiling temperature to a 450° C. or less relatively low temperature, in addition to such refinement of the carbides, it is possible to reduce the amount of the grain boundary strengthening elements dissolved in the cementite, therefore it is possible to promote more the melting operation in the later preheating step. The coiling temperature is preferably 420° C. or less. The lower limit is not particularly prescribed, but the coiling temperature may for example be 250° C. or more or 300° C. or more. Further, for the purpose of softening the hot rolled steel sheet, it may be heat treated to soften after coiling. The method of heat treatment for softening is not particularly limited and may be made general conditions.


If coiling hot rolled steel sheet at a 450° C. or less, preferably a 420° C. or less, relatively low temperature, in general the percentage of bainite, martensite, and other hard structures rises in the hot rolled steel sheet and the rolling load of the rolling mills in the later cold rolling step remarkably rises. Further, preheating at a temperature of more than 1200° C. before the hot stamping step and the effects obtained due to the same, explained in detail later, i.e., the melting and dissolution of carbides and/or intermetallic compounds of the grain boundary strengthening elements, has not been known up to now. Therefore, the technical idea of combining 450° C. or less, preferably 420° C. or less, low temperature coiling at the hot rolling step, a preheating step at a temperature of more than 1200° C., and further heat treatment at the hot stamping step to thereby make specific grain boundary strengthening elements segregate at the prior austenite grain boundaries of the hot stamped body and thereby improve the hydrogen embrittlement resistance of the hot stamped body has not existed up to now and was first discovered by the inventors this time. In particular, the fact that preheating under the high temperature before the hot stamping step simply causes coarsening of the austenite grains is generally recognized. For that reason, it is believed that preheating at a temperature of more than 1200° C. has not been performed in the prior art. Further, in the present method of production, as explained above, 450° C. or less low temperature coiling at the hot rolling step, a preheating step at a temperature of more than 1200° C., and further heat treatment at the hot stamping step are combined to thereby make specific grain boundary strengthening elements segregate at the prior austenite grain boundaries of the hot stamped body and thereby improve the hydrogen embrittlement resistance of the hot stamped body. However, only naturally, if the production conditions are ones making specific grain boundary strengthening elements segregate at the prior austenite grain boundaries of the hot stamped body and thereby enabling improvement of the hydrogen embrittlement resistance of the hot stamped body, it is also possible to apply such production conditions in place of the above combination.


[Pickling Step]

After the coiling step and before the cold rolling step, optionally, pickling may be performed for removing the oxide scale formed on the surface of the hot rolled steel sheet. The pickling may be formed under conditions suitable for removing oxide scale. It may be performed at one time or may be performed divided into several times so as to reliably remove the oxide scale.


[Cold Rolling Step]

After the coiling step, the steel sheet may be optionally cold rolled. The cold rolling is not particularly limited and may be performed under any suitable conditions. For example, the rolling reduction of the cold rolling may be 30 to 80%. The number of rolling passes and the rolling reduction per pass are not particularly limited and may be suitable set so that the rolling reduction of the cold rolling as a whole becomes the above range.


[Annealing Step]

For example, after the cold rolling step, annealing may optionally be performed to adjust the microstructure and/or properties. The heating temperature of the annealing step is not particularly limited, but may for example be 800° C. or less.


[Covering Step]

For the purpose of improving the corrosion resistance, etc., the surface of the hot rolled steel sheet or cold rolled steel sheet may be treated to cover it. The covering treatment may be hot dip coating, hot dip alloyed coating, electroplating, or other treatment. For example, the steel sheet may be hot dip galvanized as covering treatment or may be hot dip galvanized and then alloyed. As the covering, a covering mainly comprised of an Fe—Al-based alloy, a covering mainly comprised of an Fe—Zn-based alloy, etc., may be illustrated. The specific conditions of the covering treatment and alloying treatment are not particularly limited and may be any suitable conditions known to persons skilled in the art.


[Temper Rolling Step]

To correct the shape of the steel sheet or adjust the surface roughness, etc., it is possible, for example, to temper roll the steel sheet after the annealing step, or after the plating step.


[Preheating Step]

In the present method, the obtained hot rolled steel sheet or cold rolled steel sheet is preheated to a temperature of more than 1200° C. before the hot stamping step, then is cooled by an average cooling speed of 10° C./s or more down to less than 350° C. In the hot stamped body according to an embodiment of the present invention, it is extremely important to make specific grain boundary strengthening elements, more specifically at least one type of Mo, W, Ta, Re, Os, Ir, and Tc, segregate at the prior austenite grain boundaries in predetermined amounts. However, the hot stamped body according to an embodiment of the present invention has a 0.40% or more relatively high C content, therefore in the hot rolled steel sheet after the hot rolling step or in the cold rolled steel sheet after the optional cold rolling step or annealing step, these grain boundary strengthening elements are present as carbides and/or intermetallic compounds. Therefore, even if subjecting such steel sheet to the hot stamping step for usual heating and shaping without the preheating step, these grain boundary strengthening elements cannot be made to sufficiently segregate at the prior austenite grain boundaries. In this case, it is no longer possible to sufficiently manifest the grain boundary strengthening action based on the grain boundary segregation of these elements. For this reason, in this method, it is extremely important to preheat the steel sheet before the hot stamping step to a relatively high temperature of more than 1200° C. to thereby make the carbides and/or intermetallic compounds of the grain boundary strengthening elements sufficiently melt and make the grain boundary strengthening elements dissolve in the steel sheet. The upper limit of the heating temperature of the preheating is not particularly prescribed, but the heating temperature may for example be 1400° C. or less. Further, after heating, the steel sheet is cooled by an average cooling speed of 10° C./s or more down to less than 350° C. By cooling by an average cooling speed of 10° C./s or more down to less than 350° C., it is possible to keep the grain boundary strengthening elements dissolved in the steel sheet from precipitating as compounds. The upper limit of the average cooling speed is not particularly prescribed, but for example the average cooling speed may be 3000° C./s or less, 1500° C./s or less, or 1200° C./s or less. The upper limit of the cooling speed is not particularly prescribed. The cooling method is also not particularly limited and may be die cooling, water cooling, oil cooling, or gas cooling. In particular, even with an extremely high average cooling speed, cooling can be relatively easily realized by utilizing die cooling or water cooled die cooling.


[Hot Stamping Step]

Finally, the preheated steel sheet is hot stamped in the hot stamping step to produce a hot stamped body having the desired chemical composition and microstructure. In particular, the grain boundary strengthening elements dissolved in the steel sheet in the previous preheating step disperse to the austenite grain boundaries and segregate there at the time of heating in the hot stamping step. For this reason, due to the following shaping and cooling operation, it is possible to achieve the desired total amount of segregation of the grain boundary strengthening elements at the prior austenite grain boundaries after the martensite transformation. From the viewpoint of achieving such dispersion and segregation of the grain boundary strengthening elements and further obtaining a high area ratio of the hard structures, the steel sheet for hot stamping use has to be heated to a temperature region of 800° C. to 1000° C. and has to be held at that temperature region for 60 to 600 seconds. If the heating temperature is less than 800° C., the grain boundary strengthening elements are not sufficiently dispersed at the austenite grain boundaries and therefore sometimes the desired total amount of segregation at the grain boundary strengthening elements cannot be achieved and the hydrogen embrittlement resistance deteriorates and/or the structure is insufficiently austenized, the area ratio of the hard structures (at least one of martensite, bainite, and tempered martensite) becomes lower, and the tensile strength deteriorates. On the other hand, if the heating temperature exceeds 1000° C., sometimes grain boundary segregation excessively proceeds, the segregated grain boundary strengthening elements precipitate as carbides or intermetallic compounds, the amount of grain boundary segregation decreases, the desired total amount of segregation at the grain boundary strengthening elements cannot be achieved, and the hydrogen embrittlement resistance deteriorates. If the holding time is less than 60 seconds, in the same way as the case where the heating temperature is less than 800° C., sometimes the grain boundary strengthening elements do not sufficiently disperse to the austenite grain boundaries and for that reason the desired total amount of segregation at the grain boundary strengthening elements cannot be achieved and the hydrogen embrittlement resistance deteriorates and/or the austenization becomes insufficient, the area ratio of the hard structures (at least one of martensite, bainite, and tempered martensite) becomes lower, and the tensile strength deteriorates. If the holding time is more than 600 seconds, sometimes, due to the long period of heating, grain boundary segregation excessively proceeds, the grain boundary strengthening elements precipitate, and such precipitates become starting points of fracture and the hydrogen embrittlement resistance deteriorates.


The heating atmosphere is not particularly limited. Usual conditions are enough. For example, it may be an air atmosphere, a gas combustion atmosphere controlled in ratio of air and fuel, and a nitrogen atmosphere. The dew points may also be controlled in these gases. The steel sheet is held at a temperature region of 800° C. to 1000° C., then hot stamped. After hot stamping, it may be cooled down to a temperature region of 250° C. or less by an average cooling speed of 20° C./s or more.


As the heating method before hot stamping, for example, furnace heating by an electric furnace, gas furnace, etc., flame heating, ohmic heating, high frequency heating, induction heating, etc., may be mentioned.


The hot stamped body according to the present embodiment is obtained by the above method. After hot stamping, it may be tempered at 130 to 600° C. or coated, then bake hardened (BH). Further, part of the hot stamped body may be tempered by being irradiated by a laser, etc., to partially provide softened regions.


Below, examples will be used to explain the present invention in more detail, but the present invention is not limited to these examples in any way.


EXAMPLES

In the following examples, hot stamped bodies according to an embodiment of the present invention were produced under various conditions and the obtained tensile strength and hydrogen embrittlement resistance of the hot stamped bodies were investigated.


First, molten steels having the chemical compositions shown in Table 1 were cast by continuous casting to produce slabs. The balances besides the constituents shown in Table 1 were Fe and impurities. These slabs were heated to a 1100° C. or more temperature and rough rolled under predetermined conditions, then were finish rolled under conditions giving an end temperature of the finish rolling of 650° C. or more and coiled at the coiling temperature shown in Table 2. After the coiling, some of the hot rolled steel sheets were subjected to predetermined heat treatment for softening. Next, the obtained hot rolled steel sheets were cold rolled by 30 to 80% predetermined rolling reductions. Next, some of the steel sheets were subjected to annealing, covering, or temper rolling under predetermined conditions. Next, the obtained steel sheets were hot stamped under the conditions shown in Table 2. The heating atmosphere and heating method in the hot stamping step, except when clearly indicated otherwise, were a gas combustion atmosphere (air-fuel ratio 0.85) and furnace heating. After the hot stamping, some of the hot stamped bodies were tempered or partially softened.











TABLE 1









Chemical composition (mass %), balance: Fe and impurities























Steel
C
P
S
N
O
Al
Nb
Ti
Mo
B
Si
Mn
Cr
Co
Ni
Cu





A1

0.37

0.007
0.0006
0.0023
0.0032
0.043
0.043
0.048
0.211
0.0018
0.45
0.34
0.28


A2
0.41
0.008
0.0007
0.0023
0.0014
0.040
0.041
0.026
0.152
0.0029
0.43
0.29
0.32


A3
0.43
0.006
0.0005
0.0031
0.0032
0.041
0.038
0.027
0.222
0.0023
0.43
0.33
0.28


A4
0.44
0.006
0.0016
0.0019
0.0034
0.041
0.034
0.040
0.213
0.0029


A5
0.45
0.009
0.0016
0.0027
0.0032
0.041
0.026
0.046
0.184
0.0025
0.45
0.33
0.29


A6
0.46
0.005
0.0009
0.0025
0.0022
0.047
0.030
0.030
0.181
0.0020


A7
0.47
0.007
0.0018
0.0031
0.0017
0.044
0.027
0.036
0.187
0.0027
0.44
0.31
0.28


A8
0.48
0.008
0.0016
0.0035
0.0034
0.038
0.023
0.024
0.155
0.0027
0.47
0.31
0.32


A9
0.53
0.006
0.0003
0.0025
0.0021
0.044
0.040
0.029
0.174
0.0029
0.43
0.30
0.30


A10
0.57
0.008
0.0008
0.0033
0.0020
0.037
0.018
0.040
0.198
0.0028


A11
0.58
0.005
0.0015
0.0022
0.0023
0.048
0.036
0.035
0.175
0.0019
0.40
0.34
0.30


A12
0.62
0.005
0.0012
0.0022
0.0024
0.043
0.029
0.039
0.176
0.0028
0.42
0.32
0.28


A13
0.67
0.007
0.0007
0.0028
0.0027
0.046
0.032
0.043
0.160
0.0026
0.39
0.32
0.29


A14

0.72

0.007
0.0019
0.0028
0.0019
0.043
0.019
0.039
0.174
0.0017
0.40
0.31
0.25


B1
0.49
0.005
0.0019
0.0032
0.0026
0.045
0.036
0.033
0.234
0.0025

0.32
0.27


B2
0.44
0.005
0.0020
0.0031
0.0024
0.042
0.034
0.045
0.205
0.0033
0.01
0.30
0.27


B3
0.44
0.009
0.0020
0.0022
0.0027
0.046
0.038
0.028
0.144
0.0019
0.04
0.33
0.31


B4
0.46
0.007
0.0018
0.0033
0.0025
0.045
0.029
0.043
0.181
0.0029
0.07
0.32
0.30


B5
0.46
0.004
0.0020
0.0024
0.0015
0.040
0.038
0.033
0.208
0.0018
0.12
0.31
0.34


B6
0.47
0.004
0.0016
0.0021
0.0022
0.038
0.024
0.046
0.189
0.0024
0.21
0.32
0.24


B7
0.49
0.008
0.0007
0.0023
0.0031
0.042
0.027
0.033
0.136
0.0034
0.25
0.32
0.27


B8
0.45
0.007
0.0017
0.0022
0.0025
0.044
0.028
0.035
0.186
0.0031
0.33
0.31
0.27


B9
0.46
0.009
0.0003
0.0019
0.0036
0.046
0.018
0.048
0.165
0.0024
0.43
0.33
0.23


B10
0.44
0.005
0.0017
0.0030
0.0018
0.047
0.033
0.034
0.186
0.0024
0.61
0.32
0.33


B11
0.48
0.004
0.0011
0.0033
0.0030
0.037
0.025
0.040
0.165
0.0019
0.85
0.30
0.24


B12
0.47
0.006
0.0020
0.0031
0.0019
0.042
0.019
0.035
0.150
0.0019
1.81
0.34
0.29


B13
0.52
0.005
0.0016
0.0023
0.0035
0.040
0.024
0.044
0.180
0.0029
2.42
0.29
0.26


B14
0.52
0.007
0.0006
0.0024
0.0026
0.040
0.032
0.035
0.141
0.0027
2.70
0.33
0.26


B15
0.46
0.009
0.0018
0.0032
0.0029
0.044
0.029
0.046
0.128
0.0034

3.04

0.31
0.25


C1
0.44
0.008
0.0016
0.0033
0.0025
0.044
0.024
0.046
0.157
0.0019
0.42

0.35


C2
0.45
0.005
0.0019
0.0032
0.0020
0.043
0.031
0.042
0.214
0.0031
0.40
0.15
0.29


C3
0.44
0.009
0.0003
0.0024
0.0016
0.045
0.035
0.033
0.235
0.0024
0.44
0.28
0.25


C4
0.45
0.007
0.0008
0.0029
0.0018
0.052
0.032
0.046
0.142
0.0031
0.41
0.32
0.31


C5
0.48
0.004
0.0008
0.0027
0.0019
0.050
0.019
0.045
0.174
0.0031
0.41
0.38
0.26


C6
0.47
0.006
0.0016
0.0024
0.0033
0.046
0.040
0.046
0.172
0.0033
0.40
0.41
0.28


C7
0.44
0.005
0.0015
0.0024
0.0016
0.048
0.017
0.032
0.214
0.0017
0.45
0.42
0.26


C8
0.47
0.009
0.0018
0.0025
0.0021
0.039
0.017
0.025
0.155
0.0034
0.41
0.45
0.25


C9
0.48
0.008
0.0021
0.0027
0.0026
0.043
0.028
0.043
0.206
0.0020
0.47
0.46
0.32


C10
0.49
0.008
0.0022
0.0027
0.0022
0.045
0.029
0.030
0.139
0.0031
0.47
0.47
0.33


C11
0.44
0.007
0.0017
0.0020
0.0019
0.046
0.031
0.032
0.198
0.0027
0.42
0.48
0.34


C12
0.46
0.007
0.0011
0.0019
0.0018
0.043
0.027
0.032
0.204
0.0027
0.43
0.49
0.32


C13
0.49
0.006
0.0018
0.0025
0.0034
0.048
0.040
0.042
0.182
0.0017
0.44
0.49
0.29


C14
0.47
0.004
0.0004
0.0022
0.0019
0.045
0.030
0.035
0.193
0.0030
0.42

0.55

0.25


D1
0.45
0.001
0.0008
0.0035
0.0035
0.048
0.027
0.036
0.200
0.0022
0.42
0.29
0.31


D2
0.46
0.004
0.0014
0.0029
0.0023
0.050
0.036
0.031
0.135
0.0020
0.42
0.33
0.32


D3
0.46
0.006
0.0020
0.0027
0.0015
0.048
0.025
0.043
0.236
0.0021
0.43
0.33
0.29


D4
0.46
0.008
0.0005
0.0032
0.0014
0.045
0.036
0.030
0.126
0.0034
0.47
0.34
0.25


D5
0.44
0.011
0.0003
0.0025
0.0029
0.049
0.018
0.031
0.178
0.0017
0.43
0.30
0.25


D6
0.46
0.042
0.0009
0.0027
0.0017
0.042
0.030
0.047
0.172
0.0019
0.38
0.33
0.26


D7
0.47
0.072
0.0013
0.0028
0.0021
0.046
0.043
0.026
0.137
0.0029
0.41
0.31
0.26


D8
0.47
0.090
0.0008
0.0025
0.0031
0.048
0.042
0.038
0.237
0.0029
0.40
0.31
0.31


D9
0.48

0.120

0.0015
0.0030
0.0029
0.047
0.032
0.047
0.203
0.0020
0.45
0.34
0.27


E1
0.45
0.007
0.0001
0.0035
0.0018
0.046
0.039
0.030
0.231
0.0021
0.41
0.30
0.28


E2
0.46
0.009
0.0003
0.0034
0.0027
0.044
0.038
0.044
0.136
0.0025
0.38
0.30
0.30


E3
0.48
0.009
0.0008
0.0021
0.0014
0.050
0.018
0.032
0.173
0.0021
0.43
0.30
0.24


E4
0.47
0.007
0.0011
0.0031
0.0030
0.046
0.028
0.032
0.195
0.0019
0.40
0.34
0.30


E5
0.45
0.005
0.0021
0.0033
0.0023
0.039
0.038
0.034
0.138
0.0028
0.41
0.35
0.36


E6
0.47
0.009
0.0045
0.0034
0.0027
0.047
0.035
0.035
0.195
0.0021
0.43
0.31
0.26


E7
0.49
0.006
0.0068
0.0021
0.0023
0.038
0.023
0.044
0.224
0.0033
0.46
0.32
0.31


E8
0.46
0.004
0.0090
0.0031
0.0019
0.046
0.036
0.032
0.156
0.0030
0.45
0.32
0.29


E9
0.45
0.008

0.0156

0.0019
0.0034
0.041
0.040
0.045
0.228
0.0021
0.43
0.34
0.24


F1
0.43
0.007
0.0006
0.0002
0.0025
0.039
0.029
0.037
0.177
0.0018
0.41
0.31
0.28


F2
0.49
0.005
0.0016
0.0008
0.0023
0.049
0.033
0.027
0.193
0.0022
0.43
0.31
0.31


F3
0.44
0.004
0.0004
0.0018
0.0036
0.044
0.029
0.027
0.140
0.0022
0.45
0.31
0.23


F4
0.46
0.005
0.0022
0.0029
0.0035
0.046
0.042
0.044
0.148
0.0021
0.40
0.35
0.27


F5
0.49
0.005
0.0003
0.0045
0.0022
0.047
0.021
0.034
0.161
0.0029
0.40
0.32
0.33


F6
0.43
0.004
0.0008
0.0064
0.0024
0.041
0.040
0.040
0.140
0.0021
0.39
0.31
0.31


F7
0.45
0.009
0.0004
0.0103
0.0028
0.043
0.039
0.041
0.182
0.0028
0.43
0.34
0.32


F8
0.45
0.004
0.0016
0.0174
0.0022
0.046
0.026
0.038
0.170
0.0030
0.45
0.33
0.23


F9
0.45
0.007
0.0003

0.0213

0.0033
0.042
0.041
0.035
0.207
0.0024
0.39
0.32
0.27


G1
0.45
0.004
0.0016
0.0029
0.0006
0.045
0.035
0.026
0.217
0.0019
0.42
0.34
0.30


G2
0.45
0.007
0.0008
0.0022
0.0013
0.051
0.036
0.041
0.176
0.0020
0.42
0.32
0.22


G3
0.44
0.007
0.0012
0.0020
0.0023
0.044
0.037
0.037
0.206
0.0023
0.45
0.33
0.33


G4
0.43
0.005
0.0021
0.0025
0.0036
0.048
0.023
0.027
0.197
0.0032
0.43
0.33
0.32


G5
0.47
0.007
0.0013
0.0019
0.0052
0.044
0.023
0.028
0.153
0.0025
0.46
0.32
0.26


G6
0.45
0.008
0.0012
0.0027
0.0087
0.051
0.035
0.045
0.166
0.0019
0.45
0.35
0.29


G7
0.48
0.004
0.0003
0.0020
0.0189
0.047
0.031
0.041
0.146
0.0023
0.44
0.33
0.27


G8
0.48
0.009
0.0012
0.0023

0.0237

0.037
0.037
0.041
0.150
0.0030
0.38
0.30
0.27


H1
0.48
0.004
0.0004
0.0024
0.0035
0.0007
0.038
0.027
0.208
0.0029
0.41
0.31
0.32


H2
0.46
0.005
0.0016
0.0025
0.0034
0.001
0.025
0.034
0.179
0.0025
0.43
0.34
0.26


H3
0.46
0.006
0.0007
0.0022
0.0030
0.005
0.030
0.046
0.143
0.0019
0.45
0.32
0.32


H4
0.44
0.009
0.0012
0.0024
0.0016
0.015
0.040
0.040
0.222
0.0027
0.40
0.30
0.30


H5
0.48
0.006
0.0020
0.0022
0.0025
0.024
0.031
0.042
0.142
0.0030
0.42
0.34
0.26


H6
0.44
0.008
0.0012
0.0021
0.0032
0.038
0.037
0.032
0.212
0.0020
0.40
0.30
0.30


H7
0.46
0.009
0.0005
0.0025
0.0018
0.049
0.030
0.039
0.189
0.0020
0.42
0.34
0.30


H8
0.44
0.006
0.0016
0.0026
0.0024
0.067
0.026
0.047
0.132
0.0029
0.38
0.33
0.27


H9
0.48
0.006
0.0004
0.0026
0.0014
0.085
0.019
0.037
0.140
0.0033
0.44
0.33
0.35


H10
0.46
0.006
0.0007
0.0021
0.0022
0.132
0.025
0.044
0.174
0.0032
0.40
0.31
0.29


H11
0.45
0.008
0.0018
0.0019
0.0021
0.256
0.033
0.038
0.181
0.0030
0.45
0.33
0.34


H12
0.46
0.009
0.0006
0.0018
0.0032
0.350
0.027
0.033
0.209
0.0021
0.44
0.29
0.30


H13
0.45
0.007
0.0005
0.0023
0.0032
0.486
0.035
0.031
0.156
0.0023
0.37
0.31
0.31


H14
0.47
0.006
0.0013
0.0029
0.0029

0.521

0.032
0.037
0.146
0.0027
0.46
0.32
0.30


I1
0.44
0.009
0.0007
0.0023
0.0018
0.048
0.0006
0.038
0.128
0.0019
0.42
0.30
0.35


I2
0.46
0.008
0.0015
0.0035
0.0029
0.045
0.001
0.037
0.218
0.0019
0.41
0.34
0.25


I3
0.44
0.005
0.0018
0.0025
0.0030
0.048
0.004
0.028
0.217
0.0019
0.44
0.31
0.25


I4
0.46
0.005
0.0015
0.0029
0.0016
0.045
0.007
0.045
0.217
0.0030
0.47
0.35
0.31


I5
0.44
0.005
0.0008
0.0034
0.0016
0.043
0.012
0.042
0.227
0.0030
0.38
0.32
0.28


I6
0.48
0.008
0.0010
0.0024
0.0035
0.039
0.018
0.034
0.136
0.0029
0.41
0.34
0.30


I7
0.44
0.005
0.0011
0.0021
0.0022
0.047
0.024
0.037
0.129
0.0030
0.42
0.30
0.32


I8
0.48
0.004
0.0010
0.0028
0.0019
0.041
0.036
0.035
0.192
0.0018
0.41
0.30
0.27


I9
0.44
0.004
0.0017
0.0029
0.0024
0.039
0.040
0.030
0.137
0.0026
0.42
0.33
0.29


I10
0.45
0.004
0.0006
0.0019
0.0030
0.049
0.056
0.026
0.158
0.0030
0.42
0.30
0.26


I11
0.48
0.009
0.0021
0.0024
0.0027
0.044
0.068
0.040
0.228
0.0024
0.41
0.35
0.29


I12
0.48
0.004
0.0021
0.0019
0.0013
0.047
0.081
0.047
0.191
0.0024
0.40
0.32
0.31


I13
0.46
0.004
0.0009
0.0019
0.0029
0.042
0.088
0.033
0.152
0.0020
0.39
0.32
0.32


I14
0.45
0.004
0.0010
0.0033
0.0027
0.049

0.120

0.036
0.156
0.0025
0.46
0.32
0.28


J1
0.48
0.006
0.0016
0.0021
0.0028
0.051
0.044

0.007

0.198
0.0030
0.38
0.31
0.28


J2
0.46
0.005
0.0013
0.0022
0.0025
0.046
0.032
0.011
0.185
0.0025
0.42
0.33
0.33


J3
0.43
0.005
0.0018
0.0029
0.0023
0.046
0.043
0.016
0.196
0.0025
0.42
0.33
0.26


J4
0.45
0.005
0.0014
0.0018
0.0019
0.051
0.021
0.023
0.221
0.0029
0.40
0.31
0.31


J5
0.46
0.008
0.0008
0.0032
0.0029
0.040
0.022
0.026
0.133
0.0026
0.39
0.33
0.26


J6
0.45
0.004
0.0021
0.0030
0.0017
0.047
0.031
0.030
0.175
0.0028
0.43
0.33
0.24


J7
0.45
0.008
0.0003
0.0030
0.0013
0.048
0.027
0.046
0.135
0.0018
0.37
0.31
0.33


J8
0.47
0.008
0.0020
0.0028
0.0035
0.050
0.033
0.056
0.198
0.0021
0.43
0.31
0.28


J9
0.46
0.008
0.0013
0.0029
0.0025
0.047
0.039
0.081
0.144
0.0024
0.45
0.35
0.24


J10
0.47
0.005
0.0015
0.0023
0.0020
0.046
0.023
0.114
0.226
0.0027
0.44
0.30
0.29


J11
0.45
0.008
0.0013
0.0018
0.0025
0.048
0.042
0.183
0.132
0.0023
0.44
0.31
0.30


J12
0.45
0.008
0.0009
0.0021
0.0018
0.041
0.025

0.213

0.179
0.0026
0.40
0.30
0.28


K1
0.45
0.004
0.0007
0.0031
0.0020
0.041
0.037
0.046
0.190
0.0021
0.44
0.33


K2
0.45
0.004
0.0006
0.0026
0.0023
0.037
0.025
0.029
0.207
0.0024
0.40
0.33
0.01


K3
0.48
0.004
0.0006
0.0022
0.0021
0.039
0.038
0.037
0.218
0.0019
0.39
0.34
0.05


K4
0.46
0.009
0.0012
0.0028
0.0020
0.039
0.025
0.033
0.126
0.0035
0.42
0.31
0.09


K5
0.43
0.007
0.0016
0.0018
0.0016
0.048
0.031
0.032
0.220
0.0019
0.39
0.34
0.13


K6
0.47
0.004
0.0016
0.0022
0.0018
0.041
0.037
0.036
0.181
0.0025
0.40
0.35
0.19


K7
0.48
0.008
0.0018
0.0032
0.0034
0.046
0.021
0.032
0.192
0.0026
0.47
0.31
0.21


K8
0.43
0.008
0.0022
0.0020
0.0024
0.045
0.037
0.029
0.179
0.0026
0.42
0.35
0.27


K9
0.45
0.004
0.0010
0.0026
0.0022
0.050
0.038
0.041
0.224
0.0025
0.43
0.32
0.34


K10
0.44
0.006
0.0003
0.0030
0.0019
0.053
0.023
0.043
0.228
0.0018
0.40
0.33
0.41


K11
0.45
0.007
0.0005
0.0029
0.0028
0.037
0.032
0.033
0.170
0.0030
0.44
0.32
0.63


K12
0.43
0.006
0.0004
0.0022
0.0030
0.052
0.040
0.035
0.204
0.0028
0.39
0.30
0.74


K13
0.48
0.006
0.0011
0.0026
0.0022
0.045
0.027
0.037
0.131
0.0021
0.42
0.31
0.93


K14
0.44
0.006
0.0012
0.0031
0.0034
0.050
0.038
0.037
0.210
0.0021
0.43
0.32

1.08



L1
0.45
0.009
0.0003
0.0026
0.0034
0.039
0.019
0.036

0.009

0.0018
0.43
0.30
0.32


L2
0.45
0.004
0.0014
0.0026
0.0029
0.052
0.030
0.034
0.012
0.0033
0.41
0.33
0.25


L3
0.46
0.004
0.0016
0.0021
0.0026
0.051
0.037
0.039
0.011
0.0028
0.44
0.31
0.32


L4
0.45
0.004
0.0008
0.0032
0.0034
0.037
0.018
0.040
0.054
0.0026
0.45
0.34
0.24


L5
0.44
0.005
0.0008
0.0022
0.0023
0.040
0.031
0.029
0.140
0.0033
0.40
0.34
0.30


L6
0.44
0.009
0.0015
0.0022
0.0032
0.043
0.024
0.029
0.175
0.0024
0.39
0.29
0.28


L7
0.47
0.007
0.0008
0.0029
0.0022
0.048
0.037
0.028
0.241
0.0026
0.42
0.35
0.31


L8
0.47
0.004
0.0023
0.0024
0.0027
0.039
0.039
0.027
0.480
0.0030
0.39
0.32
0.24


L9
0.46
0.007
0.0009
0.0024
0.0018
0.049
0.021
0.039
0.667
0.0023
0.45
0.32
0.27


L10
0.46
0.008
0.0020
0.0029
0.0037
0.042
0.039
0.041
1.032
0.0018
0.42
0.30
0.29


L11
0.47
0.005
0.0019
0.0035
0.0015
0.040
0.032
0.031
1.454
0.0019
0.39
0.31
0.25


L12
0.47
0.009
0.0010
0.0027
0.0021
0.048
0.038
0.028
1.921
0.0031
0.41
0.32
0.28


L13
0.47
0.006
0.0022
0.0032
0.0032
0.046
0.027
0.025

2.112

0.0019
0.40
0.32
0.25


M1
0.47
0.007
0.0018
0.0031
0.0033
0.048
0.019
0.027
0.137

0.0002

0.40
0.30
0.33


M2
0.48
0.007
0.0016
0.0021
0.0023
0.053
0.036
0.025
0.182
0.0006
0.40
0.29
0.33


M3
0.47
0.008
0.0019
0.0024
0.0036
0.041
0.023
0.034
0.179
0.0011
0.41
0.31
0.26


M4
0.45
0.004
0.0013
0.0026
0.0032
0.048
0.034
0.032
0.202
0.0018
0.41
0.31
0.25


M5
0.47
0.006
0.0019
0.0021
0.0033
0.044
0.031
0.042
0.174
0.0022
0.44
0.31
0.33


M6
0.44
0.005
0.0012
0.0021
0.0023
0.051
0.026
0.044
0.152
0.0032
0.47
0.29
0.33


M7
0.47
0.004
0.0009
0.0025
0.0030
0.045
0.024
0.025
0.133
0.0046
0.39
0.31
0.32


M8
0.45
0.007
0.0022
0.0021
0.0019
0.046
0.031
0.044
0.190
0.0076
0.43
0.35
0.24


M9
0.47
0.008
0.0009
0.0033
0.0034
0.040
0.034
0.038
0.140
0.0121
0.40
0.31
0.30


M10
0.45
0.007
0.0009
0.0023
0.0033
0.042
0.039
0.035
0.131
0.0182
0.44
0.34
0.26


M11
0.44
0.009
0.0016
0.0030
0.0031
0.047
0.02
0.042
0.171

0.0221

0.44
0.32
0.26


N1
0.45
0.007
0.0006
0.0029
0.0019
0.045
0.018
0.036
0.137
0.0032
0.43
0.33
0.30
0.05


N2
0.44
0.004
0.0006
0.0024
0.0023
0.049
0.038
0.028
0.169
0.0017
0.45
0.33
0.28
0.12


N3
0.44
0.005
0.0020
0.0030
0.0016
0.051
0.019
0.029
0.153
0.0034
0.40
0.31
0.29
0.23


N4
0.46
0.005
0.0019
0.0033
0.0014
0.049
0.035
0.026
0.136
0.0032
0.40
0.33
0.33
0.41


N5
0.47
0.007
0.0018
0.0032
0.0016
0.043
0.030
0.038
0.172
0.0023
0.42
0.30
0.24
0.64


N6
0.45
0.006
0.0008
0.0026
0.0023
0.051
0.042
0.037
0.202
0.0024
0.42
0.31
0.31
0.81


N7
0.45
0.007
0.0017
0.0030
0.0020
0.039
0.037
0.030
0.212
0.0026
0.43
0.31
0.28
1.05


N8
0.48
0.006
0.0014
0.0034
0.0019
0.051
0.034
0.033
0.134
0.0020
0.39
0.33
0.26
1.31


N9
0.44
0.005
0.0004
0.0030
0.0018
0.052
0.035
0.042
0.203
0.0030
0.45
0.35
0.27
1.63


N10
0.45
0.004
0.0008
0.0030
0.0026
0.047
0.025
0.043
0.154
0.0020
0.46
0.30
0.24
1.77


N11
0.47
0.007
0.0006
0.0028
0.0024
0.048
0.038
0.028
0.212
0.0023
0.42
0.32
0.27
1.83


N12
0.47
0.004
0.0015
0.0022
0.0027
0.046
0.029
0.033
0.201
0.0028
0.38
0.32
0.33
2.43


N13
0.45
0.008
0.0017
0.0019
0.0028
0.040
0.025
0.027
0.190
0.0026
0.44
0.29
0.26
3.51


O1
0.44
0.006
0.0015
0.0029
0.0029
0.042
0.018
0.028
0.153
0.0027
0.41
0.31
0.28

0.02


O2
0.45
0.006
0.0015
0.0025
0.0031
0.048
0.034
0.041
0.125
0.0028
0.42
0.33
0.31

0.13


O3
0.48
0.004
0.0012
0.0031
0.0021
0.049
0.022
0.036
0.147
0.0021
0.37
0.33
0.33

0.23


O4
0.46
0.006
0.0017
0.0019
0.0027
0.048
0.025
0.042
0.156
0.0022
0.42
0.34
0.25

0.39


O5
0.44
0.004
0.0019
0.0033
0.0030
0.050
0.039
0.028
0.148
0.0026
0.44
0.31
0.26

0.83


O6
0.47
0.008
0.0022
0.0025
0.0026
0.043
0.019
0.045
0.202
0.0030
0.39
0.33
0.28

1.22


O7
0.48
0.005
0.0016
0.0021
0.0014
0.044
0.031
0.027
0.164
0.0028
0.44
0.29
0.33

1.65


O8
0.44
0.004
0.0011
0.0023
0.0027
0.044
0.039
0.035
0.168
0.0026
0.41
0.34
0.29

1.90


O9
0.46
0.009
0.0005
0.0023
0.0017
0.049
0.031
0.035
0.171
0.0029
0.42
0.34
0.29

2.05


O10
0.46
0.009
0.0017
0.0019
0.0025
0.037
0.019
0.034
0.169
0.0029
0.46
0.32
0.31

2.69


O11
0.47
0.008
0.0010
0.0025
0.0016
0.039
0.029
0.028
0.162
0.0030
0.41
0.34
0.35

2.82


O12
0.45
0.006
0.0018
0.0026
0.0032
0.048
0.022
0.025
0.211
0.0027
0.43
0.31
0.33

2.85


P1
0.49
0.005
0.0015
0.0032
0.0026
0.040
0.022
0.041
0.136
0.0034
0.42
0.32
0.27


0.05


P2
0.46
0.005
0.0020
0.0030
0.0022
0.042
0.026
0.026
0.171
0.0025
0.42
0.33
0.22


0.11


P3
0.46
0.006
0.0008
0.0027
0.0019
0.042
0.018
0.033
0.153
0.0020
0.45
0.31
0.32


0.23


P4
0.45
0.004
0.0006
0.0032
0.0017
0.053
0.023
0.031
0.129
0.0025
0.38
0.33
0.31


0.42


P5
0.47
0.007
0.0016
0.0024
0.0015
0.047
0.026
0.040
0.172
0.0020
0.47
0.34
0.26


0.81


P6
0.45
0.008
0.0012
0.0028
0.0022
0.042
0.023
0.031
0.159
0.0025
0.37
0.31
0.31


1.28


P7
0.43
0.006
0.0009
0.0029
0.0018
0.043
0.022
0.042
0.238
0.0026
0.41
0.30
0.23


1.63


P8
0.44
0.007
0.0008
0.0018
0.0028
0.047
0.024
0.031
0.214
0.0021
0.46
0.32
0.34


1.88


P9
0.45
0.008
0.0016
0.0032
0.0023
0.049
0.033
0.041
0.186
0.0033
0.44
0.30
0.25


2.30


P10
0.47
0.008
0.0012
0.0023
0.0031
0.045
0.025
0.029
0.196
0.0023
0.46
0.31
0.25


2.47


P11
0.48
0.004
0.0013
0.0033
0.0035
0.043
0.039
0.034
0.185
0.0019
0.42
0.31
0.22


2.82


P12
0.45
0.009
0.0003
0.0026
0.0018
0.049
0.022
0.030
0.136
0.0023
0.40
0.32
0.28


2.76


Q1
0.49
0.006
0.0016
0.0027
0.0027
0.040
0.026
0.038
0.182
0.0028
0.43
0.35
0.36


Q2
0.47
0.008
0.0003
0.0032
0.0027
0.046
0.019
0.026
0.136
0.0023
0.44
0.32
0.31


Q3
0.45
0.009
0.0013
0.0018
0.0032
0.045
0.029
0.048
0.226
0.0019
0.40
0.29
0.28


Q4
0.46
0.005
0.0012
0.0026
0.0017
0.047
0.020
0.030
0.221
0.0030
0.39
0.34
0.23


Q5
0.46
0.007
0.0015
0.0020
0.0023
0.039
0.022
0.040
0.183
0.0032
0.43
0.33
0.27


Q6
0.45
0.005
0.0021
0.0026
0.0026
0.049
0.033
0.027
0.203
0.0025
0.43
0.33
0.27


Q7
0.47
0.005
0.0016
0.0030
0.0032
0.041
0.022
0.033
0.206
0.0026
0.42
0.33
0.33


Q8
0.49
0.006
0.0007
0.0018
0.0030
0.047
0.021
0.035
0.141
0.0019
0.46
0.31
0.30


Q9
0.49
0.004
0.0007
0.0034
0.0020
0.045
0.039
0.035
0.162
0.0029
0.39
0.31
0.23


Q10
0.47
0.008
0.0010
0.0032
0.0014
0.044
0.029
0.027
0.162
0.0019
0.43
0.30
0.26


Q11
0.47
0.006
0.0018
0.0018
0.0023
0.037
0.025
0.031
0.147
0.0029
0.46
0.33
0.33


Q12
0.46
0.004
0.0007
0.0020
0.0022
0.044
0.036
0.041
0.141
0.0030
0.41
0.33
0.28


R1
0.46
0.004
0.0008
0.0027
0.0025
0.048
0.031
0.031
0.170
0.0031
0.38
0.32
0.33


R2
0.46
0.008
0.0009
0.0033
0.0025
0.042
0.025
0.040
0.144
0.0031
0.42
0.34
0.26


R3
0.44
0.008
0.0005
0.0027
0.0020
0.040
0.035
0.027
0.173
0.0027
0.40
0.31
0.29


R4
0.45
0.006
0.0009
0.0030
0.0033
0.044
0.037
0.036
0.222
0.0017
0.45
0.33
0.28


R5
0.47
0.006
0.0021
0.0021
0.0023
0.046
0.027
0.032
0.163
0.0034
0.42
0.32
0.30


R6
0.47
0.008
0.0019
0.0020
0.0020
0.040
0.042
0.037
0.149
0.0021
0.40
0.31
0.30


R7
0.48
0.008
0.0008
0.0029
0.0017
0.043
0.035
0.027
0.168
0.0030
0.42
0.32
0.29


R8
0.47
0.008
0.0018
0.0032
0.0032
0.039
0.035
0.042
0.228
0.0030
0.43
0.32
0.29


S1
0.45
0.007
0.0003
0.0028
0.0016
0.045
0.024
0.039
0.169
0.0022
0.44
0.31
0.31


S2
0.47
0.009
0.0014
0.0023
0.0029
0.037
0.028
0.029
0.168
0.0027
0.45
0.34
0.24


S3
0.43
0.004
0.0012
0.0031
0.0032
0.040
0.030
0.044
0.176
0.0023
0.38
0.35
0.25


S4
0.48
0.008
0.0020
0.0028
0.0014
0.049
0.037
0.044
0.144
0.0026
0.46
0.30
0.31


S5
0.47
0.004
0.0003
0.0021
0.0018
0.041
0.041
0.044
0.145
0.0026
0.46
0.30
0.34


S6
0.45
0.005
0.0012
0.0024
0.0030
0.042
0.026
0.046
0.205
0.0029
0.42
0.31
0.30


S7
0.45
0.009
0.0020
0.0032
0.0031
0.039
0.038
0.032
0.151
0.0026
0.45
0.31
0.29


S8
0.43
0.004
0.0017
0.0030
0.0015
0.049
0.037
0.028
0.156
0.0026
0.43
0.31
0.26


T1
0.44
0.004
0.0021
0.0025
0.0022
0.042
0.031
0.025
0.198
0.0025
0.43
0.33
0.33


T2
0.45
0.009
0.0004
0.0020
0.0034
0.038
0.020
0.035
0.208
0.0021
0.41
0.35
0.27


T3
0.46
0.007
0.0021
0.0023
0.0034
0.045
0.030
0.037
0.182
0.0024
0.37
0.31
0.27


T4
0.45
0.007
0.0009
0.0023
0.0033
0.040
0.018
0.034
0.176
0.0033
0.39
0.31
0.23


T5
0.48
0.004
0.0006
0.0028
0.0016
0.049
0.029
0.037
0.204
0.0019
0.44
0.32
0.27


T6
0.43
0.005
0.0020
0.0031
0.0014
0.043
0.030
0.041
0.227
0.0020
0.43
0.31
0.24


T7
0.46
0.009
0.0003
0.0031
0.0028
0.050
0.035
0.032
0.157
0.0034
0.40
0.31
0.35


T8
0.46
0.008
0.0009
0.0024
0.0026
0.038
0.033
0.039
0.139
0.0023
0.40
0.33
0.33


U1
0.48
0.008
0.0014
0.0030
0.0021
0.047
0.025
0.034
0.195
0.0023
0.45
0.31
0.32


U2
0.46
0.004
0.0016
0.0019
0.0036
0.041
0.025
0.039
0.203
0.0034
0.41
0.34
0.26


U3
0.45
0.009
0.0015
0.0030
0.0013
0.045
0.029
0.031
0.165
0.0024
0.40
0.32
0.27


U4
0.43
0.006
0.0014
0.0029
0.0026
0.040
0.036
0.035
0.176
0.0030
0.42
0.33
0.36


U5
0.45
0.005
0.0021
0.0032
0.0020
0.039
0.036
0.036
0.161
0.0022
0.47
0.33
0.26


U6
0.48
0.006
0.0019
0.0022
0.0034
0.043
0.020
0.043
0.165
0.0029
0.38
0.33
0.27


U7
0.45
0.005
0.0008
0.0031
0.0029
0.044
0.031
0.039
0.209
0.0023
0.42
0.31
0.24


U8
0.44
0.004
0.0007
0.0021
0.0024
0.051
0.038
0.036
0.143
0.0024
0.41
0.31
0.25


V1
0.43
0.006
0.0016
0.0033
0.0014
0.046
0.020
0.031
0.147
0.0020
0.47
0.33
0.33


V2
0.48
0.007
0.0004
0.0022
0.0023
0.044
0.020
0.043
0.195
0.0029
0.39
0.32
0.31


V3
0.45
0.009
0.0015
0.0033
0.0030
0.047
0.035
0.048
0.202
0.0025
0.45
0.35
0.27


V4
0.46
0.009
0.0018
0.0026
0.0032
0.042
0.039
0.044
0.226
0.0024
0.45
0.32
0.28


V5
0.47
0.007
0.0011
0.0029
0.0034
0.049
0.022
0.030
0.165
0.0021
0.43
0.34
0.34


V6
0.44
0.005
0.0020
0.0028
0.0022
0.044
0.029
0.031
0.199
0.0024
0.44
0.33
0.33


V7
0.45
0.009
0.0006
0.0026
0.0017
0.046
0.034
0.039
0.185
0.0023
0.46
0.32
0.32


V8
0.46
0.004
0.0006
0.0025
0.0028
0.049
0.040
0.042
0.219
0.0029
0.40
0.29
0.28


W1
0.47
0.008
0.0006
0.0026
0.0020
0.048
0.034
0.034
0.182
0.0028
0.44
0.35
0.33


W2
0.46
0.007
0.0009
0.0031
0.0033
0.047
0.032
0.029
0.146
0.0024
0.41
0.30
0.31


W3
0.44
0.005
0.0007
0.0025
0.0031
0.045
0.024
0.039
0.169
0.0023
0.42
0.34
0.31


W4
0.47
0.007
0.0020
0.0030
0.0024
0.049
0.018
0.033
0.232
0.0033
0.40
0.35
0.33


W5
0.46
0.005
0.0003
0.0023
0.0026
0.044
0.039
0.031
0.141
0.0024
0.40
0.31
0.32


W6
0.45
0.009
0.0016
0.0024
0.0014
0.047
0.024
0.027
0.205
0.0028
0.45
0.32
0.29


W7
0.47
0.005
0.0004
0.0024
0.0013
0.052
0.022
0.040
0.235
0.0019
0.38
0.34
0.31


W8
0.46
0.006
0.0009
0.0030
0.0022
0.049
0.018
0.041
0.182
0.0019
0.45
0.31
0.30


X1
0.46
0.006
0.0017
0.0029
0.0026
0.046
0.028
0.026
0.205
0.0021
0.41
0.31
0.32


X2
0.44
0.008
0.0010
0.0029
0.0018
0.047
0.032
0.037
0.139
0.0023
0.38
0.31
0.29


X3
0.46
0.006
0.0020
0.0023
0.0031
0.045
0.022
0.039
0.220
0.0034
0.47
0.32
0.34


Y1
0.49
0.009
0.0007
0.0018
0.0019
0.041
0.040
0.026
0.208
0.0028
0.42
0.33
0.32


Y2
0.46
0.007
0.0008
0.0026
0.0031
0.048
0.036
0.033
0.136
0.0019
0.43
0.30
0.30


Y3
0.45
0.009
0.0012
0.0032
0.0025
0.042
0.039
0.042
0.158
0.0028
0.40
0.30
0.30


Y4
0.48
0.008
0.0004
0.0020
0.0029
0.040
0.021
0.039
0.154
0.0020
0.40
0.32
0.29


Y5
0.45
0.005
0.0014
0.0023
0.0019
0.041
0.041
0.027
0.167
0.0029
0.44
0.32
0.33


Y6
0.47
0.004
0.0019
0.0032
0.0021
0.046
0.026
0.037
0.227
0.0033
0.41
0.32
0.33


Y7
0.45
0.004
0.0005
0.0022
0.0019
0.045
0.040
0.038
0.171
0.0031
0.40
0.29
0.30


Y8
0.49
0.006
0.0016
0.0031
0.0025
0.047
0.037
0.026
0.138
0.0026
0.42
0.33
0.31


Y9
0.45
0.004
0.0017
0.0033
0.0018
0.046
0.028
0.032
0.179
0.0031
0.45
0.30
0.23


Y10
0.46
0.004
0.0018
0.0022
0.0014
0.050
0.019
0.033
0.189
0.0030
0.42
0.35
0.33


Z1
0.44
0.006
0.0020
0.0026
0.0020
0.040
0.020
0.035
0.153
0.0022
0.46
0.32
0.23


Z2
0.47
0.005
0.0015
0.0018
0.0034
0.043
0.025
0.032
0.212
0.0025
0.39
0.32
0.26


Z3
0.48
0.004
0.0018
0.0023
0.0029
0.043
0.035
0.043
0.202
0.0017
0.38
0.30
0.31


Z4
0.46
0.005
0.0006
0.0019
0.0017
0.049
0.027
0.044
0.201
0.0032
0.44
0.30
0.25


Z5
0.48
0.005
0.0008
0.0032
0.0031
0.048
0.031
0.026
0.142
0.0033
0.45
0.29
0.33


Z6
0.44
0.007
0.0015
0.0033
0.0015
0.047
0.040
0.025
0.148
0.0026
0.44
0.31
0.26


Z7
0.48
0.009
0.0016
0.0021
0.0015
0.042
0.026
0.037
0.228
0.0017
0.43
0.33
0.32


Z8
0.46
0.006
0.0009
0.0028
0.0024
0.050
0.034
0.036
0.141
0.0032
0.42
0.31
0.31


Z9
0.45
0.004
0.0006
0.0030
0.0017
0.046
0.033
0.036
0.212
0.0023
0.41
0.31
0.24


Z10
0.45
0.006
0.0005
0.0029
0.0023
0.042
0.026
0.033
0.166
0.0029
0.42
0.32
0.28


AA1
0.48
0.005
0.0019
0.0020
0.0032
0.050
0.017
0.027
0.185
0.0022
0.44
0.31
0.25


AA2
0.48
0.004
0.0014
0.0028
0.0028
0.043
0.029
0.043
0.204
0.0022
0.45
0.32
0.28


AA3
0.46
0.008
0.0015
0.0034
0.0020
0.042
0.023
0.029
0.152
0.0021
0.44
0.33
0.22


AA4
0.45
0.004
0.0007
0.0028
0.0026
0.041
0.040
0.041
0.176
0.0020
0.47
0.32
0.29


AA5
0.48
0.005
0.0009
0.0020
0.0021
0.048
0.031
0.039
0.169
0.0022
0.43
0.31
0.33


AA6
0.49
0.005
0.0015
0.0028
0.0019
0.041
0.020
0.046
0.209
0.0021
0.47
0.30
0.24


AA7
0.46
0.005
0.0004
0.0024
0.0025
0.046
0.029
0.030
0.197
0.0033
0.44
0.34
0.25


AA8
0.47
0.006
0.0005
0.0029
0.0022
0.039
0.029
0.045
0.168
0.0024
0.39
0.33
0.23


AA9
0.48
0.004
0.0013
0.0022
0.0018
0.039
0.027
0.032
0.184
0.0019
0.43
0.30
0.27


AA10
0.47
0.009
0.0014
0.0022
0.0023
0.040
0.035
0.032
0.183
0.0023
0.43
0.34
0.29


BB1
0.45
0.007
0.0009
0.0032
0.0032
0.040
0.018
0.033
0.152
0.0032
0.46
0.33
0.25


BB2
0.46
0.008
0.0007
0.0030
0.0023
0.043
0.027
0.042
0.146
0.0023
0.45
0.32
0.32


BB3
0.46
0.004
0.0015
0.0021
0.0029
0.049
0.026
0.039
0.171
0.0023
0.39
0.34
0.31


BB4
0.45
0.008
0.0014
0.0019
0.0024
0.046
0.030
0.036
0.178
0.0019
0.38
0.30
0.30


BB5
0.45
0.008
0.0018
0.0028
0.0016
0.046
0.041
0.030
0.230
0.0033
0.38
0.30
0.35


BB6
0.44
0.006
0.0015
0.0032
0.0034
0.042
0.030
0.033
0.202
0.0030
0.43
0.32
0.26


BB7
0.48
0.009
0.0018
0.0019
0.0024
0.039
0.034
0.044
0.234
0.0029
0.42
0.35
0.29


BB8
0.46
0.006
0.0013
0.0019
0.0030
0.039
0.028
0.026
0.216
0.0024
0.44
0.32
0.26


BB9
0.46
0.007
0.0009
0.0025
0.0030
0.051
0.030
0.042
0.156
0.0018
0.43
0.30
0.33


BB10
0.47
0.008
0.0007
0.0027
0.0035
0.044
0.043
0.044
0.138
0.0022
0.45
0.35
0.25


CC1
0.46
0.005
0.0014
0.0025
0.0014
0.047
0.020
0.043
0.140
0.0032
0.44
0.30
0.35


CC2
0.47
0.009
0.0020
0.0026
0.0026
0.049
0.026
0.036
0.178
0.0029
0.40
0.29
0.34


CC3
0.45
0.005
0.0006
0.0022
0.0030
0.041
0.026
0.044
0.235
0.0024
0.40
0.31
0.26


CC4
0.48
0.007
0.0023
0.0022
0.0024
0.044
0.027
0.031
0.167
0.0021
0.41
0.33
0.28


CC5
0.47
0.007
0.0022
0.0024
0.0036
0.048
0.040
0.025
0.141
0.0031
0.45
0.31
0.24


CC6
0.48
0.006
0.0013
0.0028
0.0027
0.040
0.026
0.026
0.174
0.0034
0.38
0.29
0.22


CC7
0.44
0.008
0.0021
0.0022
0.0029
0.045
0.025
0.042
0.196
0.0021
0.40
0.32
0.28


CC8
0.48
0.008
0.0009
0.0021
0.0029
0.044
0.032
0.028
0.199
0.0017
0.39
0.32
0.29


CC9
0.44
0.004
0.0005
0.0030
0.0027
0.042
0.031
0.039
0.152
0.0033
0.41
0.29
0.26


CC10
0.49
0.009
0.0008
0.0029
0.0030
0.039
0.034
0.036
0.165
0.0021
0.45
0.32
0.25


DD1
0.47
0.006
0.0011
0.0025
0.0029
0.048
0.026
0.026
0.186
0.0033
0.42
0.31
0.23


DD2
0.46
0.007
0.0006
0.0034
0.0027
0.045
0.028
0.037
0.155
0.0026
0.42
0.31
0.35


DD3
0.46
0.004
0.0017
0.0032
0.0024
0.048
0.017
0.026
0.145
0.0027
0.38
0.30
0.32


DD4
0.47
0.007
0.0012
0.0027
0.0015
0.049
0.031
0.025
0.138
0.0022
0.45
0.30
0.31


DD5
0.47
0.009
0.0012
0.0024
0.0019
0.046
0.020
0.034
0.242
0.0022
0.44
0.30
0.24


DD6
0.44
0.006
0.0021
0.0022
0.0023
0.045
0.033
0.031
0.143
0.0026
0.41
0.30
0.27


DD7
0.47
0.007
0.0014
0.0022
0.0027
0.042
0.027
0.040
0.160
0.0025
0.40
0.31
0.25


DD8
0.44
0.008
0.0018
0.0021
0.0035
0.045
0.018
0.036
0.183
0.0020
0.44
0.34
0.26


DD9
0.45
0.004
0.0014
0.0031
0.0030
0.050
0.031
0.041
0.194
0.0021
0.41
0.30
0.30


DD10
0.45
0.008
0.0016
0.0024
0.0015
0.049
0.027
0.035
0.219
0.0019
0.41
0.33
0.32


FF1
0.47
0.008
0.0012
0.0024
0.0019
0.046
0.019
0.034
0.239
0.0022
0.45
0.30
0.24


FF2
0.45
0.006
0.0021
0.0022
0.0024
0.046
0.033
0.031
0.145
0.0027
0.41
0.29
0.27


FF3
0.48
0.007
0.0014
0.0022
0.0027
0.042
0.028
0.041
0.158
0.0025
0.39
0.30
0.25


GG1
0.44
0.008
0.0017
0.0021
0.0034
0.045
0.018
0.036
0.181
0.0021
0.43
0.34
0.25


GG2
0.46
0.004
0.0014
0.0031
0.0031
0.050
0.031
0.040
0.192
0.0021
0.41
0.30
0.31


GG3
0.46
0.008
0.0016
0.0024
0.0014
0.049
0.027
0.035
0.224
0.0019
0.41
0.33
0.32


EE1
0.47
0.007
0.0021
0.0029
0.0029
0.053
0.021
0.036
0.149
0.0027
0.41
0.32
0.31

0.08
0.24


EE2
0.48
0.004
0.0024
0.0020
0.0024
0.048
0.034
0.043
0.131
0.0027
0.43
0.31
0.37


EE3
0.47
0.003
0.0008
0.0033
0.0019
0.058
0.034
0.043
0.233
0.0020
0.40
0.33
0.33
1.01


EE4
0.44
0.009
0.0021
0.0023
0.0019
0.055
0.031
0.034
0.214
0.0034
0.43
0.33
0.36

0.05
0.25


EE5
0.48
0.007
0.0011
0.0020
0.0017
0.043
0.031
0.042
0.209
0.0032
0.43
0.21
0.23


EE6
0.49
0.006
0.0005
0.0030
0.0015
0.048
0.020
0.030
0.190
0.0020
0.43
0.33
0.28


EE7
0.45
0.003
0.0011
0.0021
0.0027
0.048
0.041
0.032
0.161
0.0028
0.45
0.20
0.26


EE8
0.48
0.004
0.0005
0.0032
0.0033
0.039
0.023
0.029
0.202
0.0025
0.45
0.10
0.33













Chemical composition (mass %), balance: Fe and impurities

























Steel
V
Ca
Mg
REM
Sb
Zr
Sn
As
W
Ta
Re
Os
Ir
Tc
Se
Bi
Remarks





A1
















Comp. steel


A2
















Inv. steel


A3
















Inv. steel


A4
















Inv. steel


A5
















Inv. steel


A6
















Inv. steel


A7
















Inv. steel


A8
















Inv. steel


A9
















Inv. steel


A10
















Inv. steel


A11
















Inv. steel


A12
















Inv. steel


A13
















Inv. steel


A14
















Comp. steel


B1
















Inv. steel


B2
















Inv. steel


B3
















Inv. steel


B4
















Inv. steel


B5
















Inv. steel


B6
















Inv. steel


B7
















Inv. steel


B8
















Inv. steel


B9
















Inv. steel


B10
















Inv. steel


B11
















Inv. steel


B12
















Inv. steel


B13
















Inv. steel


B14
















Inv. steel


B15
















Comp. steel


C1
















Inv. steel


C2
















Inv. steel


C3
















Inv. steel


C4
















Inv. steel


C5
















Inv. steel


C6
















Inv. steel


C7
















Inv. steel


C8
















Inv. steel


C9
















Inv. steel


C10
















Inv. steel


C11
















Inv. steel


C12
















Inv. steel


C13
















Inv. steel


C14
















Comp. steel


D1
















Inv. steel


D2
















Inv. steel


D3
















Inv. steel


D4
















Inv. steel


D5
















Inv. steel


D6
















Inv. steel


D7
















Inv. steel


D8
















Inv. steel


D9
















Comp. steel


E1
















Inv. steel


E2
















Inv. steel


E3
















Inv. steel


E4
















Inv. steel


E5
















Inv. steel


E6
















Inv. steel


E7
















Inv. steel


E8
















Inv. steel


E9
















Comp. steel


F1
















Inv. steel


F2
















Inv. steel


F3
















Inv. steel


F4
















Inv. steel


F5
















Inv. steel


F6
















Inv. steel


F7
















Inv. steel


F8
















Inv. steel


F9
















Comp. steel


G1
















Inv. steel


G2
















Inv. steel


G3
















Inv. steel


G4
















Inv. steel


G5
















Inv. steel


G6
















Inv. steel


G7
















Inv. steel


G8
















Comp. steel


H1
















Comp. steel


H2
















Inv. steel


H3
















Inv. steel


H4
















Inv. steel


H5
















Inv. steel


H6
















Inv. steel


H7
















Inv. steel


H8
















Inv. steel


H9
















Inv. steel


H10
















Inv. steel


H11
















Inv. steel


H12
















Inv. steel


H13
















Inv. steel


H14
















Comp. steel


I1
















Comp. steel


I2
















Inv. steel


I3
















Inv. steel


I4
















Inv. steel


I5
















Inv. steel


I6
















Inv. steel


I7
















Inv. steel


I8
















Inv. steel


I9
















Inv. steel


I10
















Inv. steel


I11
















Inv. steel


I12
















Inv. steel


I13
















Inv. steel


I14
















Comp. steel


J1
















Comp. steel


J2
















Inv. steel


J3
















Inv. steel


J4
















Inv. steel


J5
















Inv. steel


J6
















Inv. steel


J7
















Inv. steel


J8
















Inv. steel


J9
















Inv. steel


J10
















Inv. steel


J11
















Inv. steel


J12
















Comp. steel


K1
















Inv. steel


K2
















Inv. steel


K3
















Inv. steel


K4
















Inv. steel


K5
















Inv. steel


K6
















Inv. steel


K7
















Inv. steel


K8
















Inv. steel


K9
















Inv. steel


K10
















Inv. steel


K11
















Inv. steel


K12
















Inv. steel


K13
















Inv. steel


K14
















Comp. steel


L1
















Comp. steel


L2
















Inv. steel


L3
















Inv. steel


L4
















Inv. steel


L5
















Inv. steel


L6
















Inv. steel


L7
















Inv. steel


L8
















Inv. steel


L9
















Inv. steel


L10
















Inv. steel


L11
















Inv. steel


L12
















Inv. steel


L13
















Comp. steel


M1
















Comp. steel


M2
















Inv. steel


M3
















Inv. steel


M4
















Inv. steel


M5
















Inv. steel


M6
















Inv. steel


M7
















Inv. steel


M8
















Inv. steel


M9
















Inv. steel


M10
















Inv. steel


M11
















Comp. steel


N1
















Inv. steel


N2
















Inv. steel


N3
















Inv. steel


N4
















Inv. steel


N5
















Inv. steel


N6
















Inv. steel


N7
















Inv. steel


N8
















Inv. steel


N9
















Inv. steel


N10
















Inv. steel


N11
















Inv. steel


N12
















Inv. steel


N13
















Inv. steel


O1
















Inv. steel


O2
















Inv. steel


O3
















Inv. steel


O4
















Inv. steel


O5
















Inv. steel


O6
















Inv. steel


O7
















Inv. steel


O8
















Inv. steel


O9
















Inv. steel


O10
















Inv. steel


O11
















Inv. steel


O12
















Inv. steel


P1
















Inv. steel


P2
















Inv. steel


P3
















Inv. steel


P4
















Inv. steel


P5
















Inv. steel


P6
















Inv. steel


P7
















Inv. steel


P8
















Inv. steel


P9
















Inv. steel


P10
















Inv. steel


P11
















Inv. steel


P12
















Inv. steel


Q1
0.05















Inv. steel


Q2
0.11















Inv. steel


Q3
0.22















Inv. steel


Q4
0.45















Inv. steel


Q5
0.83















Inv. steel


Q6
1.23















Inv. steel


Q7
1.57















Inv. steel


Q8
1.72















Inv. steel


Q9
2.10















Inv. steel


Q10
2.58















Inv. steel


Q11
2.71















Inv. steel


Q12
2.74















Inv. steel


R1

0.001














Inv. steel


R2

0.010














Inv. steel


R3

0.133














Inv. steel


R4

0.284














Inv. steel


R5

0.431














Inv. steel


R6

0.624














Inv. steel


R7

0.728














Inv. steel


R8

0.901














Inv. steel


S1


0.003













Inv. steel


S2


0.019













Inv. steel


S3


0.114













Inv. steel


S4


0.253













Inv. steel


S5


0.461













Inv. steel


S6


0.630













Inv. steel


S7


0.733













Inv. steel


S8


0.922













Inv. steel


T1



0.001












Inv. steel


T2



0.042












Inv. steel


T3



0.125












Inv. steel


T4



0.258












Inv. steel


T5



0.402












Inv. steel


T6



0.662












Inv. steel


T7



0.735












Inv. steel


T8



0.901












Inv. steel


U1




0.002











Inv. steel


U2




0.03











Inv. steel


U3




0.13











Inv. steel


U4




0.24











Inv. steel


U5




0.42











Inv. steel


U6




0.63











Inv. steel


U7




0.70











Inv. steel


U8




0.88











Inv. steel


V1





0.002










Inv. steel


V2





0.04










Inv. steel


V3





0.14










Inv. steel


V4





0.24










Inv. steel


V5





0.40










Inv. steel


V6





0.56










Inv. steel


V7





0.78










Inv. steel


V8





0.90










Inv. steel


W1






0.002









Inv. steel


W2






0.03









Inv. steel


W3






0.12









Inv. steel


W4






0.27









Inv. steel


W5






0.45









Inv. steel


W6






0.67









Inv. steel


W7






0.77









Inv. steel


W8






0.87









Inv. steel


X1







0.004








Inv. steel


X2







0.022








Inv. steel


X3







0.074








Inv. steel


Y1








0.235







Inv. steel


Y2








0.399







Inv. steel


Y3








0.805







Inv. steel


Y4








1.280







Inv. steel


Y5








1.630







Inv. steel


Y6








1.822







Inv. steel


Y7








2.100







Inv. steel


Y8








2.377







Inv. steel


Y9








2.603







Inv. steel


Y10








2.765







Inv. steel


Z1









0.002






Inv. steel


Z2









0.01






Inv. steel


Z3









0.03






Inv. steel


Z4









0.06






Inv. steel


Z5









0.14






Inv. steel


Z6









0.18






Inv. steel


Z7









0.27






Inv. steel


Z8









0.54






Inv. steel


Z9









0.71






Inv. steel


Z10









0.86






Inv. steel


AA1










0.002





Inv. steel


AA2










0.01





Inv. steel


AA3










0.04





Inv. steel


AA4










0.07





Inv. steel


AA5










0.12





Inv. steel


AA6










0.19





Inv. steel


AA7










0.26





Inv. steel


AA8










0.50





Inv. steel


AA9










0.64





Inv. steel


AA10










0.80





Inv. steel


BB1











0.003




Inv. steel


BB2











0.01




Inv. steel


BB3











0.05




Inv. steel


BB4











0.07




Inv. steel


BB5











0.14




Inv. steel


BB6











0.18




Inv. steel


BB7











0.26




Inv. steel


BB8











0.47




Inv. steel


BB9











0.60




Inv. steel


BB10











0.87




Inv. steel


CC1












0.002



Inv. steel


CC2












0.005



Inv. steel


CC3












0.04



Inv. steel


CC4












0.08



Inv. steel


CC5












0.15



Inv. steel


CC6












0.17



Inv. steel


CC7












0.21



Inv. steel


CC8












0.44



Inv. steel


CC9












0.63



Inv. steel


CC10












0.88



Inv. steel


DD1













0.002


Inv. steel


DD2













0.01


Inv. steel


DD3













0.03


Inv. steel


DD4













0.08


Inv. steel


DD5













0.11


Inv. steel


DD6













0.18


Inv. steel


DD7













0.23


Inv. steel


DD8













0.49


Inv. steel


DD9













0.60


Inv. steel


DD10













0.89


Inv. steel


FF1














0.002

Inv. steel


FF2














0.56

Inv. steel


FF3














0.94

Inv. steel


GG1















0.003
Inv. steel


GG2















0.48
Inv. steel


GG3















0.92
Inv. steel


EE1
















Inv. steel


EE2
















Inv. steel


EE3
















Inv. steel


EE4






0.121









Inv. steel


EE5
















Inv. steel


EE6








0.40







Inv. steel


EE7








1.01







Inv. steel


EE8








1.91







Inv. steel





Underlines indicate outside scope of present invention.

















TABLE 2









Preheating step














Average






cooling temp.













Hot rolling step

down to less
Hot stamping step
















Test

Coiling
Heating
than 350° C.
Heating
Holding




no.
Steel
temp. ° C.
temp. ° C.
° C./s
temp. ° C.
times
Others
Remarks


















1
A1
273
1288
478
912
362

Comp. ex.


2
A2
398
1279
591
901
348

Inv. ex.


3
A3
354
1253
530
912
364

Inv. ex.


4
A4
414
1288
523
913
377

Inv. ex.


5
A5
414
1252
448
912
362

Inv. ex.


6
A6
371
1253
555
913
350

Inv. ex.


7
A7
422
1234
407
933
366

Inv. ex.


8
A8
397
1260
539
922
368

Inv. ex.


9
A9
326
1289
512
917
353

Inv. ex.


10
A10
431
1301
544
888
374

Inv. ex.


11
A11
323
1263
673
910
370

Inv. ex.


12
A12
424
1249
642
911
371

Inv. ex.


13
A13
268
1246
631
915
366

Inv. ex.


14
A14
328
1289
623
910
351

Comp. ex.


15
B1
416
1292
441
903
354

Inv. ex.


16
B2
351
1270
421
910
354

Inv. ex.


17
B3
406
1243
509
903
370

Inv. ex.


18
B4
439
1285
566
915
359

Inv. ex.


19
B5
437
1252
512
920
351

Inv. ex.


20
B6
382
1274
610
890
375

Inv. ex.


21
B7
364
1237
537
906
373

Inv. ex.


22
B8
358
1237
438
910
377

Inv. ex.


23
B9
373
1268
575
888
368

Inv. ex.


24
B10
312
1275
618
901
360

Inv. ex.


25
B11
331
1239
653
921
345

Inv. ex.


26
B12
295
1248
418
897
360

Inv. ex.


27
B13
331
1293
678
911
369

Inv. ex.


28
B14
387
1242
697
862
357

Inv. ex.


29
B15
397
1251
411
924
365

Comp. ex.


30
C1
379
1254
491
924
346

Inv. ex.


31
C2
413
1264
639
889
375

Inv. ex.


32
C3
282
1286
686
902
364

Inv. ex.


33
C4
427
1237
474
922
373

Inv. ex.


34
C5
416
1263
497
927
369

Inv. ex.


35
C6
306
1232
507
905
354

Inv. ex.


36
C7
422
1270
595
900
362

Inv. ex.


37
C8
328
1274
697
907
367

Inv. ex.


38
C9
396
1271
670
911
368

Inv. ex.


39
C10
319
1270
499
898
366

Inv. ex.


40
C11
412
1283
467
914
365

Inv. ex.


41
C12
314
1246
532
901
352

Inv. ex.


42
C13
337
1290
677
910
343

Inv. ex.


43
C14
336
1232
688
886
372

Comp. ex.


44
D1
322
1231
458
910
368

Inv. ex.


45
D2
318
1281
679
910
374

Inv. ex.


46
D3
315
1274
605
934
368

Inv. ex.


47
D4
399
1284
612
934
372

Inv. ex.


48
D5
298
1247
421
907
353

Inv. ex.


49
D6
387
1269
648
892
368

Inv. ex.


50
D7
256
1286
617
934
358

Inv. ex.


51
D8
364
1258
410
891
365

Inv. ex.


52
D9
427
1258
481
905
359

Comp. ex.


53
E1
312
1230
677
912
355

Inv. ex.


54
E2
347
1237
434
909
379

Inv. ex.


55
E3
423
1289
544
911
351

Inv. ex.


56
E4
389
1238
491
925
361

Inv. ex.


57
E5
319
1233
634
909
374

Inv. ex.


58
E6
325
1266
402
915
369

Inv. ex.


59
E7
399
1240
533
898
361

Inv. ex.


60
E8
390
1268
472
897
356

Inv. ex.


61
E9
374
1260
520
895
343

Comp. ex.


62
F1
262
1287
673
913
351

Inv. ex.


63
F2
334
1241
424
904
367

Inv. ex.


64
F3
330
1245
570
896
357

Inv. ex.


65
F4
385
1275
599
909
365

Inv. ex.


66
F5
408
1292
609
914
353

Inv. ex.


67
F6
322
1284
599
902
366

Inv. ex.


68
F7
338
1261
592
911
361

Inv. ex.


69
F8
291
1274
406
915
359

Inv. ex.


70
F9
383
1291
504
929
358

Comp. ex.


71
G1
356
1256
652
916
351

Inv. ex.


72
G2
270
1251
485
912
363

Inv. ex.


73
G3
423
1266
692
904
358

Inv. ex.


74
G4
426
1252
602
910
354

Inv. ex.


75
G5
374
1265
419
916
364

Inv. ex.


76
G6
424
1290
588
906
359

Inv. ex.


77
G7
359
1269
434
902
351

Inv. ex.


78
G8
296
1281
643
901
364

Comp. ex.


79
H1
366
1274
641
923
349

Comp. ex.


80
H2
250
1268
462
934
362

Inv. ex.


81
H3
395
1291
680
905
355

Inv. ex.


82
H4
254
1257
416
913
366

Inv. ex.


83
H5
265
1270
443
925
350

Inv. ex.


84
H6
434
1269
622
910
345

Inv. ex.


85
H7
337
1271
687
916
342

Inv. ex.


86
H8
307
1262
636
923
348

Inv. ex.


87
H9
432
1252
644
908
342

Inv. ex.


88
H10
329
1296
483
918
371

Inv. ex.


89
H11
309
1246
485
911
347

Inv. ex.


90
H12
279
1253
639
912
368

Inv. ex.


91
H13
376
1268
461
925
362

Inv. ex.


92
H14
279
1253
565
929
376

Comp. ex.


93
I1
316
1266
531
915
355

Comp. ex.


94
I2
300
1277
550
888
367

Inv. ex.


95
I3
361
1282
532
910
370

Inv. ex.


96
I4
365
1274
550
895
378

Inv. ex.


97
I5
379
1269
691
897
346

Inv. ex.


98
I6
343
1272
491
887
359

Inv. ex.


99
I7
311
1254
582
898
363

Inv. ex.


100
I8
362
1262
585
903
370

Inv. ex.


101
I9
310
1276
461
911
365

Inv. ex.


102
I10
257
1269
678
914
375

Inv. ex.


103
I11
340
1260
471
912
368

Inv. ex.


104
I12
259
1253
434
902
349

Inv. ex.


105
I13
356
1281
599
898
350

Inv. ex.


106
I14
252
1265
687
894
355

Comp. ex.


107
J1
401
1271
619
914
351

Comp. ex.


108
J2
365
1254
644
910
379

Inv. ex.


109
J3
393
1242
658
932
369

Inv. ex.


110
J4
321
1277
422
912
354

Inv. ex.


111
J5
306
1295
577
920
346

Inv. ex.


112
J6
296
1268
553
932
361

Inv. ex.


113
J7
418
1254
575
919
359

Inv. ex.


114
J8
322
1267
469
931
361

Inv. ex.


115
J9
394
1251
505
934
352

Inv. ex.


116
J10
357
1252
541
915
343

Inv. ex.


117
J11
283
1298
631
919
368

Inv. ex.


118
J12
382
1244
498
904
379

Comp. ex.


119
K1
291
1285
575
897
347

Inv. ex.


120
K2
317
1249
631
917
359

Inv. ex.


121
K3
305
1297
476
888
357

Inv. ex.


122
K4
439
1228
689
912
356

Inv. ex.


123
K5
355
1267
421
911
347

Inv. ex.


124
K6
328
1235
671
928
351

Inv. ex.


125
K7
385
1272
572
930
368

Inv. ex.


126
K8
293
1243
596
903
372

Inv. ex.


127
K9
441
1242
671
924
364

Inv. ex.


128
K10
379
1271
534
908
358

Inv. ex.


129
K11
412
1250
703
916
348

Inv. ex.


130
K12
265
1289
488
906
374

Inv. ex.


131
K13
442
1245
630
896
363

Inv. ex.


132
K14
309
1281
506
895
359

Comp. ex.


133
L1
265
1267
410
913
355

Comp. ex.


134
L2
257
1247
634
934
353

Inv. ex.


135
L3
270
1269
679
905
352

Inv. ex.


136
L4
323
1257
553
913
361

Inv. ex.


137
L5
420
1259
556
926
354

Inv. ex.


138
L6
363
1264
439
908
367

Inv. ex.


139
L7
391
1281
433
908
372

Inv. ex.


140
L8
378
1286
459
897
350

Inv. ex.


141
L9
415
1265
571
912
366

Inv. ex.


142
L10
436
1250
471
910
349

Inv. ex.


143
L11
353
1299
536
906
365

Inv. ex.


144
L12
375
1255
683
913
359

Inv. ex.


145
L13
348
1246
550
907
356

Comp. ex.


146
M1
354
1289
410
896
368

Comp. ex.


147
M2
353
1272
509
927
347

Inv. ex.


148
M3
253
1267
469
914
351

Inv. ex.


149
M4
301
1262
595
912
357

Inv. ex.


150
M5
375
1266
571
890
347

Inv. ex.


151
M6
399
1272
423
921
349

Inv. ex.


152
M7
254
1267
433
919
354

Inv. ex.


153
M8
263
1276
462
906
363

Inv. ex.


154
M9
318
1264
636
909
362

Inv. ex.


155
M10
297
1243
669
921
353

Inv. ex.


156
M11
335
1251
511
887
368

Comp. ex.


157
N1
303
1243
546
915
354

Inv. ex.


158
N2
445
1263
439
908
364

Inv. ex.


159
N3
425
1278
670
898
370

Inv. ex.


160
N4
403
1288
474
900
364

Inv. ex.


161
N5
361
1265
504
927
378

Inv. ex.


162
N6
427
1279
497
895
366

Inv. ex.


163
N7
352
1284
668
918
368

Inv. ex.


164
N8
263
1257
490
903
357

Inv. ex.


165
N9
339
1256
692
929
364

Inv. ex.


166
N10
430
1262
572
897
366

Inv. ex.


167
N11
271
1260
471
912
353

Inv. ex.


168
N12
369
1285
521
912
363

Inv. ex.


169
N13
250
1269
442
909
366

Inv. ex.


170
O1
412
1277
434
928
352

Inv. ex.


171
O2
358
1263
654
896
353

Inv. ex.


172
O3
332
1279
500
932
351

Inv. ex.


173
O4
410
1265
569
905
368

Inv. ex.


174
O5
387
1266
471
911
367

Inv. ex.


175
O6
325
1249
688
904
369

Inv. ex.


176
O7
258
1243
544
899
375

Inv. ex.


177
O8
322
1236
581
933
369

Inv. ex.


178
O9
396
1274
407
899
348

Inv. ex.


179
O10
307
1268
428
912
371

Inv. ex.


180
O11
370
1238
476
907
351

Inv. ex.


181
O12
348
1271
636
892
368

Inv. ex.


182
P1
443
1302
434
901
344

Inv. ex.


183
P2
327
1249
424
899
357

Inv. ex.


184
P3
337
1281
520
913
366

Inv. ex.


185
P4
417
1296
697
913
370

Inv. ex.


186
P5
355
1288
420
919
352

Inv. ex.


187
P6
327
1286
529
905
348

Inv. ex.


188
P7
323
1280
480
915
373

Inv. ex.


189
P8
254
1240
617
909
356

Inv. ex.


190
P9
441
1276
690
907
360

Inv. ex.


191
P10
283
1286
586
924
347

Inv. ex.


192
P11
369
1267
684
906
375

Inv. ex.


193
P12
417
1266
630
887
350

Inv. ex.


194
Q1
393
1274
679
887
355

Inv. ex.


195
Q2
388
1245
590
896
354

Inv. ex.


196
Q3
305
1301
615
914
351

Inv. ex.


197
Q4
305
1283
414
897
358

Inv. ex.


198
Q5
360
1275
559
899
349

Inv. ex.


199
Q6
251
1288
686
922
357

Inv. ex.


200
Q7
299
1255
458
922
362

Inv. ex.


201
Q8
250
1297
498
897
366

Inv. ex.


202
Q9
359
1293
472
931
348

Inv. ex.


203
Q10
367
1302
419
906
344

Inv. ex.


204
Q11
335
1259
466
921
348

Inv. ex.


205
Q12
334
1249
696
906
342

Inv. ex.


206
R1
328
1273
492
888
359

Inv. ex.


207
R2
292
1248
545
905
366

Inv. ex.


208
R3
369
1248
584
921
348

Inv. ex.


209
R4
364
1267
482
907
349

Inv. ex.


210
R5
336
1246
691
909
355

Inv. ex.


211
R6
432
1242
601
910
372

Inv. ex.


212
R7
267
1267
508
917
368

Inv. ex.


213
R8
331
1232
526
919
346

Inv. ex.


214
S1
337
1274
602
916
355

Inv. ex.


215
S2
304
1256
554
910
357

Inv. ex.


216
S3
441
1249
443
913
372

Inv. ex.


217
S4
387
1274
451
920
376

Inv. ex.


218
S5
394
1235
514
901
353

Inv. ex.


219
S6
258
1275
706
902
347

Inv. ex.


220
S7
301
1264
685
925
359

Inv. ex.


221
S8
407
1240
466
895
378

Inv. ex.


222
T1
285
1256
530
907
374

Inv. ex.


223
T2
402
1277
673
897
348

Inv. ex.


224
T3
366
1247
490
897
365

Inv. ex.


225
T4
444
1258
543
911
348

Inv. ex.


226
T5
402
1265
462
922
376

Inv. ex.


227
T6
284
1273
627
921
367

Inv. ex.


228
T7
291
1266
495
913
352

Inv. ex.


229
T8
316
1247
464
912
369

Inv. ex.


230
U1
333
1253
452
900
373

Inv. ex.


231
U2
335
1277
547
919
373

Inv. ex.


232
U3
439
1250
428
910
379

Inv. ex.


233
U4
289
1276
581
903
343

Inv. ex.


234
U5
431
1269
620
897
356

Inv. ex.


235
U6
349
1282
517
924
346

Inv. ex.


236
U7
266
1241
644
912
359

Inv. ex.


237
U8
304
1264
520
909
368

Inv. ex.


238
V1
432
1272
645
920
370

Inv. ex.


239
V2
266
1273
580
900
365

Inv. ex.


240
V3
406
1239
545
901
350

Inv. ex.


241
V4
323
1275
438
906
344

Inv. ex.


242
V5
431
1263
408
920
349

Inv. ex.


243
V6
438
1275
469
922
359

Inv. ex.


244
V7
373
1263
683
888
369

Inv. ex.


245
V8
381
1238
563
888
357

Inv. ex.


246
W1
395
1274
619
913
346

Inv. ex.


247
W2
388
1270
512
923
348

Inv. ex.


248
W3
303
1289
451
912
357

Inv. ex.


249
W4
433
1266
653
898
354

Inv. ex.


250
W5
320
1243
510
904
377

Inv. ex.


251
W6
409
1274
699
906
357

Inv. ex.


252
W7
385
1257
694
918
378

Inv. ex.


253
W8
268
1269
698
887
354

Inv. ex.


254
X1
422
1258
629
903
368

Inv. ex.


255
X2
285
1228
468
918
375

Inv. ex.


256
X3
252
1282
508
904
360

Inv. ex.


257
Y1
345
1237
546
907
361

Inv. ex.


258
Y2
381
1264
475
919
354

Inv. ex.


259
Y3
417
1238
596
890
366

Inv. ex.


260
Y4
270
1231
657
901
346

Inv. ex.


261
Y5
382
1236
504
910
354

Inv. ex.


262
Y6
386
1301
466
923
347

Inv. ex.


263
Y7
375
1255
595
919
356

Inv. ex.


264
Y8
357
1253
690
902
366

Inv. ex.


265
Y9
260
1277
436
906
346

Inv. ex.


266
Y10
352
1278
553
905
368

Inv. ex.


267
Z1
346
1293
697
909
367

Inv. ex.


268
Z2
296
1240
697
912
373

Inv. ex.


269
Z3
320
1273
586
920
362

Inv. ex.


270
Z4
284
1277
510
919
373

Inv. ex.


271
Z5
316
1288
553
915
355

Inv. ex.


272
Z6
348
1230
421
893
361

Inv. ex.


273
Z7
285
1264
512
894
356

Inv. ex.


274
Z8
368
1256
678
910
370

Inv. ex.


275
Z9
392
1270
436
923
354

Inv. ex.


276
Z10
394
1233
681
934
371

Inv. ex.


277
AA1
391
1273
416
906
371

Inv. ex.


278
AA2
365
1248
563
905
371

Inv. ex.


279
AA3
337
1262
453
898
369

Inv. ex.


280
AA4
337
1276
542
929
359

Inv. ex.


281
AA5
386
1248
589
934
358

Inv. ex.


282
AA6
355
1297
686
910
369

Inv. ex.


283
AA7
266
1299
441
908
347

Inv. ex.


284
AA8
340
1257
677
913
365

Inv. ex.


285
AA9
326
1257
527
897
364

Inv. ex.


286
AA10
303
1242
527
923
343

Inv. ex.


287
BB1
292
1231
434
888
356

Inv. ex.


288
BB2
328
1257
480
923
356

Inv. ex.


289
BB3
367
1288
656
900
355

Inv. ex.


290
BB4
369
1257
523
905
352

Inv. ex.


291
BB5
417
1273
563
911
371

Inv. ex.


292
BB6
424
1267
696
898
371

Inv. ex.


293
BB7
401
1277
506
923
348

Inv. ex.


294
BB8
294
1248
594
916
365

Inv. ex.


295
BB9
422
1290
471
910
374

Inv. ex.


296
BB10
321
1284
492
908
359

Inv. ex.


297
CC1
440
1251
560
917
350

Inv. ex.


298
CC2
266
1253
499
915
367

Inv. ex.


299
CC3
374
1251
486
923
364

Inv. ex.


300
CC4
306
1285
558
898
357

Inv. ex.


301
CC5
260
1253
464
910
350

Inv. ex.


302
CC6
438
1239
674
922
355

Inv. ex.


303
CC7
391
1253
584
918
346

Inv. ex.


304
CC8
418
1266
463
907
362

Inv. ex.


305
CC9
347
1256
628
892
375

Inv. ex.


306
CC10
360
1245
541
924
365

Inv. ex.


307
DD1
309
1288
699
929
367

Inv. ex.


308
DD2
383
1284
622
925
377

Inv. ex.


309
DD3
338
1246
674
910
342

Inv. ex.


310
DD4
420
1244
680
917
349

Inv. ex.


311
DD5
296
1273
508
908
374

Inv. ex.


312
DD6
275
1284
590
916
359

Inv. ex.


313
DD7
251
1260
673
904
369

Inv. ex.


314
DD8
264
1291
429
910
367

Inv. ex.


315
DD9
321
1239
409
896
351

Inv. ex.


316
DD10
303
1256
442
910
368

Inv. ex.


317
FF1
296
1260
518
908
370

Inv. ex.


318
FF2
270
1284
590
907
366

Inv. ex.


319
FF3
251
1235
673
922
361

Inv. ex.


320
GG1
261
1304
429
910
374

Inv. ex.


321
GG2
315
1215
409
896
348

Inv. ex.


322
GG3
297
1231
442
919
375

Inv. ex.


323
EE1
335
1274
680
934
348

Inv. ex.


324
EE2
392
1229
415
918
357

Inv. ex.


325
EE3
345
1253
663
902
363

Inv. ex.


326
EE4
392
1289
550
913
352

Inv. ex.


327
EE5
374
1266
705
895
362

Inv. ex.


328
EE6
280
1258
613
915
358

Inv. ex.


329
EE7
351
1256
513
889
377

Inv. ex.


330
EE8
277
1278
448
895
364

Inv. ex.


331
EE6
327
1283
655
911
364

Inv. ex.


332
EE6
328
1271
470
909
356

Inv. ex.


333
EE6
354
1243
555
893
364

Inv. ex.


334
EE6
347
1261
571
913
375

Inv. ex.


335
EE6
420
1241
703
892
350

Inv. ex.


336
EE6

460

1254
422
910
376

Comp. ex.


337
EE6
260
1237
423
924
366
Softening heat treatment
Inv. ex.


338
EE6
260
1303
561
909
346
Softening heat treatment
Inv. ex.


339
EE6
422
1303
481
887
367
Softening heat treatment
Inv. ex.


340
EE6
342
1278
562
907
349
No cold rolling
Inv. ex.


341
EE6
345
1276
556
893
357
Annealing
Inv. ex.


342
EE6
372
1255
524
918
366
Al-plating
Inv. ex.


343
EE6
349
1270
578
905
369
Al—Zn plating
Inv. ex.


344
EE6
401
1257
696
917
364
Al—Si plating
Inv. ex.


345
EE6
445
1252
552
933
346
Hot dip galvanization
Inv. ex.


346
EE6
320
1303
480
917
362
Electrogalvanization
Inv. ex.


347
EE6
319
1270
529
897
352
Hot dip galvannealing
Inv. ex.


348
EE6
313
1275
670
925
342
Zn—Ni plating
Inv. ex.


349
EE6
307
1275
676
915
372
Al—Mg—Zn-based plating
Inv. ex.


350
EE6
319
1268
450
905
356
Temper rolling
Inv. ex.


351
EE6
399

1160

611
915
355

Comp. ex.


352
EE6
341
1232
657
923
370

Inv. ex.


353
EE6
380
1263
658
922
378

Inv. ex.


354
EE6
396
1280
645
919
345

Inv. ex.


355
EE6
312
1307
422
904
365

Inv. ex.


356
EE6
430
1390
679
888
357

Inv. ex.


357
EE6
445
1300
6
914
362

Comp. ex.


358
EE6
418
1258
12
925
379

Inv. ex.


359
EE6
444
1236
54
906
357

Inv. ex.


360
EE6
291
1258
110
889
363

Inv. ex.


361
EE6
315
1263
230
897
354

Inv. ex.


362
EE6
277
1266
509
920
374

Inv. ex.


363
EE6
295
1229
1031
901
359

Inv. ex.


364
EE6
304
1262
530

744

374

Comp. ex.


365
EE6
261
1266
669
812
357

Inv. ex.


366
EE6
386
1266
398
824
374

Inv. ex.


367
EE6
333
1285
524
832
375

Inv. ex.


368
EE6
356
1266
653
845
362

Inv. ex.


369
EE6
284
1280
508
868
344

Inv. ex.


370
EE6
421
1303
606
870
354

Inv. ex.


371
EE6
356
1287
496
897
363

Inv. ex.


372
EE6
310
1282
605
913
359

Inv. ex.


373
EE6
273
1282
511
922
354

Inv. ex.


374
EE6
287
1251
547
927
364

Inv. ex.


375
EE6
380
1290
474
943
350

Inv. ex.


376
EE6
285
1290
573
971
374

Inv. ex.


377
EE6
433
1245
432
986
357

Inv. ex.


378
EE6
316
1262
685

1021

352

Comp. ex.


379
EE6
298
1279
463
925
48

Comp. ex.


380
EE6
276
1258
488
906
 64

Inv. ex.


381
EE6
258
1247
679
916
 86

Inv. ex.


382
EE6
335
1268
692
901
101

Inv. ex.


383
EE6
267
1271
434
912
144

Inv. ex.


384
EE6
312
1250
619
906
201

Inv. ex.


385
EE6
394
1287
503
900
243

Inv. ex.


386
EE6
401
1267
662
917
294

Inv. ex.


387
EE6
441
1263
613
893
340

Inv. ex.


388
EE6
261
1264
434
920
375

Inv. ex.


389
EE6
255
1248
405
888
392

Inv. ex.


390
EE6
341
1269
572
921
444

Inv. ex.


391
EE6
298
1244
483
918
492

Inv. ex.


392
EE6
391
1249
665
918
538

Inv. ex.


393
EE6
387
1258
540
905
571

Inv. ex.


394
EE6
259
1289
444
929
589

Inv. ex.


395
EE6
276
1252
456
931

637


Comp. ex.


396
EE6
438
1264
491
916
352
Gas combustion atmosphere
Inv. ex.









(air-fuel ratio 0.80)


397
EE6
324
1268
692
924
365
Gas combustion atmosphere
Inv. ex.









(air-fuel ratio 0.85)


398
EE6
407
1273
428
917
370
Gas combustion atmosphere
Inv. ex.









(air-fuel ratio 1.1)


399
EE6
258
1265
486
909
348
Air
Inv. ex.


400
EE6
312
1256
622
897
368
Nitrogen gas (dew point − 30° C. )
Inv. ex.


401
EE6
349
1256
583
905
374
Nitrogen gas (dew point0° C. )
Inv. ex.


402
EE6
274
1266
576
919
362
Nitrogen gas (dew point + 10° C. )
Inv. ex.


403
EE6
419
1234
532
911
365
Ohmic heating
Inv. ex.


404
EE6
405
1236
535
892
347
Tempering temp. 152° C.
Inv. ex.


405
EE6
318
1246
692
910
350
Tempering temp. 170° C.
Inv. ex.


406
EE6
352
1240
636
907
348
Tempering temp. 201° C.
Inv. ex.


407
EE6
347
1286
462
920
353
Tempering temp. 341° C.
Inv. ex.


408
EE6
291
1269
572
906
374
Tempering temp. 433° C.
Inv. ex.


409
EE6
382
1245
613
904
370
Tempering temp. 521° C.
Inv. ex.


410
EE6
286
1252
607
910
379
Tempering temp. 591° C.
Inv. ex.


411
EE6
363
1256
705
910
351
Partial softening treatment
Inv. ex.





Underlines indicate production conditions not preferable.






The properties of the obtained hot stamped body were measured and evaluated by the following methods:


[Tensile Strength (TS)]

The tensile strength (TS) of the hot stamped body was obtained from any position of the hot stamped body by preparing a No. 5 test piece and conducting a tensile test based on JIS Z 2241: 2011. The crosshead speed was 1 mm/min.


[Hydrogen Embrittlement Resistance]

The hydrogen embrittlement resistance of the hot stamped body was evaluated as follows by the slow strain rate technique (SSRT). First, a 1.0t×9.0W×120L (mm) test piece was prepared. The test piece was made one of a parallel part length of 20 mm and a diameter of the parallel part of 2.0 mm. At the two sides of the center of the parallel part, U-notches each having a notch depth of 0.35 mm and a notch bottom radius of 0.1 mm were provided. This test piece was dipped in a 3% NaCl solution. Hydrogen was charged using a galvanostat as a power source and controlling the current density of a dipping portion of the test piece surface to become 0.1 mA/cm2. Next, the test piece charged with hydrogen was subjected to a slow strain rate test by a tensile rate of 0.0060 mm/min and the load at the time of fracture was investigated. Samples of the same test nos. were similarly tested three times. Cases where the average value of three measurements of the fracture load in a hydrogen environment was 500 MPa or more were evaluated as passing and cases where the fracture load was less than 500 MPa were evaluated as failing.


Cases where the tensile strength was 2200 MPa or more and the hydrogen embrittlement resistance was evaluated as passing were evaluated as a hot stamped body which is high in strength and able to suppress hydrogen embrittlement. The area ratio of the hard structures in Table 3 means the total of the area ratios of the martensite, bainite, and tempered martensite. Further, the balance of the structures other than the hard structures was comprised of ferrite, retained austenite, and/or pearlite. While not shown in Table 3, the average sizes of the prior austenite grains were measured, whereupon the average sizes of the prior austenite grains of the hot stamped bodies in the invention examples in Table 3 were all 8 μm or less.













TABLE 3









Segregation amount of





prior γ grain boundaries



















Mo
W
Total








Area ratio
segregation
segregation
segregation

Tensile
Hydrogen


Test

of hard
amount
amount
amount

strength
embrittlement


no.
Steel
structures %
atm %
atm %
atm %
Covering
MPa
resistance
Remarks



















1
A1
99
0.13

0.13
None

2108

Good
Comp. ex.


2
A2
96
0.14

0.14
None
2296
Good
Inv. ex.


3
A3
93
0.14

0.14
None
2347
Good
Inv. ex.


4
A4
97
0.14

0.14
None
2326
Good
Inv. ex.


5
A5
96
0.13

0.13
None
2348
Good
Inv. ex.


6
A6
99
0.13

0.13
None
2472
Good
Inv. ex.


7
A7
95
0.14

0.14
None
2416
Good
Inv. ex.


8
A8
97
0.14

0.14
None
2470
Good
Inv. ex.


9
A9
94
0.14

0.14
None
2616
Good
Inv. ex.


10
A10
99
0.13

0.13
None
2802
Good
Inv. ex.


11
A11
98
0.13

0.13
None
2911
Good
Inv. ex.


12
A12
99
0.13

0.13
None
3004
Good
Inv. ex.


13
A13
98
0.14

0.14
None
3075
Good
Inv. ex.


14
A14
98
0.14

0.14
None
3305

Poor

Comp. ex.


15
B1
99
0.13

0.13
None
2251
Good
Inv. ex.


16
B2
99
0.14

0.14
None
2264
Good
Inv. ex.


17
B3
97
0.13

0.13
None
2235
Good
Inv. ex.


18
B4
98
0.14

0.14
None
2230
Good
Inv. ex.


19
B5
98
0.14

0.14
None
2340
Good
Inv. ex.


20
B6
100
0.14

0.14
None
2344
Good
Inv. ex.


21
B7
98
0.13

0.13
None
2394
Good
Inv. ex.


22
B8
96
0.13

0.13
None
2448
Good
Inv. ex.


23
B9
97
0.14

0.14
None
2468
Good
Inv. ex


24
B10
96
0.14

0.14
None
2490
Good
Inv. ex.


25
B11
92
0.14

0.14
None
2233
Good
Inv. ex.


26
B12
91
0.14

0.14
None
2290
Good
Inv. ex.


27
B13
85
0.13

0.13
None
2338
Good
Inv. ex.


28
B14
75
0.14

0.14
None
2234
Good
Inv. ex.


29
B15
73
0.13

0.13
None

2107

Good
Comp. ex.


30
C1
94
0.14

0.14
None
2347
Good
Inv. ex.


31
C2
97
0.14

0.14
None
2412
Good
Inv. ex.


32
C3
99
0.13

0.13
None
2365
Good
Inv. ex.


33
C4
96
0.13

0.13
None
2325
Good
Inv. ex.


34
C5
98
0.13

0.13
None
2329
Good
Inv. ex.


35
C6
99
0.13

0.13
None
2427
Good
Inv. ex.


36
C7
98
0.14

0.14
None
2536
Good
Inv. ex.


37
C8
96
0.13

0.13
None
2468
Good
Inv. ex.


38
C9
98
0.14

0.14
None
2499
Good
Inv. ex.


39
C10
97
0.14

0.14
None
2410
Good
Inv. ex.


40
C11
98
0.14

0.14
None
2433
Good
Inv. ex


41
C12
95
0.13

0.13
None
2522
Good
Inv. ex.


42
C13
98
0.13

0.13
None
2451
Good
Inv. ex.


43
C14
94
0.13

0.13
None
2475

Poor

Comp. ex.


44
D1
95
0.14

0.14
None
2398
Good
Inv. ex.


45
D2
95
0.13

0.13
None
2414
Good
Inv. ex


46
D3
96
0.14

0.14
None
2426
Good
Inv. ex.


47
D4
100
0.14

0.14
None
2502
Good
Inv. ex.


48
D5
92
0.14

0.14
None
2422
Good
Inv. ex.


49
D6
98
0.14

0.14
None
2458
Good
Inv. ex.


50
D7
97
0.13

0.13
None
2341
Good
Inv. ex.


51
D8
93
0.14

0.14
None
2341
Good
Inv. ex.


52
D9
98
0.13

0.13
None
2410

Poor

Comp. ex.


53
E1
96
0.14

0.14
None
2367
Good
Inv. ex.


54
E2
97
0.14

0.14
None
2346
Good
Inv. ex.


55
E3
94
0.13

0.13
None
2515
Good
Inv. ex.


56
E4
99
0.13

0.13
None
2376
Good
Inv. ex.


57
E5
95
0.13

0.13
None
2467
Good
Inv. ex


58
E6
96
0.14

0.14
None
2410
Good
Inv. ex.


59
E7
94
0.13

0.13
None
2460
Good
Inv. ex.


60
E8
98
0.13

0.13
None
2446
Good
Inv. ex.


61
E9
96
0.14

0.14
None
2365

Poor

Comp. ex.


62
F1
95
0.14

0.14
None
2375
Good
Inv. ex.


63
F2
97
0.14

0.14
None
2359
Good
Inv. ex.


64
F3
97
0.14

0.14
None
2303
Good
Inv. ex.


65
F4
97
0.13

0.13
None
2407
Good
Inv. ex.


66
F5
96
0.13

0.13
None
2474
Good
Inv. ex.


67
F6
94
0.13

0.13
None
2358
Good
Inv. ex.


68
F7
96
0.14

0.14
None
2399
Good
Inv. ex.


69
F8
97
0.13

0.13
None
2344
Good
Inv. ex.


70
F9
100
0.14

0.14
None
2436

Poor

Comp. ex.


71
G1
100
0.14

0.14
None
2412
Good
Inv. ex.


72
G2
95
0.13

0.13
None
2434
Good
Inv. ex.


73
G3
97
0.13

0.13
None
2335
Good
Inv. ex.


74
G4
98
0.13

0.13
None
2465
Good
Inv. ex


75
G5
95
0.14

0.14
None
2329
Good
Inv. ex.


76
G6
96
0.14

0.14
None
2328
Good
Inv. ex.


77
G7
95
0.13

0.13
None
2418
Good
Inv. ex.


78
G8
96
0.14

0.14
None
2489

Poor

Comp. ex.


79
H1
99
0.14

0.14
None
2396

Poor

Comp. ex.


80
H2
92
0.13

0.13
None
2409
Good
Inv. ex.


81
H3
96
0.14

0.14
None
2515
Good
Inv. ex.


82
H4
93
0.13

0.13
None
2510
Good
Inv. ex.


83
H5
97
0.14

0.14
None
2421
Good
Inv. ex.


84
H6
95
0.14

0.14
None
2285
Good
Inv. ex.


85
H7
97
0.14

0.14
None
2352
Good
Inv. ex.


86
H8
97
0.13

0.13
None
2354
Good
Inv. ex.


87
H9
94
0.14

0.14
None
2475
Good
Inv. ex.


88
H10
96
0.13

0.13
None
2354
Good
Inv. ex.


89
H11
94
0.14

0.14
None
2437
Good
Inv. ex.


90
H12
95
0.13

0.13
None
2329
Good
Inv. ex.


91
H13
95
0.13

0.13
None
2292
Good
Inv. ex.


92
H14
100
0.14

0.14
None
2347

Poor

Comp. ex.


93
I1
97
0.13

0.13
None

2072

Good
Comp. ex.


94
I2
98
0.13

0.13
None
2240
Good
Inv. ex.


95
I3
100
0.14

0.14
None
2280
Good
Inv. ex.


96
I4
93
0.14

0.14
None
2272
Good
Inv. ex.


97
I5
95
0.14

0.14
None
2350
Good
Inv. ex.


98
I6
92
0.13

0.13
None
2441
Good
Inv. ex.


99
I7
97
0.13

0.13
None
2438
Good
Inv. ex.


100
I8
94
0.13

0.13
None
2364
Good
Inv. ex.


101
I9
93
0.13

0.13
None
2421
Good
Inv. ex.


102
I10
98
0.13

0.13
None
2434
Good
Inv. ex.


103
I11
97
0.13

0.13
None
2422
Good
Inv. ex.


104
I12
93
0.14

0.14
None
2466
Good
Inv. ex.


105
I13
95
0.14

0.14
None
2356
Good
Inv. ex.


106
I14
97
0.14

0.14
None
2435

Poor

Comp. ex.


107
J1
98
0.13

0.13
None

1925

Good
Comp. ex.


108
J2
96
0.13

0.13
None
2208
Good
Inv. ex.


109
J3
97
0.13

0.13
None
2326
Good
Inv. ex.


110
J4
97
0.14

0.14
None
2308
Good
Inv. ex.


111
J5
98
0.13

0.13
None
2459
Good
Inv. ex.


112
J6
97
0.13

0.13
None
2286
Good
Inv. ex.


113
J7
97
0.14

0.14
None
2465
Good
Inv. ex.


114
J8
93
0.13

0.13
None
2292
Good
Inv. ex.


115
J9
97
0.14

0.14
None
2521
Good
Inv. ex.


116
J10
96
0.13

0.13
None
2420
Good
Inv. ex.


117
J11
97
0.13

0.13
None
2436
Good
Inv. ex.


118
J12
95
0.13

0.13
None
2498

Poor

Comp. ex.


119
K1
95
0.14

0.14
None
2232
Good
Inv. ex.


120
K2
96
0.13

0.13
None
2251
Good
Inv. ex.


121
K3
98
0.14

0.14
None
2290
Good
Inv. ex.


122
K4
95
0.13

0.13
None
2317
Good
Inv. ex.


123
K5
98
0.13

0.13
None
2257
Good
Inv. ex


124
K6
95
0.14

0.14
None
2275
Good
Inv. ex.


125
K7
94
0.14

0.14
None
2446
Good
Inv. ex.


126
K8
96
0.13

0.13
None
2483
Good
Inv. ex.


127
K9
99
0.13

0.13
None
2383
Good
Inv. ex.


128
K10
96
0.13

0.13
None
2449
Good
Inv. ex.


129
K11
94
0.13

0.13
None
2410
Good
Inv. ex.


130
K12
96
0.14

0.14
None
2401
Good
Inv. ex.


131
K13
97
0.14

0.14
None
2409
Good
Inv. ex.


132
K14
97
0.14

0.14
None
2468

Poor

Comp. ex.


133
L1
95
0.05


0.05

None
2472

Poor

Comp. ex.


134
L2
96
0.11

0.11
None
2498
Good
Inv. ex.


135
L3
98
0.14

0.14
None
2460
Good
Inv. ex.


136
L4
96
0.14

0.14
None
2452
Good
Inv. ex.


137
L5
96
0.14

0.14
None
2308
Good
Inv. ex.


138
L6
97
0.16

0.16
None
2503
Good
Inv. ex.


139
L7
94
0.19

0.19
None
2393
Good
Inv. ex.


140
L8
99
0.15

0.15
None
2383
Good
Inv. ex.


141
L9
97
0.21

0.21
None
2393
Good
Inv. ex.


142
L10
93
0.13

0.13
None
2445
Good
Inv. ex.


143
L11
98
0.13

0.13
None
2402
Good
Inv. ex.


144
L12
98
0.11

0.11
None
2412
Good
Inv. ex.


145
L13
95
0.03


0.03

None
2397

Poor

Comp. ex.


146
M1
96
0.14

0.14
None

2098

Good
Comp. ex.


147
M2
99
0.13

0.13
None
2250
Good
Inv. ex.


148
M3
96
0.14

0.14
None
2323
Good
Inv. ex.


149
M4
98
0.13

0.13
None
2399
Good
Inv. ex.


150
M5
98
0.14

0.14
None
2399
Good
Inv. ex.


151
M6
93
0.13

0.13
None
2400
Good
Inv. ex.


152
M7
95
0.13

0.13
None
2408
Good
Inv. ex.


153
M8
97
0.14

0.14
None
2350
Good
Inv. ex.


154
M9
93
0.14

0.14
None
2436
Good
Inv. ex.


155
M10
93
0.13

0.13
None
2405
Good
Inv. ex.


156
M11
92
0.14

0.14
None
2390

Poor

Comp. ex.


157
N1
96
0.13

0.13
None
2726
Good
Inv. ex.


158
N2
98
0.13

0.13
None
2949
Good
Inv. ex.


159
N3
96
0.14

0.14
None
2686
Good
Inv. ex.


160
N4
95
0.13

0.13
None
2712
Good
Inv. ex.


161
N5
97
0.14

0.14
None
2625
Good
Inv. ex.


162
N6
95
0.14

0.14
None
2705
Good
Inv. ex.


163
N7
95
0.14

0.14
None
2906
Good
Inv. ex.


164
N8
95
0.14

0.14
None
2477
Good
Inv. ex.


165
N9
93
0.13

0.13
None
2819
Good
Inv. ex.


166
N10
98
0.13

0.13
None
2910
Good
Inv. ex.


167
N11
97
0.14

0.14
None
2495
Good
Inv. ex.


168
N12
99
0.13

0.13
None
2805
Good
Inv. ex.


169
N13
97
0.13

0.13
None
2600
Good
Inv. ex.


170
O1
92
0.14

0.14
None
2936
Good
Inv. ex.


171
O2
96
0.14

0.14
None
2880
Good
Inv. ex.


172
O3
94
0.13

0.13
None
2766
Good
Inv. ex.


173
O4
95
0.13

0.13
None
2793
Good
Inv. ex.


174
O5
100
0.14

0.14
None
2863
Good
Inv. ex.


175
O6
94
0.14

0.14
None
2516
Good
Inv. ex.


176
O7
94
0.13

0.13
None
2810
Good
Inv. ex.


177
O8
95
0.13

0.13
None
2467
Good
Inv. ex.


178
O9
97
0.13

0.13
None
2655
Good
Inv. ex.


179
O10
99
0.13

0.13
None
2680
Good
Inv. ex.


180
O11
93
0.14

0.14
None
2953
Good
Inv. ex.


181
O12
94
0.14

0.14
None
2687
Good
Inv. ex.


182
P1
94
0.13

0.13
None
2709
Good
Inv. ex.


183
P2
98
0.13

0.13
None
2812
Good
Inv. ex.


184
P3
98
0.13

0.13
None
2684
Good
Inv. ex.


185
P4
96
0.14

0.14
None
2518
Good
Inv. ex.


186
P5
92
0.14

0.14
None
2581
Good
Inv. ex.


187
P6
99
0.13

0.13
None
2822
Good
Inv. ex.


188
P7
98
0.14

0.14
None
2551
Good
Inv. ex.


189
P8
97
0.14

0.14
None
2455
Good
Inv. ex.


190
P9
96
0.14

0.14
None
2761
Good
Inv. ex.


191
P10
96
0.14

0.14
None
2770
Good
Inv. ex.


192
P11
98
0.14

0.14
None
2556
Good
Inv. ex.


193
P12
98
0.13

0.13
None
2536
Good
Inv. ex.


194
Q1
96
0.14

0.14
None
2842
Good
Inv. ex.


195
Q2
95
0.14

0.14
None
2883
Good
Inv. ex.


196
Q3
97
0.14

0.14
None
2593
Good
Inv. ex.


197
Q4
96
0.13

0.13
None
2793
Good
Inv. ex.


198
Q5
93
0.14

0.14
None
2621
Good
Inv. ex.


199
Q6
93
0.14

0.14
None
2846
Good
Inv. ex.


200
Q7
94
0.14

0.14
None
2484
Good
Inv. ex.


201
Q8
97
0.13

0.13
None
2599
Good
Inv. ex.


202
Q9
94
0.13

0.13
None
2887
Good
Inv. ex.


203
Q10
98
0.13

0.13
None
2782
Good
Inv. ex.


204
Q11
97
0.13

0.13
None
2877
Good
Inv. ex.


205
Q12
99
0.13

0.13
None
2543
Good
Inv. ex.


206
R1
98
0.14

0.14
None
2284
Good
Inv. ex.


207
R2
97
0.14

0.14
None
2402
Good
Inv. ex.


208
R3
96
0.14

0.14
None
2440
Good
Inv. ex.


209
R4
94
0.13

0.13
None
2404
Good
Inv. ex.


210
R5
94
0.13

0.13
None
2384
Good
Inv. ex.


211
R6
97
0.14

0.14
None
2409
Good
Inv. ex.


212
R7
94
0.14

0.14
None
2512
Good
Inv. ex.


213
R8
96
0.13

0.13
None
2398
Good
Inv. ex.


214
S1
93
0.13

0.13
None
2491
Good
Inv. ex.


215
S2
95
0.14

0.14
None
2462
Good
Inv. ex.


216
S3
97
0.14

0.14
None
2403
Good
Inv. ex.


217
S4
96
0.13

0.13
None
2412
Good
Inv. ex.


218
S5
93
0.13

0.13
None
2472
Good
Inv. ex.


219
S6
97
0.14

0.14
None
2299
Good
Inv. ex.


220
S7
96
0.14

0.14
None
2465
Good
Inv. ex.


221
S8
95
0.13

0.13
None
2483
Good
Inv. ex.


222
T1
93
0.13

0.13
None
2383
Good
Inv. ex.


223
T2
95
0.13

0.13
None
2411
Good
Inv. ex.


224
T3
96
0.14

0.14
None
2358
Good
Inv. ex.


225
T4
97
0.14

0.14
None
2475
Good
Inv. ex.


226
T5
98
0.14

0.14
None
2357
Good
Inv. ex.


227
T6
96
0.13

0.13
None
2509
Good
Inv. ex.


228
T7
95
0.13

0.13
None
2489
Good
Inv. ex.


229
T8
93
0.14

0.14
None
2316
Good
Inv. ex.


230
U1
94
0.14

0.14
None
2538
Good
Inv. ex.


231
U2
97
0.13

0.13
None
2373
Good
Inv. ex.


232
U3
94
0.13

0.13
None
2541
Good
Inv. ex.


233
U4
96
0.13

0.13
None
2510
Good
Inv. ex.


234
U5
95
0.14

0.14
None
2406
Good
Inv. ex.


235
U6
94
0.13

0.13
None
2335
Good
Inv. ex.


236
U7
94
0.14

0.14
None
2322
Good
Inv. ex.


237
U8
100
0.13

0.13
None
2349
Good
Inv. ex.


238
V1
95
0.13

0.13
None
2292
Good
Inv. ex.


239
V2
99
0.14

0.14
None
2393
Good
Inv. ex.


240
V3
97
0.14

0.14
None
2486
Good
Inv. ex.


241
V4
95
0.14

0.14
None
2438
Good
Inv. ex.


242
V5
99
0.13

0.13
None
2496
Good
Inv. ex.


243
V6
94
0.14

0.14
None
2449
Good
Inv. ex.


244
V7
93
0.14

0.14
None
2497
Good
Inv. ex.


245
V8
96
0.14

0.14
None
2386
Good
Inv. ex.


246
W1
96
0.14

0.14
None
2347
Good
Inv. ex.


247
W2
99
0.14

0.14
None
2373
Good
Inv. ex.


248
W3
94
0.13

0.13
None
2404
Good
Inv. ex.


249
W4
92
0.14

0.14
None
2550
Good
Inv. ex.


250
W5
99
0.13

0.13
None
2410
Good
Inv. ex.


251
W6
98
0.13

0.13
None
2317
Good
Inv. ex.


252
W7
95
0.14

0.14
None
2340
Good
Inv. ex.


253
W8
97
0.13

0.13
None
2470
Good
Inv. ex.


254
X1
95
0.13

0.13
None
2333
Good
Inv. ex.


255
X2
98
0.13

0.13
None
2451
Good
Inv. ex.


256
X3
96
0.13

0.13
None
2396
Good
Inv. ex.


257
Y1
100
0.13
0.12
0.25
None
2341
Good
Inv. ex.


258
Y2
92
0.14
0.12
0.26
None
2474
Good
Inv. ex.


259
Y3
95
0.14
0.13
0.27
None
2486
Good
Inv. ex.


260
Y4
94
0.13
0.13
0.26
None
2454
Good
Inv. ex.


261
Y5
92
0.13
0.13
0.26
None
2481
Good
Inv. ex.


262
Y6
98
0.13
0.14
0.27
None
2501
Good
Inv. ex.


263
Y7
96
0.13
0.15
0.28
None
2380
Good
Inv. ex.


264
Y8
95
0.14
0.16
0.30
None
2377
Good
Inv. ex.


265
Y9
98
0.14
0.16
0.30
None
2295
Good
Inv. ex.


266
Y10
99
0.13
0.16
0.29
None
2435
Good
Inv. ex.


267
Z1
99
0.14

0.23
None
2413
Good
Inv. ex.


268
Z2
95
0.13

0.22
None
2441
Good
Inv. ex.


269
Z3
97
0.13

0.24
None
2436
Good
Inv. ex.


270
Z4
94
0.13

0.15
None
2526
Good
Inv. ex.


271
Z5
96
0.13

0.21
None
2403
Good
Inv. ex.


272
Z6
99
0.14

0.25
None
2483
Good
Inv. ex.


273
Z7
96
0.14

0.19
None
2391
Good
Inv. ex.


274
Z8
100
0.14

0.25
None
2397
Good
Inv. ex.


275
Z9
96
0.14

0.21
None
2419
Good
Inv. ex.


276
Z10
96
0.14

0.15
None
2328
Good
Inv. ex.


277
AA1
94
0.13

0.25
None
2389
Good
Inv. ex.


278
AA2
99
0.14

0.24
None
2390
Good
Inv. ex.


279
AA3
95
0.14

0.19
None
2438
Good
Inv. ex.


280
AA4
97
0.13

0.23
None
2378
Good
Inv. ex.


281
AA5
99
0.13

0.23
None
2312
Good
Inv. ex.


282
AA6
95
0.13

0.15
None
2395
Good
Inv. ex.


283
AA7
94
0.14

0.16
None
2421
Good
Inv. ex.


284
AA8
97
0.13

0.15
None
2332
Good
Inv. ex.


285
AA9
95
0.14

0.18
None
2383
Good
Inv. ex.


286
AA10
97
0.14

0.21
None
2432
Good
Inv. ex.


287
BB1
95
0.13

0.19
None
2430
Good
Inv. ex.


288
BB2
95
0.13

0.18
None
2436
Good
Inv. ex.


289
BB3
100
0.13

0.20
None
2347
Good
Inv. ex.


290
BB4
99
0.14

0.15
None
2365
Good
Inv. ex.


291
BB5
99
0.14

0.15
None
2500
Good
Inv. ex.


292
BB6
100
0.13

0.17
None
2430
Good
Inv. ex.


293
BB7
96
0.14

0.23
None
2461
Good
Inv. ex.


294
BB8
98
0.14

0.24
None
2328
Good
Inv. ex.


295
BB9
96
0.14

0.17
None
2528
Good
Inv. ex.


296
BB10
97
0.14

0.20
None
2404
Good
Inv. ex.


297
CC1
95
0.14

0.20
None
2460
Good
Inv. ex.


298
CC2
94
0.13

0.16
None
2352
Good
Inv. ex.


299
CC3
97
0.13

0.19
None
2383
Good
Inv. ex.


300
CC4
96
0.14

0.25
None
2424
Good
Inv. ex.


301
CC5
94
0.13

0.18
None
2462
Good
Inv. ex.


302
CC6
94
0.14

0.23
None
2474
Good
Inv. ex.


303
CC7
97
0.13

0.16
None
2379
Good
Inv. ex.


304
CC8
94
0.13

0.21
None
2410
Good
Inv. ex.


305
CC9
96
0.13

0.18
None
2388
Good
Inv. ex.


306
CC10
95
0.14

0.22
None
2399
Good
Inv. ex.


307
DD1
95
0.14

0.16
None
2428
Good
Inv. ex.


308
DD2
96
0.13

0.20
None
2427
Good
Inv. ex.


309
DD3
96
0.14

0.18
None
2539
Good
Inv. ex.


310
DD4
97
0.13

0.15
None
2462
Good
Inv. ex.


311
DD5
97
0.14

0.20
None
2376
Good
Inv. ex.


312
DD6
96
0.14

0.16
None
2338
Good
Inv. ex.


313
DD7
97
0.14

0.23
None
2371
Good
Inv. ex.


314
DD8
100
0.14

0.21
None
2464
Good
Inv. ex.


315
DD9
100
0.14

0.23
None
2393
Good
Inv. ex.


316
DD10
95
0.14

0.22
None
2394
Good
Inv. ex.


317
FF1
98
0.14

0.14
None
2423
Good
Inv. ex.


318
FF2
96
0.14

0.14
None
2291
Good
Inv. ex.


319
FF3
98
0.14

0.14
None
2394
Good
Inv. ex.


320
GG1
100
0.14

0.14
None
2488
Good
Inv. ex.


321
GG2
100
0.14

0.14
None
2345
Good
Inv. ex.


322
GG3
94
0.14

0.14
None
2346
Good
Inv. ex.


323
EE1
96
0.13

0.13
None
2470
Good
Inv. ex.


324
EE2
92
0.14

0.14
None
2427
Good
Inv. ex.


325
EE3
93
0.13

0.13
None
2441
Good
Inv. ex.


326
EE4
96
0.14

0.14
None
2516
Good
Inv. ex.


327
EE5
97
0.14

0.14
None
2416
Good
Inv. ex.


328
EE6
97
0.14
0.12
0.26
None
2419
Good
Inv. ex.


329
EE7
92
0.13
0.15
0.28
None
2353
Good
Inv. ex.


330
EE8
99
0.13
0.17
0.30
None
2458
Good
Inv. ex.


331
EE6
99
0.14

0.14
None
2452
Good
Inv. ex.


332
EE6
95
0.14

0.14
None
2453
Good
Inv. ex.


333
EE6
94
0.14

0.14
None
2358
Good
Inv. ex.


334
EE6
94
0.14

0.14
None
2420
Good
Inv. ex.


335
EE6
95
0.14

0.14
None
2417
Good
Inv. ex.


336
EE6
99
0.08


0.08

None
2370

Poor

Comp. ex.


337
EE6
97
0.14

0.14
None
2456
Good
Inv. ex.


338
EE6
96
0.13

0.13
None
2418
Good
Inv. ex.


339
EE6
97
0.13

0.13
None
2511
Good
Inv. ex.


340
EE6
96
0.13

0.13
None
2435
Good
Inv. ex.


341
EE6
94
0.13

0.13
None
2406
Good
Inv. ex.


342
EE6
98
0.13

0.13
Fe—Al-based covering
2441
Good
Inv. ex.


343
EE6
100
0.13

0.13
Fe—Al-based covering
2491
Good
Inv. ex.


344
EE6
93
0.13

0.13
Fe—Al-based covering
2441
Good
Inv. ex.


345
EE6
99
0.14

0.14
Fe—Zn-based covering
2548
Good
Inv. ex.


346
EE6
96
0.14

0.14
Fe—Zn-based covering
2446
Good
Inv. ex.


347
EE6
96
0.14

0.14
Fe—Zn-based covering
2413
Good
Inv. ex.


348
EE6
96
0.13

0.13
Fe—Zn—Ni-based covering
2327
Good
Inv. ex.


349
EE6
96
0.14

0.14
Fe—Al—Mg—Zn-based covering
2527
Good
Inv. ex.


350
EE6
97
0.14

0.14
None
2362
Good
Inv. ex.


351
EE6
98
0.04


0.04

None
2457

Poor

Comp. ex.


352
EE6
97
0.12

0.12
None
2377
Good
Inv. ex.


353
EE6
96
0.13

0.13
None
2343
Good
Inv. ex.


354
EE6
100
0.13

0.13
None
2429
Good
Inv. ex.


355
EE6
96
0.15

0.15
None
2421
Good
Inv. ex.


356
EE6
99
0.25

0.25
None
2319
Good
Inv. ex.


357
EE6
99
0.08


0.08

None
2468

Poor

Comp. ex.


358
EE6
92
0.11

0.11
None
2431
Good
Inv. ex.


359
EE6
94
0.14

0.14
None
2383
Good
Inv. ex.


360
EE6
95
0.13

0.13
None
2407
Good
Inv. ex.


361
EE6
93
0.14

0.14
None
2353
Good
Inv. ex.


362
EE6
97
0.21

0.21
None
2479
Good
Inv. ex.


363
EE6
98
0.25

0.25
None
2384
Good
Inv. ex.


364
EE6
68
0.04


0.04

None

2057


Poor

Comp. ex.


365
EE6
91
0.13

0.13
None
2271
Good
Inv. ex.


366
EE6
91
0.13

0.13
None
2300
Good
Inv. ex.


367
EE6
96
0.14

0.14
None
2449
Good
Inv. ex.


368
EE6
96
0.13

0.13
None
2403
Good
Inv. ex.


369
EE6
95
0.14

0.14
None
2313
Good
Inv. ex.


370
EE6
96
0.13

0.13
None
2396
Good
Inv. ex.


371
EE6
98
0.13

0.13
None
2455
Good
Inv. ex.


372
EE6
96
0.13

0.13
None
2393
Good
Inv. ex.


373
EE6
93
0.14

0.14
None
2536
Good
Inv. ex.


374
EE6
97
0.13

0.13
None
2446
Good
Inv. ex.


375
EE6
98
0.14

0.14
None
2361
Good
Inv. ex.


376
EE6
99
0.13

0.13
None
2397
Good
Inv. ex.


377
EE6
96
0.13

0.13
None
2403
Good
Inv. ex.


378
EE6
93
0.07


0.07

None
2330

Poor

Comp. ex.


379
EE6
100
0.06


0.06

None
2488

Poor

Comp. ex.


380
EE6
97
0.14

0.14
None
2409
Good
Inv. ex.


381
EE6
97
0.14

0.14
None
2484
Good
Inv. ex.


382
EE6
96
0.14

0.14
None
2370
Good
Inv. ex.


383
EE6
94
0.13

0.13
None
2453
Good
Inv. ex.


384
EE6
98
0.13

0.13
None
2352
Good
Inv. ex.


385
EE6
97
0.13

0.13
None
2377
Good
Inv. ex.


386
EE6
95
0.14

0.14
None
2408
Good
Inv. ex.


387
EE6
96
0.14

0.14
None
2409
Good
Inv. ex.


388
EE6
94
0.13

0.13
None
2425
Good
Inv. ex.


389
EE6
99
0.13

0.13
None
2382
Good
Inv. ex.


390
EE6
94
0.14

0.14
None
2457
Good
Inv. ex.


391
EE6
95
0.14

0.14
None
2428
Good
Inv. ex.


392
EE6
94
0.13

0.13
None
2375
Good
Inv. ex.


393
EE6
95
0.13

0.13
None
2443
Good
Inv. ex.


394
EE6
98
0.14

0.14
None
2422
Good
Inv. ex.


395
EE6
95
0.05


0.05

None
2392

Poor

Comp. ex.


396
EE6
95
0.13

0.13
None
2483
Good
Inv. ex.


397
EE6
94
0.13

0.13
None
2572
Good
Inv. ex.


398
EE6
92
0.13

0.13
None
2506
Good
Inv. ex.


399
EE6
94
0.14

0.14
None
2499
Good
Inv. ex.


400
EE6
97
0.13

0.13
None
2520
Good
Inv. ex.


401
EE6
97
0.13

0.13
None
2468
Good
Inv. ex.


402
EE6
98
0.13

0.13
None
2547
Good
Inv. ex.


403
EE6
94
0.14

0.14
None
2550
Good
Inv. ex.


404
EE6
93
0.14

0.14
None
2395
Good
Inv. ex.


405
EE6
94
0.14

0.14
None
2394
Good
Inv. ex.


406
EE6
95
0.13

0.13
None
2351
Good
Inv. ex.


407
EE6
95
0.13

0.13
None
2326
Good
Inv. ex.


408
EE6
95
0.14

0.14
None
2269
Good
Inv. ex.


409
EE6
96
0.13

0.13
None
2228
Good
Inv. ex.


410
EE6
94
0.14

0.14
None
2276
Good
Inv. ex.


411
EE6
96
0.13

0.13
None
2423
Good
Inv. ex.





Underlines indicate outside scope of present invention or properties not preferable.






Referring to Tables 1 to 3, in Comparative Example 1, the C content was low, therefore the tensile strength fell. In Comparative Example 14, the C content was high, therefore the strength became too high and the hydrogen embrittlement resistance fell. In Comparative Example 29, the Si content was high, therefore the amount of ferrite increased and the tensile strength fell. In Comparative Example 43, the Mn content was high, therefore it is believed the prior austenite grain boundaries become brittle. As a result, the hydrogen embrittlement resistance fell. In Comparative Examples 52, 61, 70, 78, 79, and 92, the respective P, S, N, O, or Al contents were not suitable, therefore the hydrogen embrittlement resistances fell. In Comparative Examples 93, 107, and 146, the respective Nb, Ti, and B contents were low, therefore the strengths could not be sufficiently improved and the tensile strengths fell. In Comparative Examples 106, 118, 132, 145, and 156, the respective Nb, Ti, Cr, Mo, and B contents were high, therefore it is believed coarse carbonitrides, coarse intermetallic compounds, etc., or coarse borides were formed and as a result the hydrogen embrittlement resistances fell. In Comparative Example 133, the Mo content was low, therefore the total amount of segregation of the grain boundary strengthening elements at the prior austenite grain boundaries become lower and the hydrogen embrittlement resistance fell.


In Comparative Example 336, the coiling temperature was high, therefore it is believed the carbides and/or intermetallic compounds of the grain boundary strengthening elements could not be sufficiently refined and, in the following preheating step, the grain boundary strengthening elements could not be made to sufficiently dissolve in the steel sheet. As a result, the total amount of segregation of the grain boundary strengthening elements at the prior austenite grain boundaries became low and the hydrogen embrittlement resistance fell. In Comparative Example 351, the heating temperature at the preheating step was low, therefore it is believed it was not possible to make the grain boundary strengthening elements sufficiently dissolve in the steel sheet. As a result, the total amount of segregation of the grain boundary strengthening elements at the prior austenite grain boundaries became low and the hydrogen embrittlement resistance fell. In Comparative Example 357, the average cooling speed at the preheating step was slow, therefore it is believed the grain boundary strengthening elements dissolved in the steel sheet by preheating precipitated as compounds. As a result the total amount of segregation of the grain boundary strengthening elements at the prior austenite grain boundaries became low and the hydrogen embrittlement resistance fell. In Comparative Example 364, the heating temperature at the hot stamping step was low, therefore it is believed the grain boundary strengthening elements did not sufficiently disperse to the austenite grain boundaries. As a result the total amount of segregation of the grain boundary strengthening elements at the prior austenite grain boundaries became low and the hydrogen embrittlement resistance fell. In Comparative Example 378, the heating temperature at the hot stamping step was high, therefore grain boundary segregation excessively proceeded, the segregated grain boundary strengthening elements precipitated as carbides or intermetallic compounds, and the amount of grain boundary segregation decreased. As a result, the desired total amount of segregation at the grain boundary strengthening elements could not be achieved and the hydrogen embrittlement resistance fell. In Comparative Example 379, the holding time in the hot stamping step was short, therefore it is believed the grain boundary strengthening elements did not sufficiently disperse to the austenite grain boundaries. As a result, the total amount of segregation of the grain boundary strengthening elements at the prior austenite grain boundaries became lower and the hydrogen embrittlement resistance fell. In Comparative Example 395, the holding time in the hot stamping step was long, therefore grain boundary segregation excessively proceeded, the grain boundary segregated grain boundary strengthening elements precipitated as carbides and intermetallic compounds, and the amount of grain boundary segregation decreased. As a result, it was not possible to achieve the desired total amount of segregation at the grain boundary strengthening elements, and the hydrogen embrittlement resistance fell.


In contrast to this, the hot stamped bodies according to all of the invention examples have the predetermined chemical compositions and are controlled to give a total amount of segregation of the grain boundary strengthening elements at the prior austenite grain boundaries, i.e., at least one of Mo, W, Ta, Re, Os, Ir, and Tc, of 0.10 atm % or more, whereby hydrogen embrittlement can be reliably suppressed regardless of having high tensile strengths of 2200 MPa or more.

Claims
  • 1. A hot stamped body having a chemical composition comprising, by mass %, C: 0.40 to 0.70%,P: 0.100% or less,S: 0.0100% or less,N: 0.0200% or less,O: 0.0200% or less,Al: 0.0010 to 0.500%,Nb: 0.0010 to 0.100%,Ti: 0.010 to 0.200%,Mo: 0.010 to 2.000%,B: 0.0005 to 0.0200%,Si: 0 to 3.00%,Mn: 0 to less than 0.50%,Cr: 0 to 1.00%,Co: 0 to 4.00%,Ni: 0 to 3.00%,Cu: 0 to 3.00%,V: 0 to 3.00%,Ca: 0 to 1.000%,Mg: 0 to 1.000%,REM: 0 to 1.000%,Sb: 0 to 1.00%,Zr: 0 to 1.00%,Sn: 0 to 1.00%,As: 0 to 0.100%,W: 0 to 3.000%,at least one of Ta, Re, Os, Ir, and Tc: 0 to 1.00% in total,Se: 0 to 1.00%,Bi: 0 to 1.00%, andbalance: Fe and impurities, anda microstructure with a total amount of segregation of at least one of Mo, W, Ta, Re, Os, Ir, and Tc at prior austenite grain boundaries of 0.10 atm % or more.
  • 2. The hot stamped body according to claim 1, comprising, by area ratio, at least one of martensite, bainite, and tempered martensite: 70% or more in total.
  • 3. The hot stamped body according to claim 1, wherein the amount of segregation of Mo at the prior austenite grain boundaries is 0.10 atm % or more.
  • 4. The hot stamped body according to claim 1, wherein the amount of segregation of W at the prior austenite grain boundaries is 0.10 atm % or more.
  • 5. The hot stamped body according to claim 1, wherein the total amount of segregation is 0.15 atm % or more.
  • 6. The hot stamped body according to claim 1, having a covering on the surface.
  • 7. The hot stamped body according to claim 6, wherein the covering is mainly comprised of an Fe—Al-based alloy.
  • 8. The hot stamped body according to claim 6, wherein the covering is mainly comprised of an Fe—Zn-based alloy.
  • 9. The hot stamped body according to claim 2, wherein the amount of segregation of Mo at the prior austenite grain boundaries is 0.10 atm % or more.
  • 10. The hot stamped body according to claim 2, wherein the amount of segregation of W at the prior austenite grain boundaries is 0.10 atm % or more.
  • 11. The hot stamped body according to claim 2, wherein the total amount of segregation is 0.15 atm % or more.
  • 12. The hot stamped body according to claim 3, wherein the total amount of segregation is 0.15 atm % or more.
  • 13. The hot stamped body according to claim 4, wherein the total amount of segregation is 0.15 atm % or more.
  • 14. The hot stamped body according to claim 2, having a covering on the surface.
  • 15. The hot stamped body according to claim 3, having a covering on the surface.
  • 16. The hot stamped body according to claim 4, having a covering on the surface.
  • 17. The hot stamped body according to claim 5, having a covering on the surface.
Priority Claims (1)
Number Date Country Kind
2022-060691 Mar 2022 JP national
PCT Information
Filing Document Filing Date Country Kind
PCT/JP2023/007829 3/2/2023 WO