HOT STAMPED BODY

Information

  • Patent Application
  • 20250034686
  • Publication Number
    20250034686
  • Date Filed
    March 02, 2023
    2 years ago
  • Date Published
    January 30, 2025
    2 months ago
Abstract
Provided is a hot stamped body having a predetermined chemical composition and a microstructure comprising, by area ratio, at least one of martensite, bainite, and tempered martensite: 90% or more in total, wherein a standard deviation in grain size distribution of former austenite grains is 5.0 μm or less, and a total amount of segregation of at least one of Mo, W, Ta, Re, Os, Ir, and Tc at the former austenite grain boundaries is 0.10 atm % or more.
Description
FIELD

The present invention relates to a hot stamped body.


BACKGROUND

In recent years, in the automobile industry, lighter weight of car bodies has been sought from the viewpoint of improvement of fuel economy. To achieve both lighter weight of car bodies and collision safety, one effective method is to increase the strength of the steel sheet used. A high strength steel sheet is being developed due to such a background.


If making a steel sheet high in strength, the formability falls, and therefore it is generally difficult to achieve both strength and formability in the steel sheet. Hot stamping (hot pressing) is known as a technique for press-forming a material, which is difficult to form, such as a high strength steel sheet. Hot stamping is a technique of hot forming which heats then forms a material to be formed. This technique heats then forms the material, and therefore at the time of forming, the steel material is soft and has good formability. Therefore, even a high strength steel material can be formed into a complex shape with a good precision. Further, it is hardened at the same time as being formed by the press dies, and therefore a formed steel material is known to have sufficient strength.


In relation to this, PTL 1 describes a hot stamped body characterized by having a predetermined chemical composition and a microstructure containing former austenite with an average grain size of 3 μm or less and, further, containing at least one of lower bainite, martensite, and tempered martensite in an area ratio of 90% or more, wherein a grain boundary solid solution ratio Z, defined by Z=(mass % of one or both of Nb and Mo at the grain boundaries)/(mass % of one or both of Nb and Mo at time of melting), is 0.3 or more. Further, PTL 1 describes that the hot stamped body has a tensile strength of 2000 MPa or more.


CITATIONS LIST
Patent Literature





    • [PTL 1] WO 2019/186928





SUMMARY
Technical Problem

If the strength of a steel material becomes higher, in general, the phenomenon of the steel material fracturing before reaching its maximum stress (early fracture) easily arises. For this reason, there is a high need for a steel material enabling suppression of such early fracture. In relation to this, PTL 1 teaches that in a hot stamped body having the above feature, there will be a high tensile strength of 2000 MPa or more and, in addition, early fracture will be suppressed. On the other hand, in the automobile industry, etc., further reduction of weight of the steel material is sought. To achieve such lighter weight, a need arises to raise the strength more than the past. Therefore, there is still a great need for a steel material, more specifically a hot stamped body, able to solve the problem of early fracture even if raising the strength equal to the past or more than the same.


Therefore, the present invention has as its object to provide a hot stamped body which is high in strength and able to suppress early fracture by a novel constitution.


Solution to Problem

The inventors discovered that, to achieve the above object, it is possible to reduce the variation in former austenite grain size in the microstructure of a hot stamped body so as to suppress the rise in local hardness acting as starting points of fracture and in addition possible to make specific elements segregate at the grain boundaries to reinforce the grain boundaries and further discovered that by the combination of such suppression of rise of local hardness and grain boundary strengthening, it is possible to sufficiently suppress early fracture regardless of the hot stamped body having a high tensile strength, and thereby completed the present invention.


The present invention able to achieve this object is as follows:

    • (1) A hot stamped body having a chemical composition comprising, by mass %,
      • C: 0.40 to 0.70%,
      • Si: 0.010 to 3.00%,
      • Mn: 0.50 to 3.00%,
      • P: 0.100% or less,
      • S: 0.0100% or less,
      • N: 0.0200% or less,
      • O: 0.0200% or less,
      • Al: 0.0010 to 0.500%,
      • Nb: 0.0010 to 0.100%,
      • Ti: 0.010 to 0.200%,
      • Cr: 0.010 to 1.00%,
      • Mo: 0.0010 to 1.000%,
      • B: 0.0005 to 0.0200%,
      • Co: 0 to 4.00%,
      • Ni: 0 to 3.00%,
      • Cu: 0 to 3.00%,
      • V: 0 to 3.00%,
      • Ca: 0 to 1.000%,
      • Mg: 0 to 1.000%,
      • REM: 0 to 1.000%,
      • Sb: 0 to 1.00%,
      • Sn: 0 to 1.00%,
      • Zr: 0 to 1.00%,
      • As: 0 to 0.100%,
      • at least one of W, Ta, Re, Os, Ir, and Tc: 0 to 1.00% in total, and balance: Fe and impurities, and
      • a microstructure comprising, by area ratio, at least one of martensite, bainite, and tempered martensite: 90% or more in total, wherein
      • a standard deviation in grain size distribution of former austenite grains is 5.0 μm or less, and
      • a total amount of segregation of at least one of Mo, W, Ta, Re, Os, Ir, and Tc at former austenite grain boundaries is 0.10 atm % or more.
    • (2) The hot stamped body according to the above (1), wherein the amount of segregation of Mo at the former austenite grain boundaries is 0.10 atm % or more.
    • (3) The hot stamped body according to the above (1) or (2), wherein the total amount of segregation is 0.15 atm % or more.


Advantageous Effects of Invention

According to the present invention, it is possible to provide a hot stamped body which is high in strength and able to suppress early fracture.







DESCRIPTION OF EMBODIMENTS
<Hot Stamped Body>

The hot stamped body according to an embodiment of the present invention has a chemical composition comprising, by mass %,

    • C: 0.40 to 0.70%,
    • Si: 0.010 to 3.00%,
    • Mn: 0.50 to 3.00%,
    • P: 0.100% or less,
    • S: 0.0100% or less,
    • N: 0.0200% or less,
    • O: 0.0200% or less,
    • Al: 0.0010 to 0.500%,
    • Nb: 0.0010 to 0.100%,
    • Ti: 0.010 to 0.200%,
    • Cr: 0.010 to 1.00%,
    • Mo: 0.0010 to 1.000%,
    • B: 0.0005 to 0.0200%,
    • Co: 0 to 4.00%,
    • Ni: 0 to 3.00%,
    • Cu: 0 to 3.00%,
    • V: 0 to 3.00%,
    • Ca: 0 to 1.000%,
    • Mg: 0 to 1.000%,
    • REM: 0 to 1.000%,
    • Sb: 0 to 1.00%,
    • Sn: 0 to 1.00%,
    • Zr: 0 to 1.00%,
    • As: 0 to 0.100%,
    • at least one of W, Ta, Re, Os, Ir, and Tc: 0 to 1.00% in total, and balance: Fe and impurities, and
    • a microstructure comprising, by area ratio, at least one of martensite, bainite, and tempered martensite: 90% or more in total, wherein
    • a standard deviation in grain size distribution of former austenite grains is 5.0 μm or less, and
    • a total amount of segregation of at least one of Mo, W, Ta, Re, Os, Ir, and Tc at former austenite grain boundaries is 0.10 atm % or more.


As explained above, there is the problem that if the strength of a steel material becomes higher, in general, the phenomenon of the steel material fracturing before reaching the maximum stress (early fracture) easily occurs. Therefore, the inventors conducted studies focusing on the two viewpoints of the viewpoint of reducing hard regions able to become starting points for fracture and the viewpoint of strengthening the grain boundaries for preventing or suppressing fracture. More specifically, the inventors first discovered that if there is a large variation in former austenite grain size in the microstructure, the hardness becomes higher in a region with a smaller former austenite grain size and that such a local high hardness region can become a starting point of early fracture. As opposed to this, the inventors discovered that by controlling the standard deviation in a grain size distribution of former austenite grains to 5.0 μm or less, it is possible to reliably suppress such a rise in local hardness.


While not intending to be bound to any specific theory, it is believed that at the time of hot stamping, the starting temperature of martensite transformation changes in accordance with the size of the austenite grains. If explained in more detail, it is believed that austenite grains having larger size are higher in starting temperature of martensite transformation compared with austenite grains having smaller size, and therefore the hardness becomes lower. Austenite grains having smaller size rise in hardness since martensite transformation occurs at a lower temperature than large grains. Therefore, to suppress or reduce the rise in such local hardness, it becomes important to reduce the variation in the austenite grain size before martensite transformation. Due to such a reason, it is believed that by controlling the standard deviation in the grain size distribution of the former austenite grains to 5.0 μm or less to reduce the variation in former austenite grain size, it would become possible to remarkably suppress the rise in local hardness due to differences in timing of martensite transformation. If there is locally a region of a high hardness, it is believed that there will be a high possibility of such a region acting as a starting point triggering early fracture, and therefore reducing the variation in former austenite grain size would be extremely effective in suppressing early fracture.


In relation to this, as explained later in detail regarding the method of production of the hot stamped body, the inventors focused on the microstructure of a hot rolled steel sheet and discovered that by evenly dispersing the pearlite in the microstructure, it is possible to control the standard deviation of former austenite grains in the final microstructure of the hot stamped body to 5.0 μm or less. Along with the increasingly higher strength of steel materials, sometimes a relatively large amount of Mn is added so as to improve the hardenability of the steel material, but in the research by the inventors this time, it was learned that with such a high Mn content (for example, 0.50 mass % or more), pearlite is relatively easily formed and therefore compared with the case of a low Mn content, it is extremely difficult to evenly disperse the pearlite formed in large amounts in the microstructure of the hot rolled steel sheet. However, the inventors discovered that to deal with such a problem, it is possible to uniformly disperse the pearlite in the microstructure of the hot rolled steel sheet by relatively high reduction at the final stage of finish rolling and that as a result it is possible to remarkably reduce the variation in former austenite grain size in the final microstructure of the hot stamped body. On the other hand, with just reducing the variation in former austenite grain size and reducing the regions which can act as starting points of early fracture, there is a possibility that if a crack occurs, it will not be possible to reliably suppress its progression and prevent early fracture.


Therefore, next, the inventors engaged in further studies from the viewpoint of suppressing progression of cracks along the grain boundaries and discovered that by causing specific elements, more specifically at least one of Mo, W, Ta, Re, Os, Ir, and Tc, to segregate at the former austenite grain boundaries in a total amount of segregation of these of 0.10 atm % or more, it is possible to strengthen the former austenite grain boundaries at the microstructure of the hot stamped body. As a result, the inventors discovered that by the combination of suppression of the rise in local hardness explained above and the strengthening of former austenite grain boundaries by such specific grain boundary strengthening elements, despite the hot stamped body having a high tensile strength, it is possible to sufficiently suppress early fracture. In the past, the fact that, for example, from the viewpoint of improvement of the hardenability, etc., while it is known to add some of these elements to a steel sheet for hot stamping use, it is possible to add at least one of Mo, W, Ta, Re, Os, Ir, and Tc in a predetermined total amount and, further, control the heat treatment conditions to make them segregate at the former austenite grain boundaries and possible to strengthen the former austenite grain boundaries in a superhigh strength steel material containing 0.40 mas % or more of carbon and thereby suppress the progression of cracks along the grain boundaries was clarified the first time by the inventors this time. In the hot stamped body according to an embodiment of the present invention, by combining the suppression of rise of local hardness and grain boundary strengthening by grain boundary segregation of such specific elements, it is possible to reduce the regions which act as starting points of early fracture and reliably suppress the progression of cracks along the grain boundaries even in the case of occurrence of cracks at the hot stamped body. For this reason, according to the hot stamped body according to an embodiment of the present invention, early fracture can be suppressed regardless of having a high tensile strength, for example, a high tensile strength of 2200 MPa or more.


Below, the hot stamped body according to the embodiment of the present invention will be explained in more detail. In the following explanation, the “%” of the units of content of the elements, unless otherwise indicated, means “mass %”. Further, in this Description, “to” showing a numerical range, unless otherwise indicated, is used in the sense including the numerical values described before and after it as the upper limit value and lower limit value.


[C: 0.40 to 0.70%]

C is an element improving the strength of a hot stamped body. If the C content is less than 0.40%, it is not possible to obtain the desired strength at the hot stamped body. For this reason, the C content is 0.40% or more. The C content is preferably 0.42% or more, 0.44% or more, or 0.45% or more.


On the other hand, if the C content is more than 0.70%, the toughness of the martensite is too low and an excellent early fracture resistance cannot be obtained. For this reason, the C content is 0.70% or less. Preferably, the C content is 0.67% or less, 0.65% or less, or 0.60% or less.


[Si: 0.010 to 3.00%]

Si is an element improving the strength of a hot stamped body by solid solution strengthening. If the Si content is less than 0.010%, it is not possible to obtain the desired strength. For this reason, the Si content is 0.010% or more. The Si content is preferably 0.05% or more, 0.10% or more, 0.15% or more, or 0.20% or more.


On the other hand, if the Si content is more than 3.00%, the amount of ferrite increases and the desired metallographic structure cannot be obtained. For this reason, the Si content is 3.00% or less. The Si content is preferably 2.50% or less, 2.00% or less, 1.00% or less, or 0.70% or less.


[Mn: 0.50 to 3.00%]

Mn is an element which promotes the transformation from austenite to pearlite in a hot rolled steel sheet in the process of production of a hot stamped body according to the present embodiment and contributes to control of the former austenite grain size distribution of a hot stamped body. To make the standard deviation in the grain size distribution of former austenite grains the desired range, the Mn content is 0.50% or more. The Mn content is preferably 0.70% or more, 1.00% or more, or 1.30% or more.


On the other hand, if the Mn content is more than 3.00%, transformation from austenite to pearlite in a hot rolled steel sheet is promoted too much and the standard deviation in the grain size distribution of former austenite grains in a hot stamped body cannot be controlled to a desired range. For this reason, the Mn content is 3.00% or less. Preferably, the Mn content is 2.70% or less, 2.50% or less, 2.30% or less, or 2.00% or less.


[P: 0.100% or Less]

P is an impurity element and segregates at the grain boundaries to form starting points of fracture and cause the early fracture resistance to deteriorate. For this reason, the P content is 0.100% or less. The P content is preferably 0.050% or less or 0.010% or less. The lower limit of the P content is not particularly prescribed, but if less than 0.0001%, the dephosphorization cost greatly rises making this not preferable economically. For this reason, the P content may also be 0.0001% or more.


[S: 0.0100% or Less]

S is an impurity element and forms inclusions in the steel. The inclusions become starting points of fracture and cause the early fracture resistance to deteriorate, therefore the S content is 0.0100% or less. The S content is preferably 0.0080% or less, 0.0050% or less, or 0.0030% or less.


The lower limit of the S content is not particularly prescribed, but if less than 0.0001%, the desulfurization cost greatly rises making this not preferable economically. For this reason, the S content may also be 0.0001% or more.


[N: 0.0200% or Less]

N is an impurity element and forms inclusions in the steel. The inclusions become starting points of fracture and cause the early fracture resistance to deteriorate, therefore the N content is 0.0200% or less. The N content is preferably 0.0150% or less, 0.0100% or less, 0.0060% or less, or 0.0040% or less.


The lower limit of the N content is not particularly prescribed, but if less than 0.0001%, the denitridation cost greatly rises making this not preferable economically. For this reason, the N content may also be 0.0001% or more.


[O: 0.0200% or Less]

O, if contained in a large amount in the steel, forms coarse oxides acting as starting points of fracture and causes the early fracture resistance of a hot stamped body to deteriorate. For this reason, the O content is 0.0200% or less. The O content is preferably 0.0100% or less, 0.0070% or less, or 0.0040% or less.


From the viewpoint of reducing the refining costs, the O content may also be 0.0001% or more. To make a large number of fine oxides disperse at the time of deoxidation of the molten steel, the O content may be 0.0005% or more.


[Al: 0.0010 to 0.500%]

Al is an element having the action of deoxidizing the molten steel and making the steel sounder. If the Al content is less than 0.0010%, deoxidation will not sufficiently proceed and coarse oxides will be formed causing the early fracture resistance to deteriorate. For this reason, the Al content is 0.0010% or more. The Al content is preferably 0.005% or more, 0.010% or more, or 0.030% or more.


On the other hand, if the Al content is more than 0.500%, coarse oxides will form in the steel causing the early fracture resistance of a hot stamped body to fall. For this reason, the Al content is 0.500% or less. The Al content is preferably 0.400% or less, 0.300% or less, 0.200% or less, or 0.100% or less.


[Nb: 0.0010 to 0.100%]

Nb is an element forming carbonitrides in steel and improving the strength of a hot stamped body by precipitation strengthening. If the Nb content is less than 0.0010%, the desired strength cannot be obtained. For this reason, the Nb content is 0.0010% or more. The Nb content is preferably 0.005% or more, 0.009% or more, or 0.015% or more.


On the other hand, if the Nb content is more than 0.100%, a large amount of coarse carbonitrides are formed in the steel and the early fracture resistance of a hot stamped body deteriorates. For this reason, the Nb content is 0.100% or less. The Nb content is preferably 0.080% or less, 0.060% or less, or 0.050% or less.


[Ti: 0.010 to 0.200%]

Ti is an element forming carbonitrides in steel and improving the strength of a hot stamped body by precipitation strengthening. If the Ti content is less than 0.010%, the desired strength cannot be obtained. For this reason, the Ti content is 0.010% or more. The Ti content is preferably 0.015% or more, 0.020% or more, or 0.025% or more. On the other hand, if the Ti content is more than 0.200%, a large amount of coarse carbonitrides are formed in the steel and the early fracture resistance of a hot stamped body deteriorates. For this reason, the Ti content is 0.200% or less. The Ti content is preferably 0.150% or less, 0.100% or less, 0.080% or less, 0.060% or less, or 0.050% or less.


[Cr: 0.010 to 1.00%]

Cr is an element dissolving in the former austenite grains at the time of heating before hot stamping and thereby raising the strength of a hot stamped body. If the Cr content is less than 0.010%, it is not possible to obtain the desired strength. For this reason, the Cr content is 0.010% or more. The Cr content is preferably 0.10% or more, 0.15% or more, or 0.20% or more. On the other hand, if the Cr content is more than 1.00%, in a hot stamped body, coarse intermetallic compounds are formed and the early fracture resistance deteriorates. For this reason, the Cr content is 1.00% or less. The Cr content is preferably 0.80% or less, 0.70% or less, 0.50% or less, or 0.40% or less.


[Mo: 0.010 to 1.000%]

Mo is an element segregating at the austenite grain boundaries at the time of heating in the hot stamping step to thereby make the strength of the former austenite grain boundaries rise and raise the early fracture resistance in the hot stamped body. If the Mo content is less than 0.0010%, the desired early fracture resistance cannot be obtained. For this reason, the Mo content is 0.0010% or more. The Mo content is preferably 0.010% or more, 0.050% or more, or 0.100% or more.


On the other hand, if the Mo content is more than 1.000%, in a hot stamped body, coarse intermetallic compounds are formed and the early fracture resistance deteriorates. For this reason, the Mo content is 1.000% or less. The Mo content is preferably 0.800% or less, 0.600% or less, or 0.400% or less.


[B: 0.0005 to 0.0200%]

B is an element improving the hardenability of steel. If the B content is less than 0.0005%, the desired strength cannot be obtained. For this reason, the B content is 0.0005% or more. The B content is preferably 0.0010% or more, 0.0015% or more, or 0.0020% or more. On the other hand, if the B content is more than 0.0200%, coarse intermetallic compounds are formed at a hot stamped body and the early fracture resistance of the hot stamped body falls. For this reason, the B content is 0.0200% or less. The B content is preferably 0.0150% or less, 0.0100% or less, 0.0080% or less, 0.0060% or less, or 0.0040% or less.


The basic chemical composition of a hot stamped body according to an embodiment of the present invention is as explained above. Furthermore, the hot stamped body may, if necessary, contain at least one of the following optional elements in place of part of the Fe of the balance. For example, the hot stamped body may contain at least one element selected from the group comprising Co: 0 to 4.00%, Ni: 0 to 3.00%, Cu: 0 to 3.00%, and V: 0 to 3.00%. Further, the hot stamped body may contain at least one element selected from the group comprising Ca: 0 to 1.000%, Mg: 0 to 1.000%, and REM: 0 to 1.000%. Further, the hot stamped body may also have at least one element selected from the group comprising Sb: 0 to 1.00%, Sn: 0 to 1.00%, and Zr: 0 to 1.00%. Further, the hot stamped body may contain As: 0 to 0.100%. Further, the hot stamped body may contain at least one element of W, Ta, Re, Os, Ir, and Tc in a total of 0 to 1.00%. Below, these optional elements will be explained in detail.


[Co: 0 to 4.00%]

Co is an element improving the strength of a hot stamped body by solid solution strengthening. The Co content may be 0.001% or more, but to reliably obtain this effect, the Co content is preferably 0.01% or more or 0.05% or more.


On the other hand, even if made to be contained in a large amount, the effect becomes saturated, therefore the Co content is preferably 4.00% or less. The Co content may also be 3.00% or less, 2.50% or less, 2.00% or less, or 1.50%% or less.


[Ni: 0 to 3.00%]

Ni has the action of dissolving in the austenite grains at the time of heating in the hot stamping step and thereby raising the strength of a hot stamped body. The Ni content may be 0.001% or more, but to reliably obtain this effect, the Ni content is preferably 0.01% or more.


On the other hand, even if made to be contained in a large amount, the effect becomes saturated, therefore the Ni content is preferably 3.00% or less. The Ni content may also be 2.50% or less, 2.00% or less, 1.50% or less, 1.00% or less, or 0.80% or less.


[Cu: 0 to 3.00%]

Cu has the action of dissolving in the austenite grains at the time of heating in the hot stamping step and thereby raising the strength of a hot stamped body. The Cu content may be 0.001% or more, but to reliably obtain this effect, the Cu content is preferably 0.01% or more or 0.05% or more.


On the other hand, even if made to be contained in a large amount, the effect becomes saturated, therefore the Cu content is preferably 3.00% or less. The Cu content may also be 2.50% or less, 2.00% or less, 1.50% or less, 1.00% or less, or 0.80% or less.


[V: 0 to 3.00%]

V has the effect of forming carbonitrides in the steel to thereby improve the strength of the hot stamped body by precipitation strengthening. The V content may be 0.001% or more, but to reliably obtain this effect, the V content is preferably 0.01% or more or 0.05% or more. On the other hand, the V content is more than 3.00%, sometimes a large amount of carbonitrides are formed in the steel and the early fracture resistance of the hot stamped body deteriorates. For this reason, the V content is preferably 3.00% or less. The V content may also be 2.50% or less, 2.00% or less, 1.50% or less, 1.00% or less, or 0.80% or less.


[Ca: 0 to 1.000%]

Ca suppresses the formation of oxides acting as starting points of fracture and contributes to improvement of the early fracture resistance. The Ca content may be 0.0001% or more, but to reliably obtain this effect, the Ca content is preferably 0.0005% or more or 0.001% or more. On the other hand, even if made to be contained in a large amount, the effect becomes saturated, therefore the Ca content is preferably 1.000% or less. The Ca content may also be 0.100% or less, 0.050% or less, 0.010% or less, 0.005% or less, or 0.002% or less.


[Mg: 0 to 1.000%]

Mg forms oxides and sulfides in the molten steel to suppress the formation of coarse MnS, causes dispersion of large number of fine oxides, and contributes to increased fineness of the metallographic structure and improvement of the early fracture resistance. The Mg content may be 0.0001% or more, but to reliably obtain this effect, the Mg content is preferably 0.0005% or more or 0.001% or more.


On the other hand, even if made to be contained in a large amount, the effect becomes saturated, therefore the Mg content is preferably 1.000% or less. The Mg content may also be 0.100% or less, 0.050% or less, 0.010% or less, 0.005% or less, or 0.002% or less.


[REM: 0 to 1.000%]

REM suppresses the formation of oxides acting as starting points of fracture and contributes to improvement of the early fracture resistance. The REM content may be 0.0001% or more, but to reliably obtain this effect, the REM content is preferably 0.0005% or more or 0.001% or more.


On the other hand, even if made to be contained in a large amount, the effect becomes saturated, therefore the REM content is preferably 1.000% or less. The REM content may be 0.100% or less, 0.050% or less, 0.010% or less, 0.005% or less, or 0.002% or less.


In the present embodiment, “REM” is the general term for the 17 elements of atomic number 21 scandium (Sc), atomic number 39 yttrium (Y), and the lanthanoids of atomic number 57 lanthanum (La) to atomic number 71 lutetium (Lu). The REM content is the total content of these elements.


[Sb: 0 to 1.00%]

Sb suppresses the formation of oxides acting as starting points of fracture and contributes to improvement of the early fracture resistance. To reliably obtain this effect, the Sb content is preferably 0.001% or more.


On the other hand, even if made to be contained in a large amount, the effect becomes saturated, therefore the Sb content is preferably 1.00% or less. The Sb content may also be 0.80% or less, 0.50% or less, 0.20% or less, or 0.10% or less.


[Sn: 0 to 1.00%]

Sn suppresses the formation of oxides which act as starting points of fracture and contributes to the improvement of the early fracture resistance. To reliably obtain this effect, the Sn content is preferably 0.001% or more.


On the other hand, even if contained in a large amount, the above effect is saturated, therefore the Sn content is preferably 1.00% or less. The Sn content may also be 0.80% or less, 0.50% or less, 0.20% or less, or 0.10% or less.


[Zr: 0 to 1.00%]

Zr suppresses the formation of oxides which act as starting points of fracture and contributes to the improvement of the early fracture resistance. To reliably obtain this effect, the Zr content is preferably 0.001% or more.


On the other hand, even if contained in a large amount, the above effect is saturated, therefore the Zr content is preferably 1.00% or less. The Zr content may also be 0.80% or less, 0.50% or less, 0.20% or less, or 0.10% or less.


[As: 0 to 0.100%]

As causes the temperature for forming an austenite single phase to fall and thereby refines the former austenite grains and contributes to improvement of the early fracture resistance. If reliably obtaining this effect, the As content is preferably 0.001% or more. On the other hand, even if contained in a large amount, the above effect is saturated, therefore the As content is preferably 0.100% or less. The As content may be 0.080% or less, 0.050% or less, 0.020% or less, or 0.010% or less.


[At Least One of W, Ta, Re, Os, Ir, and Tc: 0 to 1.00% in Total]

W, Ta, Re, Os, Ir, and Tc are elements segregating at the former austenite grain boundaries in the same way as Mo to raise the strength of the grain boundaries. The total of the content of the at least one element of W, Ta, Re, Os, Ir, and Tc may be 0%, but to obtain such an effect, is preferably 0.001% or more. The total of the content of the at least one element of W, Ta, Re, Os, Ir, and Tc is preferably 0.01% or more, more preferably 0.10% or more, still more preferably 0.15% or more. On the other hand, even if excessively containing these elements, the effect becomes saturated. Therefore, including these elements in the steel material more than necessary is liable to invite a rise in the production costs. Therefore, the total of the contents of the at least one of W, Ta, Re, Os, Ir, and Tc is preferably 1.00% or less and may also be 0.80% or less, 0.60% or less, or 0.40% or less.


The chemical composition of the above hot stamped body may be measured by a general analysis method. For example, it may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). C and S may be measured using the combustion-infrared absorption method, N may be measured using the inert gas melting-thermal conductivity method, and O may be measured by the inert gas melting-nondispersion type infrared absorption method.


If the surface of the hot stamped body is provided with a plating layer, mechanical polishing may be used to remove the plating layer, then the chemical composition may be analyzed.


In a hot stamped body according to an embodiment of the present invention, the balance besides the above elements is comprised of Fe and impurities. The “impurities” are constituents, etc., entering due to various factors in the production process starting from materials such as ore and scrap, etc., when industrially producing hot stamped bodies.


[At Least One of Martensite, Bainite, and Tempered Martensite: 90% or More in Total]

The microstructure of the hot stamped body preferably includes, by area ratio, at least one of martensite, bainite, and tempered martensite in a total of 90% or more. The remaining structure is not particularly limited, but may also be comprised of at least one of 10% or less of ferrite, retained austenite, and pearlite. Martensite, bainite, and tempered martensite are extremely hard structures, therefore by the hot stamped body containing at least one of martensite, bainite, and tempered martensite in an area ratio of a total of 90% or more, a high tensile strength, specifically a tensile strength of 2200 MPa or more, can be achieved. The total of the area ratios of the least one of martensite, bainite, and tempered martensite is preferably 94% or more, more preferably 97% or more. The upper limit of the total of the area ratios of the at least one of martensite, bainite, and tempered martensite is not particularly prescribed and may also be 100%.


The microstructure in a hot stamped body is identified and the area ratios are calculated in the following way.


A sample is cut out from any position 50 mm or more away from the ends of a hot stamped body (if not possible to obtain a sample from this position, a position away from the ends) so as to enable a cross-section of thickness vertical to the surface to be examined. The size of the sample depends on the measurement device, but is a size enabling 10 mm or so to be examined in a direction vertical to the thickness direction.


The cross-section of the sample is polished using #600 to #1500 silicon carbide paper, then a liquid comprised of particle size 1 to 6 μm diamond powder dispersed in alcohol or other diluent or pure water is used to polish the surface to a mirror finish. Next, the examined surface is finished by electrolytic polishing. An area of a length 50 μm and 50 μm in the sheet thickness direction centered at a ¼ depth position of the sheet thickness at any position in the long direction of the sample cross-section is measured at 0.1 μm measurement intervals by electron backscatter diffraction to obtain crystal orientation information. For the measurement, an EBSD analysis apparatus comprised of a thermal field emission type scan electron microscope and EBSD detector may be used. For example, an EBSD analysis apparatus comprised of a JSM-7001F made by JEOL and a DVC5 model detector made by TSL may be used. At that time, the vacuum degree inside the EBSD analysis apparatus may be 9.6×10−5 Pa or less, the acceleration voltage may be 15 kV, and the beam current level may be made 13.


The obtained crystal orientation information is analyzed using the “Phase Map” function included in the software “OIM Analysis®” attached to the EBSD analysis apparatus. Structures with fcc crystal structures are judged to be retained austenite. The area ratio of the retained austenite is obtained by calculating the area ratio of this retained austenite. Next, regions with bcc crystal structures are judged to be bainite, tempered martensite, martensite, and ferrite. In these regions, using the “Grain Average Misorientation” function included in the software “OIM Analysis®” attached to the EBSD analysis apparatus, under conditions deeming a 5° grain boundary as a crystal grain boundary, a region having a “Grain Average Misorientation” of 0.5° or less is extracted as ferrite. The area ratio of ferrite is obtained by calculating the area ratio of the extracted ferrite.


Next, the remaining region (region with “Grain Average Misorientation” of more than 0.5°) is made the area ratio of the total of martensite, tempered martensite, and bainite. The area ratio of pearlite is calculated by subtracting from 100% the area ratio of the retained austenite and the area ratios of the bainite, tempered martensite, martensite, and ferrite.


[Standard Deviation at Grain Size Distribution of Former Austenite Grains: 5.0 μm or Less]

In an embodiment of the present invention, the standard deviation at the grain size distribution of the former austenite grains is 5.0 μm or less. If the variation of the former austenite grain size is large, sometimes a rise in the local hardness is invited and early fracture is caused. According to an embodiment of the present invention, by controlling the standard deviation at the grain size distribution of the former austenite grains to 5.0 μm or less to reduce the variation in former austenite grain size, it is possible to reliably suppress the rise in local hardness acting as the starting points of early fracture. Preferably, the standard deviation is 4.0 μm or less, 3.0 μm or less, or 2.5 μm or less. From the viewpoint of suppressing the rise in local hardness acting as the starting points of early fracture, the smaller the standard deviation at the grain size distribution of the former austenite grains, the better. For this reason, the lower limit does not particularly have to be prescribed. For example, the standard deviation at the grain size distribution of the former austenite grains may be 0.1 μm or more and may be 0.5 μm or more, 1.0 μm or more, 1.2 μm or more, 1.5 μm or more, or 1.7 μm or more.


In an embodiment of the present invention, as explained above, it is important to control the standard deviation at the grain size distribution of the former austenite grains to 5.0 μm or less to reduce the variation of the former austenite grain size. For this reason, it is not necessary to control the former austenite grain size itself to a specific range. Therefore, the former austenite grain size is not particularly limited, but for example may be 10 μm or less. The “former austenite grain size” means the average crystal grain size of former austenite grains in the measurement of the standard deviation explained below.


The standard deviation at the grain size distribution of the former austenite grains can be obtained by the following method.


A sample is cut out from any position 50 mm or more away from the ends of the hot stamped body (if not possible to obtain a sample from this position, a position away from the ends) so as to enable a cross-section of thickness vertical to the surface to be examined. The size of the sample depends on the measurement device, but is a size enabling 10 mm or so to be examined in a direction vertical to the thickness direction.


The cross-section of the sample is polished using #600 to #1500 silicon carbide paper, then a liquid comprised of particle size 1 to 6 μm diamond powder dispersed in alcohol or other diluent or pure water is used to polish the surface to a mirror finish. Next, the examined surface is finished by electrolytic polishing. An area of a length 50 μm and 50 μm in the sheet thickness direction centered at a ¼ depth position of the sheet thickness at any position in the long direction of the sample cross-section is measured at 0.1 μm measurement intervals by electron backscatter diffraction to obtain crystal orientation information. For the measurement, an EBSD analysis apparatus comprised of a thermal field emission type scan electron microscope and EBSD detector may be used. For example, an EBSD analysis apparatus comprised of a JSM-7001F made by JEOL and a DVC5 model detector made by TSL may be used. At that time, the vacuum degree inside the EBSD analysis apparatus may be 9.6×10−5 Pa or less, the acceleration voltage may be 15 kV, and the beam current level may be made 13.


The obtained crystal orientation information is used to calculate the crystal orientation of the former austenite grains from the relationship of crystal orientation between general former austenite grains and crystal grains having bcc structures after transformation. This is used to calculate the average crystal grain size of the former austenite grains.


For the method of calculating the crystal orientations of the former austenite grains, the following method is used. First, a crystal orientation map of the former austenite grains is prepared by the method described in Acta Materialia, 58(2010), 6393-6403. The average value between the shortest diameter and the longest diameter of one former austenite grain included in the examined field is calculated. That average value is made the size of the former austenite grain. The above operation is performed for all of the former austenite grains except for the former austenite grains where the crystal grains as a whole are not included in the captured field, such as at the end parts of the captured field, to find the sizes of all of the former austenite grains in the captured field. From the obtained sizes of all former austenite grains, the average size is calculated whereupon the standard deviation at the grain size distribution of the former austenite grains is obtained.


[Total Amount of Segregation of at Least One of Mo, W, Ta, Re, Os, Ir, and Tc at Former Austenite Grain Boundaries: 0.10 Atm % or More]

In an embodiment of the present invention, the total amount of segregation of at least one of Mo, W, Ta, Re, Os, Ir, and Tc at the former austenite grain boundaries is 0.10 atm % or more. By making at least one of Mo, W, Ta, Re, Os, Ir, and Tc segregate at the former austenite grain boundaries to give a total amount of segregation of 0.10 atm % or more, it is possible to strengthen the former austenite grain boundaries at the microstructure of the hot stamped body. It is possible to not only suppress variation of the former austenite grain size to reduce the regions able to act as the starting points of early fracture, it is also possible to suppress the progression of cracks when they occur and thereby prevent early fracture. According to an embodiment of the present invention, by combining the suppression of the rise of local hardness and grain boundary strengthening by grain boundary segregation of such specific elements, it is possible to reduce the regions able to act as the starting points of early fracture and suppress the progression of cracks along the grain boundary even in the case of occurrence of cracks at the hot stamped bodies. For this reason, despite having a high tensile strength, for example, a high tensile strength of 2200 MPa or more, it is possible to suppress early fracture. The total amount of segregation of the at least one element of Mo, W, Ta, Re, Os, Ir, and Tc at the former austenite grain boundaries is preferably 0.13 atm % or more, more preferably 0.15 atm % or more, still more preferably 0.18 atm % or more, or 0.20 atm % or more. From the viewpoint of grain boundary strengthening, the higher the total amount of segregation of the at least one of Mo, W, Ta, Re, Os, Ir, and Tc at the former austenite grain boundaries, the more preferable. For this reason, the upper limit of the above total content is not particularly limited, but for example the total amount of segregation may be 3.00 atm % or less and may also be 2.00 atm % or less, 1.50 atm % or less, 1.00 atm % or less, 0.80 atm % or less, 0.60 atm % or less, 0.40 atm % or less, or 0.30 atm % or less.


In one embodiment, the amount of segregation of Mo at the former austenite grain boundaries may be 0.10 atm % or more, 0.13 atm % or more, 0.15 atm % or more, 0.18 atm % or more, or 0.20 atm % or more. Similarly, the amount of segregation of Mo at the former austenite grain boundaries may be 3.00 atm % or less, 2.00 atm % or less, 1.50 atm % or less, 1.00 atm % or less, 0.80 atm % or less, 0.60 atm % or less, 0.40 atm % or less, or 0.30 atm % or less. In another embodiment, the total amount of segregation of the amount of segregation of Mo and the amount of segregation of at least one of W, Ta, Re, Os, Ir and Tc at the former austenite grain boundaries may be 0.10 atm % or more, 0.13 atm % or more, 0.15 atm % or more, 0.18 atm % or more, or 0.20 atm % or more and/or may be 3.00 atm % or less, 2.00 atm % or less, 1.50 atm % or less, 1.00 atm % or less, 0.80 atm % or less, 0.60 atm % or less, 0.40 atm % or less, or 0.30 atm % or less.


The total amount of segregation of the at least one of Mo, W, Ta, Re, Os, Ir, and Tc at the former austenite grain boundaries is determined as follows: First, a test piece is taken from a position 50 mm or more away from the end faces of the hot stamped body. At that time, the front and back surfaces of the test piece are finished by machine polishing. Further, if there is a plating layer at the steel sheet surface, the plating layer is removed and then the front and back surfaces of the test piece of the steel sheet are finished by machine polishing. At that time, the sheet thickness is not particularly designated if the ¼ depth position of the sheet thickness can be measured, but the same amounts of the front and back surfaces of the test piece may also be removed by machine grinding so that the sheet thickness becomes 1.2 mm. The test piece is worked to a length of 20 mm and a width of 3.2 mm and formed with a V-notch of an angle of 450 at a position of a length of 11.5 mm. The test piece is dipped in a 20%-ammonium thiocyanate solution. At this time, the dipping time is not particularly limited. It is sufficient that the former austenite grain boundaries are exposed when set inside an Auger electron emission spectrometer and fracturing. For example, it may be 48 hours. The front and back surfaces of the test piece are galvanized within 10 minutes after ending the dipping. After plating, the test piece is quickly subjected to Auger electron emission spectrometry and fractured. At that time, the time after plating to fracture of the test piece is preferably within 1.5 hours, more preferably within 0.5 hour. The test piece is set within the Auger electron emission spectrometer and fractures from the notch portion of the test piece to expose the former austenite grain boundaries. At this time, the apparatus may be an Auger electron emission spectrometer. The model is not particularly limited, but a PHI680 made by ULVAC-PHI may be used. As the measurement conditions, the accelerating voltage may be 10 keV and the beam current may be 10 nA. An electron beam is fired at the exposed former austenite grain boundaries by a 1 to 30 kV accelerating voltage and the atm % of specific elements at the grain boundaries (specifically at least one of Mo, W, Ta, Re, Os, Ir, and Tc) are measured. The measurement is performed at the former austenite grain boundaries at 10 locations at a position of ¼ depth of the sheet thickness from the surface. To prevent contamination of the grain boundaries, quickly ending the measurement after fracture is preferable. The measurement should be ended within 30 minutes. The average value of the atm % of the obtained specific elements is calculated and determined as the total value of segregation of the at least one of Mo, W, Ta, Re, Os, Ir, and Tc.


[Plating]

The hot stamped body according to the present embodiment may having a plating layer at its surface. By having a plating layer at the surface, after the hot stamping, the corrosion resistance can be improved. As the plating layer, an aluminum plating layer, aluminum-zinc plating layer, aluminum-silicon plating layer, hot dip galvanized layer, electrogalvanized layer, hot dip galvannealed layer, zinc-nickel plating layer, aluminum-magnesium-zinc based plating layer, etc., may be illustrated.


[Mechanical Properties]

According to the hot stamped body of an embodiment of the present invention, excellent mechanical properties, for example, a tensile strength of 2200 MPa or more, can be achieved. The tensile strength is preferably 2300 MPa or more, more preferably 2400 MPa or more, most preferably 2500 MPa or more. The upper limit is not particularly prescribed, but, for example, the tensile strength may be 3500 MPa or less, 3300 MPa or less, or 3000 MPa or less. The tensile strength of the hot stamped body is measured by preparing a No. 5 test piece and conducting a tensile test based on JIS Z 2241: 2011. At this time, for the purpose of removing roughness at the surface of the test piece, the surface layer parts of the front and back surfaces may be removed by machining or chemical polishing.


The hot stamped body according to an embodiment of the present invention, despite as explained above having, for example, a high tensile strength of 2200 MPa or more, can reliably suppress early fracture, and therefore is extremely useful for use as, for example, a frame member or bumper of an automobile or other structural member and reinforcing member where strength is required.


<Method of Production of Hot Stamped Body>

Next, a preferable method of production of the hot stamped body according to an embodiment of the present invention will be explained. The following explanation is intended to illustrate the characteristic method for producing the hot stamped body according to the embodiment of the present invention and is not intended to limit the hot stamped body to one produced by the method of production such as explained below.


In the method of production of the hot stamped body according to an embodiment of the present invention, in particular controlling the finish rolling conditions and preheating conditions is effective. Specifically, the method of production of the hot stamped body according to an embodiment of the present invention comprises:

    • hot rolling a slab having a chemical composition explained above relating to the hot stamped body, wherein the hot rolling includes heating the slab, then finish rolling it, and a rolling reduction of a final stage of the finish rolling is 40% or more (hot rolling step),
    • coiling the obtained steel sheet at a temperature of 750° C. or less (coiling step),
    • preheating the steel sheet to a temperature of more than 1200° C., then cooling it by an average cooling speed of 10° C./s or more down to less than 350° C. (preheating step), and
    • hot stamping the steel sheet, wherein the hot stamping includes heating the steel sheet to a temperature region of 800 to 1000° C. and then holding it there for 60 to 600 seconds (hot stamping step). Below, the steps will be explained in detail.


[Hot Rolling Step]
[Heating of Slab]

First, a slab having the chemical composition explained above in relation to the hot stamped body is heated. The method of casting the molten steel is not particularly limited. The slab may be produced by continuous casting, ingot forming, or thin slab casting. The heating before the hot rolling is not particularly limited, but the slab used contains a relatively large amount of alloying elements for obtaining a high strength steel sheet. For this reason, the slab may also be heated before being sent on for hot rolling. For the purpose of making the alloying elements dissolve in the slab, the heating temperature may be 1100° C. or more.


[Rough Rolling]

In the present method, for example, the heated slab may be adjusted in thickness, etc., by rough rolling before finish rolling. The rough rolling need only secure the desired sheet bar dimensions. The conditions are not particularly limited.


[Finish Rolling]

The heated slab or the slab additionally rough rolled as needed is next finish rolled. In the present method, it is important that the rolling reduction of the final stage in the finish rolling be 40% or more. By making the rolling reduction of the final stage in the finish rolling 40% or more, the pearlite is evenly dispersed in the hot rolled steel sheet after rolling. This pearlite becomes starting points of austenite at the time of heating in the preheating step explained later in detail. For this reason, if the pearlite is evenly dispersed, at the hot stamped body, the standard deviation at the grain size distribution of the former austenite grains becomes smaller. As a result, the early fracture resistance of the hot stamped body can be improved. More preferably, the rolling reduction of the final stage in the finish rolling is 43% or more or 50% or more.


In a hot stamped body, for the purpose of securing a high hardenability, the amount of Mn added tends to be raised. For example, 0.50% or more of Mn is added. In relation to this, in research by the inventors, it was learned that with such a high Mn content, pearlite tends to be arranged relatively connected in a hot rolled steel sheet, and therefore compared with the case of low Mn content, it is extremely difficult to evenly disperse pearlite in the microstructure of a hot rolled steel sheet. Therefore, if finish rolling a steel material with such a high Mn content by a relatively low rolling reduction of less than 40%, it is believed that the presence of a part of connected pearlite at the microstructure becomes particularly prominent.


However, by making the rolling reduction of the final stage of finish rolling 40% or more, despite a high Mn content of 0.50% or more, it is possible to arrange pearlite sufficiently dispersed at the microstructure of the hot rolled steel sheet after the hot rolling step and coiling step. Therefore, in the microstructure of the hot rolled steel sheet rolled in this way, either there are no parts where pearlite is present connected or they are sufficiently reduced, therefore in the structure after the preheating step and hot stamping step, it is possible to reduce variation in the former austenite grain size. The upper limit of the rolling reduction in the final stage of the finish rolling is not particularly prescribed. Even in a steel material having such a high Mn content, in particular by suitable controlling the rolling reduction in the final stage of the finish rolling, it is possible to arrange the pearlite sufficiently dispersed in the microstructure of the hot rolled steel sheet and in turn possible to reduce the variation in the former austenite grain size and suppress a local rise in hardness.


The dominating factors in the morphology of this microstructure are the rolling reduction in the final stage of the finish rolling and the heating in the preheating step. The morphology is not particularly greatly affected by for example the heating in the hot stamping step after the preheating step, the optional cold rolling before the preheating step, the subsequent annealing, etc. This is because by forming the hot rolled steel sheet by a rolling reduction in the final stage of the finish rolling of 40% or more, even if the hot rolled steel sheet is cold rolled and then annealed at a relatively high temperature, there is a high tendency for formation of a microstructure where the carbides, grain boundaries, and retained austenite forming starting points of austenite after cooling are arranged dispersed. In general, if the rolling reduction in the final stage of the finish rolling is too high, fracture of the steel sheet at the time of rolling becomes a concern. Further, the preheating step explained in detail later is performed at an extremely high temperature compared with the hot stamping step, more specifically is performed at a temperature of more than 1200° C., and therefore generally this becomes a factor behind increased costs. Therefore, in particular the technical idea that by making the rolling reduction in the final stage of the finish rolling 40% or more and further by combining more than 1200° C. preheating before the stamping step, the variation in former austenite grain size is reduced and a local rise in hardness is suppressed has not existed up to now and was first discovered this time by the inventors.


[Coiling Step]

Next, the finish rolled hot rolled steel sheet is coiled at a temperature of 750° C. or less. By making the coiling temperature 750° C. or less, it is possible to keep the ferrite from being arranged connected at the hot rolled steel sheet after rolling and the pearlite evenly disperses. This pearlite acts as starting points for austenite at the time of heating in the preheating step. For this reason, if the pearlite evenly disperses, in the hot stamped body, the standard deviation at the grain size distribution of the former austenite grains becomes smaller. As a result, the early fracture resistance of the hot stamped body can be improved.


Further, for the purpose of softening the hot rolled steel sheet, the coil after coiling may be heat treated to soften it. The method of heat treatment for softening is not particularly limited and may be made general conditions.


[Pickling Step]

After the coiling step and before the cold rolling step, optionally, pickling may be performed for removing the oxide scale formed on the surface of the hot rolled steel sheet. The pickling may be formed under conditions suitable for removing oxide scale. It may be performed at one time or may be performed divided into several times so as to reliably remove the oxide scale.


[Cold Rolling Step]

After the coiling step, the steel sheet may be optionally cold rolled. The cold rolling is not particularly limited and may be performed under any suitable conditions. For example, the rolling reduction of the cold rolling may be 30 to 80%. The number of rolling passes and the rolling reduction per pass are not particularly limited and may be suitable set so that the rolling reduction of the cold rolling as a whole becomes the above range.


[Annealing Step]

For example, after the cold rolling step, annealing may optionally be performed to adjust the microstructure and/or properties. The heating temperature of the annealing step is not particularly limited, but may for example be 800° C. or less.


[Plating Step]

For the purpose of improving the corrosion resistance, etc., the surface of the hot rolled steel sheet or cold rolled steel sheet may also be plated. The plating may be hot dip coating, alloyed hot dip coating, electroplating, or other treatment. For example, as the plating, the steel sheet may be hot dip galvanized. After hot dip galvanization, alloying treatment may be performed. As the plating layer, an aluminum plating layer, aluminum-zinc plating layer, aluminum-silicon plating layer, hot dip galvanized layer, electrogalvanized layer, hot dip galvannealed layer, zinc-nickel plating layer, aluminum-magnesium-zinc based plating layer, etc., may be illustrated. The specific conditions of the plating and alloying treatment are not particularly limited and may be any suitable conditions known to persons skilled in the art.


[Temper Rolling Step]

To correct the shape of the steel sheet or adjust the surface roughness, etc., it is possible, for example, to temper roll the steel sheet after the annealing step, or after the plating step.


[Preheating Step]

In the present method, the obtained hot rolled steel sheet or cold rolled steel sheet is preheated to a temperature of more than 1200° C. before the hot stamping step, then is cooled by an average cooling speed of 10° C./s or more down to less than 350° C. In the hot stamped body according to an embodiment of the present invention, it is extremely important to make specific grain boundary strengthening elements, more specifically at least one type of Mo, W, Ta, Re, Os, Ir, and Tc, segregate at the former austenite grain boundaries in predetermined amounts. However, in the hot rolled steel sheet after the hot rolling step or in the cold rolled steel sheet after the optional cold rolling step or annealing step, these grain boundary strengthening elements are present as carbides and/or intermetallic compounds. Therefore, even if subjecting such steel sheet to the hot stamping step for usual heating and shaping without the preheating step, these grain boundary strengthening elements cannot be made to sufficiently segregate at the former austenite grain boundaries. In this case, it is no longer possible to sufficiently manifest the grain boundary strengthening action based on the grain boundary segregation of these elements. For this reason, in this method, it is extremely important to preheat the steel sheet before the hot stamping step to a relatively high temperature of more than 1200° C. to thereby make the carbides and/or intermetallic compounds of the grain boundary strengthening elements sufficiently melt and make the grain boundary strengthening elements dissolve in the steel sheet. The upper limit of the heating temperature of the preheating is not particularly prescribed, but the heating temperature may for example be 1400° C. or less. Further, after heating, the steel sheet is cooled by an average cooling speed of 10° C./s or more down to less than 350° C. By cooling by an average cooling speed of 10° C./s or more down to less than 350° C., it is possible to keep the grain boundary strengthening elements dissolved in the steel sheet from precipitating as compounds. The upper limit of the average cooling speed is not particularly prescribed, but for example the average cooling speed may be 3000° C./s or less, 1500° C./s or less, or 1200° C./s or less. The upper limit of the cooling speed is not particularly prescribed. The cooling method is also not particularly limited and may be die cooling, water cooling, oil cooling, or gas cooling. In particular, even with an extremely high average cooling speed, cooling can be relatively easily realized by utilizing die cooling or water cooled die cooling.


[Hot Stamping Step]

Finally, the preheated steel sheet is hot stamped in the hot stamping step to produce a hot stamped body having the desired chemical composition and microstructure. In particular, the grain boundary strengthening elements dissolved in the steel sheet in the previous preheating step disperse to the austenite grain boundaries and segregate there at the time of heating in the hot stamping step. For this reason, due to the following shaping and cooling operation, it is possible to achieve the desired total amount of segregation of the grain boundary strengthening elements at the former austenite grain boundaries after the martensite transformation. The dispersion and segregation of the grain boundary strengthening elements can be achieved by the usual heating, shaping, and cooling operations in the hot stamping step. Therefore, from the viewpoint of the dispersion and segregation of the grain boundary strengthening elements, these operations may be performed under suitable conditions known to persons skilled in the art. However, in particular from the viewpoint of obtaining the desired area ratio of the hard structures and former austenite grain size distribution, the steel sheet for hot stamping use is preferably heated to a temperature region of 800° C. to 1000° C. and held at that temperature region for 60 to 600 seconds. If the heating temperature is less than 800° C., sometimes the austenization becomes insufficient and the area ratio of the desired hard structures (at least one of martensite, bainite, and tempered martensite) and former austenite grain size distribution cannot be obtained and the tensile strength and early fracture resistance deteriorate. On the other hand, if the heating temperature is more than 1000° C., sometimes the austenite grains excessively grow, the desired former austenite grain size distribution cannot be obtained, and the early fracture resistance deteriorates. If the holding time is less than 60 seconds, sometimes the austenization becomes insufficient, the desired former austenite grain size distribution cannot be obtained, and the early fracture resistance deteriorates. If the holding time is more than 600 seconds, sometimes the austenite grains excessively grow, the desired former austenite grain size distribution cannot be obtained, and the early fracture resistance deteriorates.


The heating atmosphere is not particularly limited. Usual conditions are enough. For example, it may be an air atmosphere, a gas combustion atmosphere controlled in ratio of air and fuel, and a nitrogen atmosphere. The dew points may also be controlled in these gases.


The steel sheet is held at a temperature region of 800° C. to 1000° C., then hot stamped. After hot stamping, it may be cooled down to a temperature region of 250° C. or less by an average cooling speed of 20° C./s or more.


As the heating method, for example, furnace heating by an electric furnace, gas furnace, etc., flame heating, ohmic heating, high frequency heating, induction heating, etc., may be mentioned.


The hot stamped body according to the present embodiment is obtained by the above method. After hot stamping, it may be tempered at 130 to 600° C. or coated, then bake hardened (BH). Further, part of the hot stamped body may be tempered by being irradiated by a laser, etc., to partially form softened regions.


Below, examples will be used to explain the present invention in more detail, but the present invention is not limited to these examples in any way.


Examples

In the following examples, hot stamped bodies according to an embodiment of the present invention were produced under various conditions and the obtained tensile strengths and early fracture resistances of the hot stamped bodies were investigated.


First, molten steels having the chemical compositions shown in Table 1 were cast by continuous casting to produce slabs. The balances besides the constituents shown in Table 1 were Fe and impurities. These slabs were heated to a 1100° C. or more temperature and rough rolled under predetermined conditions, then were finish rolled and coiled under the conditions shown in Table 2. After the coiling, some of the hot rolled steel sheets were subjected to predetermined heat treatment for softening. Next, the obtained hot rolled steel sheets were pickled to remove the oxide scale cold rolled by 30 to 80% predetermined rolling reductions. (In Invention Example 337, cold rolling was not performed.) Next, some of the steel sheets were subjected to annealing, plating, or temper rolling under predetermined conditions. Next, the obtained steel sheets were preheated under the conditions shown in Table 2, then were cooled and finally were similarly hot stamped under the conditions shown in Table 2. The heating atmosphere and heating method in the hot stamping step, except when clearly indicated otherwise, were a gas combustion atmosphere (air-fuel ratio 0.85) and furnace heating. After the hot stamping, some of the hot stamped bodies were tempered or partially softened.










TABLE 1








Chemical composition (mass %), bal.: Fe and impurities






















Steel
C
Si
Mn
P
S
N
O
Al
Nb
Ti
Cr
Mo
B
Co
Ni





A1

0.37

0.44
1.32
0.007
0.0006
0.0024
0.0032
0.042
0.042
0.046
0.27
0.220
0.0019




A2
0.41
0.44
1.23
0.008
0.0007
0.0023
0.0014
0.041
0.040
0.027
0.33
0.149
0.0028




A3
0.43
0.45
1.32
0.006
0.0005
0.0032
0.0033
0.042
0.040
0.027
0.27
0.227
0.0023




A4
0.44
0.41
1.22
0.006
0.0016
0.0019
0.0033
0.039
0.034
0.040
0.25
0.217
0.0028




A5
0.45
0.44
1.34
0.009
0.0015
0.0027
0.0034
0.040
0.026
0.045
0.30
0.190
0.0024




A6
0.46
0.42
1.22
0.005
0.0009
0.0025
0.0022
0.049
0.031
0.031
0.23
0.174
0.0020




A7
0.47
0.44
1.24
0.007
0.0018
0.0030
0.0017
0.046
0.027
0.035
0.27
0.187
0.0028




A8
0.48
0.45
1.22
0.008
0.0015
0.0034
0.0035
0.040
0.024
0.025
0.31
0.150
0.0028




A9
0.53
0.44
1.21
0.006
0.0003
0.0024
0.0022
0.044
0.042
0.030
0.29
0.174
0.0031




A10
0.57
0.44
1.35
0.008
0.0008
0.0032
0.0021
0.039
0.018
0.040
0.31
0.196
0.0029




A11
0.58
0.41
1.29
0.005
0.0015
0.0021
0.0023
0.049
0.036
0.034
0.30
0.172
0.0019




A12
0.62
0.44
1.23
0.005
0.0012
0.0022
0.0025
0.043
0.028
0.041
0.27
0.178
0.0027




A13
0.67
0.40
1.34
0.007
0.0007
0.0029
0.0028
0.044
0.032
0.044
0.30
0.168
0.0025




A14

0.73

0.41
1.28
0.007
0.0019
0.0028
0.0018
0.044
0.020
0.038
0.25
0.181
0.0018




B1
0.47

0.006

1.30
0.005
0.0019
0.0032
0.0027
0.045
0.034
0.032
0.27
0.223
0.0025




B2
0.46
0.012
1.24
0.005
0.0019
0.0030
0.0025
0.041
0.035
0.045
0.28
0.214
0.0032




B3
0.45
0.04
1.31
0.009
0.0019
0.0023
0.0026
0.045
0.040
0.027
0.31
0.144
0.0018




B4
0.45
0.07
1.28
0.007
0.0018
0.0034
0.0024
0.046
0.028
0.042
0.31
0.177
0.0028




B5
0.47
0.12
1.26
0.004
0.0021
0.0024
0.0015
0.041
0.036
0.031
0.34
0.198
0.0018




B6
0.46
0.22
1.24
0.004
0.0016
0.0021
0.0023
0.040
0.023
0.044
0.24
0.199
0.0023




B7
0.47
0.26
1.33
0.008
0.0007
0.0022
0.0032
0.041
0.026
0.031
0.26
0.140
0.0032




B8
0.45
0.34
1.26
0.007
0.0016
0.0021
0.0025
0.045
0.029
0.033
0.28
0.179
0.0030




B9
0.46
0.41
1.35
0.009
0.0003
0.0019
0.0035
0.046
0.018
0.046
0.23
0.172
0.0025




B10
0.46
0.64
1.34
0.005
0.0017
0.0030
0.0018
0.049
0.032
0.034
0.32
0.179
0.0024




B11
0.46
0.83
1.25
0.004
0.0011
0.0032
0.0030
0.039
0.024
0.040
0.24
0.160
0.0019




B12
0.45
1.72
1.32
0.006
0.0020
0.0031
0.0019
0.040
0.019
0.034
0.28
0.149
0.0020




B13
0.46
2.37
1.22
0.005
0.0016
0.0023
0.0033
0.040
0.023
0.045
0.27
0.188
0.0028




B14
0.47
2.81
1.25
0.007
0.0006
0.0024
0.0026
0.042
0.031
0.036
0.25
0.145
0.0026




B15
0.45

3.20

1.24
0.009
0.0018
0.0033
0.0028
0.044
0.030
0.044
0.24
0.131
0.0033




C1
0.45
0.42

0.45

0.008
0.0017
0.0033
0.0026
0.045
0.024
0.046
0.33
0.162
0.0020




C2
0.45
0.40
0.52
0.005
0.0019
0.0030
0.0021
0.042
0.031
0.040
0.30
0.210
0.0033




C3
0.46
0.44
0.64
0.009
0.0003
0.0024
0.0016
0.044
0.034
0.031
0.25
0.224
0.0024




C4
0.46
0.41
0.81
0.007
0.0008
0.0029
0.0018
0.050
0.031
0.045
0.31
0.149
0.0030




C5
0.47
0.43
1.21
0.004
0.0008
0.0028
0.0018
0.050
0.019
0.044
0.25
0.176
0.0030




C6
0.47
0.40
1.32
0.006
0.0016
0.0023
0.0033
0.045
0.039
0.044
0.27
0.167
0.0032




C7
0.45
0.45
1.59
0.005
0.0016
0.0023
0.0016
0.049
0.018
0.031
0.26
0.204
0.0018




C8
0.47
0.40
1.82
0.009
0.0018
0.0024
0.0022
0.040
0.018
0.026
0.26
0.161
0.0033




C9
0.47
0.45
2.1
0.008
0.0022
0.0027
0.0027
0.043
0.028
0.044
0.31
0.210
0.0020




C10
0.47
0.45
2.29
0.008
0.0022
0.0027
0.0023
0.047
0.030
0.029
0.31
0.145
0.0032




C11
0.45
0.44
2.42
0.007
0.0017
0.0019
0.0019
0.047
0.030
0.032
0.33
0.198
0.0028




C12
0.45
0.44
2.67
0.007
0.0011
0.0019
0.0017
0.041
0.026
0.030
0.33
0.213
0.0028




C13
0.47
0.45
2.91
0.006
0.0017
0.0026
0.0035
0.050
0.040
0.043
0.29
0.173
0.0018




C14
0.45
0.43

3.12

0.004
0.0004
0.0022
0.0019
0.046
0.030
0.035
0.25
0.186
0.0029




D1
0.47
0.42
1.23
0.0006
0.0008
0.0034
0.0034
0.050
0.026
0.036
0.30
0.194
0.0022




D2
0.47
0.42
1.25
0.004
0.0013
0.0029
0.0022
0.050
0.036
0.030
0.33
0.134
0.0020




D3
0.46
0.45
1.25
0.006
0.0020
0.0027
0.0016
0.050
0.026
0.044
0.30
0.229
0.0021




D4
0.46
0.45
1.35
0.008
0.0005
0.0031
0.0014
0.046
0.036
0.031
0.24
0.130
0.0033




D5
0.45
0.41
1.23
0.011
0.0003
0.0026
0.0031
0.050
0.018
0.032
0.25
0.173
0.0018




D6
0.46
0.39
1.27
0.042
0.0009
0.0026
0.0017
0.042
0.030
0.046
0.25
0.165
0.0020




D7
0.46
0.41
1.29
0.069
0.0013
0.0028
0.0021
0.044
0.041
0.027
0.25
0.144
0.0030




D8
0.45
0.39
1.22
0.087
0.0008
0.0024
0.0030
0.046
0.040
0.038
0.31
0.228
0.0030




D9
0.47
0.45
1.35

0.120

0.0016
0.0031
0.0028
0.047
0.032
0.045
0.27
0.193
0.0020




E1
0.45
0.42
1.25
0.007
0.0001
0.0034
0.0017
0.045
0.038
0.031
0.27
0.226
0.0020




E2
0.45
0.40
1.24
0.009
0.0003
0.0032
0.0026
0.043
0.038
0.042
0.31
0.133
0.0026




E3
0.47
0.45
1.25
0.009
0.0008
0.0020
0.0014
0.050
0.018
0.032
0.23
0.175
0.0020




E4
0.47
0.42
1.29
0.007
0.0011
0.0030
0.0030
0.047
0.028
0.033
0.29
0.203
0.0019




E5
0.46
0.42
1.33
0.005
0.0021
0.0032
0.0024
0.041
0.038
0.035
0.34
0.137
0.0028




E6
0.47
0.42
1.21
0.009
0.0045
0.0033
0.0027
0.048
0.034
0.033
0.25
0.201
0.0022




E7
0.47
0.45
1.34
0.006
0.0065
0.0020
0.0024
0.040
0.023
0.045
0.30
0.215
0.0031




E8
0.46
0.43
1.31
0.004
0.0091
0.0033
0.0019
0.044
0.037
0.031
0.28
0.161
0.0030




E9
0.46
0.44
1.35
0.008

0.0151

0.0019
0.0034
0.039
0.038
0.045
0.24
0.224
0.0022




F1
0.45
0.42
1.27
0.007
0.0006
0.0002
0.0025
0.039
0.028
0.036
0.29
0.175
0.0019




F2
0.47
0.41
1.31
0.005
0.0015
0.0008
0.0022
0.049
0.035
0.027
0.32
0.199
0.0021




F3
0.45
0.45
1.32
0.004
0.0004
0.0018
0.0035
0.045
0.030
0.028
0.23
0.139
0.0021




F4
0.46
0.42
1.33
0.005
0.0021
0.0031
0.0035
0.045
0.040
0.044
0.28
0.153
0.0022




F5
0.47
0.41
1.33
0.005
0.0003
0.0047
0.0021
0.046
0.021
0.033
0.33
0.168
0.0028




F6
0.45
0.39
1.28
0.004
0.0008
0.0067
0.0024
0.041
0.041
0.042
0.31
0.147
0.0021




F7
0.45
0.41
1.31
0.009
0.0004
0.0102
0.0028
0.043
0.038
0.042
0.30
0.177
0.0029




F8
0.47
0.45
1.35
0.004
0.0016
0.0179
0.0021
0.045
0.026
0.038
0.23
0.173
0.0031




F9
0.47
0.40
1.25
0.007
0.0003

0.0211

0.0033
0.044
0.040
0.033
0.26
0.197
0.0023




G1
0.47
0.42
1.30
0.004
0.0015
0.0030
0.0006
0.043
0.036
0.026
0.29
0.207
0.0020




G2
0.46
0.42
1.32
0.007
0.0008
0.0023
0.0013
0.050
0.038
0.043
0.23
0.180
0.0020




G3
0.46
0.43
1.25
0.007
0.0012
0.0020
0.0022
0.045
0.039
0.039
0.32
0.196
0.0022




G4
0.45
0.42
1.27
0.005
0.0021
0.0026
0.0034
0.049
0.024
0.026
0.32
0.203
0.0032




G5
0.45
0.45
1.28
0.007
0.0013
0.0019
0.0051
0.044
0.022
0.029
0.27
0.156
0.0026




G6
0.45
0.45
1.34
0.008
0.0013
0.0028
0.0083
0.049
0.036
0.043
0.28
0.171
0.0020




G7
0.47
0.43
1.26
0.004
0.0003
0.0020
0.0197
0.045
0.032
0.041
0.26
0.149
0.0022




G8
0.46
0.40
1.23
0.009
0.0012
0.0023

0.0237

0.039
0.038
0.041
0.26
0.147
0.0029




H1
0.46
0.43
1.24
0.004
0.0004
0.0024
0.0034

0.0007

0.037
0.028
0.32
0.198
0.0030




H2
0.46
0.44
1.35
0.005
0.0016
0.0024
0.0034
0.001
0.026
0.035
0.26
0.177
0.0024




H3
0.46
0.43
1.26
0.006
0.0007
0.0021
0.0030
0.005
0.030
0.046
0.32
0.151
0.0019




H4
0.46
0.39
1.23
0.009
0.0012
0.0024
0.0015
0.016
0.042
0.041
0.32
0.220
0.0028




H5
0.46
0.43
1.30
0.006
0.0020
0.0021
0.0025
0.025
0.032
0.041
0.25
0.143
0.0030




H6
0.45
0.41
1.25
0.008
0.0011
0.0022
0.0031
0.039
0.037
0.032
0.29
0.210
0.0020




H7
0.46
0.43
1.35
0.009
0.0005
0.0026
0.0018
0.049
0.029
0.037
0.31
0.197
0.0020




H8
0.45
0.39
1.27
0.006
0.0015
0.0027
0.0024
0.068
0.027
0.046
0.28
0.139
0.0028




H9
0.47
0.44
1.32
0.006
0.0004
0.0027
0.0015
0.082
0.019
0.038
0.34
0.144
0.0032




H10
0.47
0.39
1.27
0.006
0.0007
0.0021
0.0021
0.126
0.024
0.045
0.28
0.178
0.0032




H11
0.46
0.43
1.33
0.008
0.0018
0.0019
0.0020
0.264
0.034
0.040
0.33
0.190
0.0032




H12
0.47
0.44
1.24
0.009
0.0006
0.0019
0.0033
0.369
0.026
0.033
0.29
0.218
0.0022




H13
0.46
0.39
1.23
0.007
0.0005
0.0024
0.0033
0.491
0.035
0.031
0.32
0.153
0.0023




H14
0.45
0.45
1.30
0.006
0.0013
0.0029
0.0029

0.511

0.032
0.039
0.31
0.149
0.0028




I1
0.46
0.40
1.22
0.009
0.0007
0.0024
0.0018
0.050

0.0006

0.036
0.33
0.133
0.0018




I2
0.45
0.43
1.34
0.008
0.0015
0.0034
0.0031
0.045
0.0012
0.037
0.24
0.225
0.0019




I3
0.46
0.43
1.30
0.005
0.0017
0.0025
0.0032
0.049
0.004
0.029
0.25
0.228
0.0020




I4
0.47
0.45
1.34
0.005
0.0015
0.0028
0.0016
0.044
0.007
0.043
0.31
0.211
0.0030




I5
0.45
0.40
1.31
0.005
0.0008
0.0034
0.0016
0.045
0.012
0.041
0.27
0.218
0.0029




I6
0.47
0.39
1.30
0.008
0.0010
0.0025
0.0034
0.040
0.018
0.034
0.30
0.143
0.0030




I7
0.46
0.40
1.25
0.005
0.0012
0.0021
0.0022
0.046
0.025
0.036
0.33
0.136
0.0029




I8
0.47
0.43
1.26
0.004
0.0010
0.0029
0.0019
0.043
0.037
0.037
0.27
0.183
0.0018




I9
0.45
0.41
1.30
0.004
0.0017
0.0028
0.0023
0.041
0.041
0.029
0.29
0.140
0.0027




I10
0.45
0.44
1.22
0.004
0.0006
0.0020
0.0029
0.050
0.056
0.025
0.26
0.158
0.0032




I11
0.47
0.42
1.34
0.009
0.0021
0.0024
0.0027
0.043
0.065
0.042
0.28
0.228
0.0024




I12
0.47
0.40
1.24
0.004
0.0021
0.0019
0.0014
0.047
0.081
0.045
0.31
0.199
0.0023




I13
0.47
0.39
1.32
0.004
0.0009
0.0019
0.0030
0.040
0.091
0.033
0.31
0.146
0.0019




I14
0.47
0.44
1.28
0.004
0.0010
0.0034
0.0028
0.049

0.126

0.037
0.29
0.156
0.0024




J1
0.46
0.40
1.26
0.006
0.0016
0.0022
0.0027
0.049
0.042

0.007

0.29
0.206
0.0032




J2
0.46
0.42
1.26
0.005
0.0013
0.0022
0.0026
0.048
0.032
0.011
0.31
0.189
0.0026




J3
0.45
0.41
1.25
0.005
0.0017
0.0030
0.0022
0.047
0.042
0.017
0.27
0.194
0.0026




J4
0.45
0.42
1.27
0.005
0.0014
0.0019
0.0019
0.049
0.021
0.023
0.31
0.210
0.0030




J5
0.47
0.39
1.34
0.008
0.0008
0.0032
0.0029
0.042
0.023
0.027
0.25
0.134
0.0025




J6
0.46
0.43
1.33
0.004
0.0022
0.0030
0.0017
0.047
0.030
0.031
0.25
0.170
0.0027




J7
0.46
0.39
1.21
0.008
0.0003
0.0029
0.0014
0.047
0.028
0.048
0.34
0.136
0.0019




J8
0.46
0.43
1.21
0.008
0.0019
0.0027
0.0033
0.048
0.034
0.055
0.27
0.194
0.0020




J9
0.46
0.45
1.34
0.008
0.0014
0.0028
0.0025
0.049
0.041
0.077
0.23
0.140
0.0024




J10
0.47
0.43
1.23
0.005
0.0014
0.0023
0.0020
0.045
0.023
0.111
0.28
0.224
0.0027




J11
0.45
0.44
1.23
0.008
0.0013
0.0019
0.0026
0.050
0.041
0.181
0.30
0.132
0.0023




J12
0.45
0.40
1.28
0.008
0.0009
0.0021
0.0018
0.041
0.024

0.211

0.29
0.175
0.0027




K1
0.47
0.43
1.29
0.004
0.0007
0.0032
0.0020
0.041
0.038
0.045

0.008

0.188
0.0021




K2
0.47
0.41
1.27
0.004
0.0006
0.0027
0.0023
0.039
0.024
0.030
0.012
0.211
0.0024




K3
0.46
0.40
1.34
0.004
0.0006
0.0021
0.0022
0.039
0.039
0.037
0.049
0.229
0.0019




K4
0.45
0.41
1.30
0.009
0.0012
0.0027
0.0019
0.039
0.026
0.035
0.081
0.133
0.0033




K5
0.45
0.40
1.31
0.007
0.0015
0.0019
0.0016
0.050
0.031
0.032
0.13
0.229
0.0018




K6
0.46
0.40
1.35
0.004
0.0015
0.0021
0.0017
0.043
0.039
0.037
0.19
0.183
0.0024




K7
0.47
0.45
1.24
0.008
0.0018
0.0031
0.0034
0.045
0.022
0.034
0.21
0.186
0.0025




K8
0.45
0.42
1.35
0.008
0.0022
0.0019
0.0024
0.044
0.038
0.030
0.27
0.181
0.0025




K9
0.45
0.43
1.34
0.004
0.0010
0.0027
0.0021
0.049
0.038
0.039
0.33
0.215
0.0026




K10
0.45
0.40
1.31
0.006
0.0003
0.0032
0.0019
0.050
0.022
0.043
0.42
0.221
0.0019




K11
0.46
0.43
1.31
0.007
0.0005
0.0030
0.0029
0.039
0.031
0.033
0.61
0.170
0.0031




K12
0.45
0.40
1.25
0.006
0.0004
0.0023
0.0029
0.050
0.041
0.034
0.78
0.204
0.0029




K13
0.47
0.43
1.30
0.006
0.0011
0.0027
0.0022
0.043
0.028
0.038
0.92
0.132
0.0020




K14
0.45
0.45
1.32
0.006
0.0012
0.0032
0.0033
0.049
0.039
0.036

1.12

0.204
0.0022




L1
0.47
0.41
1.22
0.009
0.0003
0.0025
0.0035
0.039
0.019
0.036
0.33

0.0009

0.0018




L2
0.45
0.43
1.28
0.004
0.0014
0.0026
0.0028
0.050
0.029
0.035
0.26
0.0012
0.0032




L3
0.46
0.43
1.29
0.004
0.0015
0.0022
0.0025
0.050
0.036
0.039
0.32
0.0051
0.0027




L4
0.47
0.44
1.31
0.004
0.0008
0.0033
0.0035
0.039
0.019
0.041
0.25
0.023
0.0025




L5
0.46
0.41
1.34
0.005
0.0008
0.0021
0.0023
0.039
0.030
0.028
0.31
0.072
0.0031




L6
0.45
0.41
1.22
0.009
0.0015
0.0022
0.0034
0.041
0.025
0.029
0.29
0.137
0.0024




L7
0.45
0.44
1.35
0.007
0.0008
0.0028
0.0023
0.046
0.036
0.029
0.31
0.193
0.0026




L8
0.45
0.39
1.21
0.004
0.0022
0.0024
0.0028
0.040
0.038
0.026
0.23
0.231
0.0029




L9
0.47
0.43
1.34
0.007
0.0009
0.0025
0.0017
0.050
0.020
0.041
0.28
0.351
0.0024




L10
0.45
0.44
1.23
0.008
0.0020
0.0030
0.0035
0.044
0.040
0.040
0.28
0.496
0.0018




L11
0.47
0.39
1.29
0.005
0.0019
0.0033
0.0016
0.042
0.032
0.031
0.26
0.673
0.0019




L12
0.45
0.41
1.32
0.009
0.0010
0.0028
0.0022
0.050
0.037
0.028
0.28
0.877
0.0030




L13
0.46
0.40
1.28
0.006
0.0022
0.0032
0.0033
0.046
0.028
0.025
0.25

1.236

0.0019




M1
0.47
0.42
1.26
0.007
0.0018
0.0032
0.0031
0.047
0.019
0.028
0.34
0.130
0.0002




M2
0.46
0.40
1.24
0.007
0.0016
0.0020
0.0022
0.050
0.036
0.025
0.32
0.180
0.0006




M3
0.46
0.42
1.21
0.008
0.0018
0.0024
0.0034
0.041
0.023
0.033
0.27
0.188
0.0011




M4
0.47
0.40
1.24
0.004
0.0013
0.0027
0.0033
0.049
0.034
0.033
0.25
0.213
0.0017




M5
0.47
0.42
1.25
0.006
0.0020
0.0020
0.0034
0.044
0.031
0.044
0.34
0.174
0.0022




M6
0.46
0.45
1.21
0.005
0.0012
0.0020
0.0023
0.050
0.025
0.044
0.32
0.149
0.0031




M7
0.45
0.39
1.29
0.004
0.0009
0.0024
0.0032
0.043
0.024
0.025
0.32
0.134
0.0045




M8
0.45
0.45
1.35
0.007
0.0022
0.0021
0.0018
0.044
0.032
0.043
0.24
0.192
0.0072




M9
0.45
0.42
1.21
0.008
0.0009
0.0034
0.0034
0.040
0.034
0.040
0.31
0.136
0.0119




M10
0.45
0.45
1.33
0.007
0.0009
0.0023
0.0034
0.041
0.041
0.034
0.25
0.135
0.0178




M11
0.45
0.44
1.30
0.009
0.0015
0.0030
0.0031
0.049
0.021
0.044
0.27
0.180

0.0221





N1
0.45
0.44
1.27
0.007
0.0006
0.0029
0.0019
0.043
0.019
0.037
0.29
0.132
0.0033
0.05



N2
0.45
0.45
1.27
0.004
0.0006
0.0024
0.0023
0.050
0.039
0.029
0.28
0.172
0.0018
0.12



N3
0.46
0.40
1.29
0.005
0.0021
0.0031
0.0015
0.049
0.018
0.030
0.28
0.155
0.0032
0.22



N4
0.47
0.39
1.34
0.005
0.0020
0.0032
0.0014
0.049
0.036
0.027
0.32
0.131
0.0033
0.42



N5
0.46
0.42
1.21
0.007
0.0019
0.0032
0.0016
0.043
0.029
0.038
0.25
0.167
0.0023
0.61



N6
0.45
0.41
1.21
0.006
0.0008
0.0027
0.0023
0.050
0.041
0.038
0.31
0.198
0.0024
0.85



N7
0.47
0.45
1.27
0.007
0.0018
0.0029
0.0021
0.040
0.037
0.029
0.28
0.221
0.0025
1.11



N8
0.46
0.40
1.35
0.006
0.0013
0.0033
0.0019
0.049
0.033
0.032
0.27
0.131
0.0020
1.35



N9
0.46
0.45
1.35
0.005
0.0004
0.0031
0.0018
0.050
0.037
0.042
0.28
0.211
0.0031
1.57



N10
0.47
0.44
1.27
0.004
0.0008
0.0031
0.0026
0.046
0.025
0.041
0.24
0.152
0.0019
1.72



N11
0.47
0.40
1.31
0.007
0.0006
0.0027
0.0025
0.050
0.038
0.027
0.28
0.210
0.0022
1.91



N12
0.47
0.40
1.35
0.004
0.0015
0.0022
0.0028
0.045
0.028
0.034
0.32
0.191
0.0029
2.56



N13
0.47
0.44
1.23
0.008
0.0018
0.0020
0.0027
0.040
0.026
0.028
0.25
0.181
0.0027
3.55



O1
0.46
0.43
1.22
0.006
0.0015
0.0030
0.0030
0.043
0.019
0.029
0.28
0.153
0.0026

0.02


O2
0.46
0.41
1.26
0.006
0.0015
0.0026
0.0032
0.047
0.035
0.041
0.31
0.130
0.0027

0.13


O3
0.46
0.39
1.27
0.004
0.0013
0.0030
0.0021
0.049
0.022
0.038
0.32
0.155
0.0021

0.23


O4
0.45
0.42
1.34
0.006
0.0017
0.0019
0.0026
0.048
0.026
0.043
0.26
0.150
0.0022

0.41


O5
0.46
0.45
1.25
0.004
0.0019
0.0033
0.0031
0.049
0.041
0.029
0.25
0.151
0.0027

0.84


O6
0.47
0.41
1.35
0.008
0.0022
0.0024
0.0025
0.043
0.019
0.045
0.27
0.200
0.0030

1.21


O7
0.46
0.44
1.21
0.005
0.0017
0.0021
0.0014
0.044
0.031
0.026
0.32
0.162
0.0028

1.62


O8
0.45
0.40
1.35
0.004
0.0011
0.0024
0.0028
0.045
0.041
0.035
0.30
0.168
0.0025

1.92


O9
0.45
0.40
1.30
0.009
0.0005
0.0023
0.0018
0.049
0.030
0.033
0.28
0.176
0.0030

2.11


O10
0.45
0.44
1.23
0.009
0.0018
0.0019
0.0024
0.039
0.020
0.036
0.32
0.164
0.0028

2.56


O11
0.47
0.39
1.35
0.008
0.0010
0.0025
0.0017
0.040
0.029
0.027
0.33
0.154
0.0030

2.79


O12
0.47
0.43
1.25
0.006
0.0018
0.0027
0.0033
0.047
0.022
0.026
0.33
0.220
0.0028

2.91


P1
0.47
0.42
1.26
0.005
0.0015
0.0032
0.0025
0.040
0.022
0.041
0.28
0.135
0.0032




P2
0.45
0.40
1.33
0.005
0.0020
0.0029
0.0021
0.040
0.025
0.027
0.23
0.163
0.0026




P3
0.45
0.45
1.27
0.006
0.0008
0.0028
0.0020
0.042
0.018
0.034
0.34
0.153
0.0021




P4
0.46
0.39
1.35
0.004
0.0006
0.0033
0.0017
0.050
0.024
0.030
0.31
0.136
0.0025




P5
0.45
0.45
1.33
0.007
0.0016
0.0024
0.0016
0.047
0.026
0.040
0.26
0.176
0.0021




P6
0.45
0.39
1.24
0.008
0.0013
0.0027
0.0022
0.043
0.022
0.030
0.31
0.164
0.0024




P7
0.45
0.43
1.25
0.006
0.0009
0.0029
0.0019
0.044
0.022
0.041
0.23
0.229
0.0027




P8
0.45
0.45
1.26
0.007
0.0008
0.0019
0.0029
0.047
0.023
0.031
0.33
0.221
0.0022




P9
0.45
0.44
1.28
0.008
0.0016
0.0033
0.0023
0.047
0.034
0.039
0.24
0.188
0.0032




P10
0.46
0.45
1.22
0.008
0.0012
0.0022
0.0030
0.044
0.026
0.028
0.25
0.188
0.0022




P11
0.46
0.44
1.22
0.004
0.0013
0.0034
0.0035
0.044
0.037
0.032
0.23
0.181
0.0019




P12
0.45
0.42
1.27
0.009
0.0003
0.0025
0.0019
0.049
0.021
0.031
0.28
0.132
0.0023




Q1
0.47
0.45
1.34
0.006
0.0017
0.0026
0.0026
0.040
0.027
0.040
0.34
0.182
0.0027




Q2
0.45
0.45
1.35
0.008
0.0003
0.0033
0.0028
0.045
0.020
0.027
0.30
0.136
0.0022




Q3
0.47
0.39
1.24
0.009
0.0013
0.0019
0.0032
0.045
0.029
0.046
0.27
0.215
0.0020




Q4
0.45
0.39
1.32
0.005
0.0012
0.0025
0.0017
0.048
0.019
0.032
0.23
0.230
0.0029




Q5
0.46
0.43
1.32
0.007
0.0015
0.0021
0.0024
0.041
0.023
0.041
0.28
0.191
0.0032




Q6
0.47
0.42
1.31
0.005
0.0022
0.0027
0.0025
0.048
0.034
0.026
0.26
0.203
0.0024




Q7
0.47
0.43
1.32
0.005
0.0016
0.0029
0.0030
0.039
0.022
0.033
0.32
0.215
0.0027




Q8
0.47
0.45
1.27
0.006
0.0007
0.0019
0.0031
0.049
0.021
0.035
0.29
0.141
0.0020




Q9
0.47
0.41
1.29
0.004
0.0007
0.0034
0.0020
0.045
0.041
0.034
0.24
0.154
0.0030




Q10
0.46
0.43
1.23
0.008
0.0010
0.0030
0.0015
0.042
0.028
0.026
0.26
0.154
0.0019




Q11
0.45
0.44
1.26
0.006
0.0017
0.0019
0.0023
0.039
0.025
0.031
0.34
0.152
0.0029




Q12
0.46
0.41
1.30
0.004
0.0007
0.0021
0.0023
0.045
0.035
0.042
0.27
0.148
0.0029




R1
0.46
0.39
1.31
0.004
0.0008
0.0028
0.0026
0.047
0.030
0.030
0.34
0.165
0.0031




R2
0.45
0.42
1.30
0.008
0.0009
0.0033
0.0025
0.044
0.026
0.042
0.26
0.140
0.0031




R3
0.45
0.41
1.26
0.008
0.0005
0.0028
0.0020
0.040
0.037
0.028
0.30
0.178
0.0027




R4
0.47
0.45
1.26
0.006
0.0009
0.0031
0.0032
0.044
0.038
0.036
0.27
0.218
0.0018




R5
0.47
0.40
1.26
0.006
0.0022
0.0021
0.0022
0.048
0.026
0.033
0.29
0.161
0.0033




R6
0.47
0.40
1.21
0.008
0.0018
0.0020
0.0021
0.042
0.042
0.035
0.30
0.152
0.0021




R7
0.46
0.42
1.32
0.008
0.0008
0.0031
0.0016
0.043
0.034
0.028
0.30
0.162
0.0031




R8
0.45
0.43
1.30
0.008
0.0019
0.0033
0.0033
0.039
0.036
0.044
0.30
0.219
0.0031




S1
0.45
0.45
1.22
0.007
0.0003
0.0028
0.0017
0.046
0.025
0.040
0.32
0.161
0.0021




S2
0.47
0.43
1.30
0.009
0.0014
0.0024
0.0029
0.039
0.028
0.031
0.25
0.173
0.0026




S3
0.45
0.40
1.35
0.004
0.0013
0.0030
0.0032
0.042
0.029
0.043
0.24
0.180
0.0023




S4
0.46
0.44
1.25
0.008
0.0020
0.0029
0.0014
0.049
0.036
0.046
0.30
0.148
0.0025




S5
0.47
0.44
1.22
0.004
0.0003
0.0021
0.0017
0.043
0.041
0.046
0.32
0.148
0.0026




S6
0.45
0.41
1.25
0.005
0.0012
0.0024
0.0029
0.044
0.026
0.046
0.30
0.209
0.0029




S7
0.46
0.45
1.32
0.009
0.0021
0.0032
0.0032
0.040
0.039
0.033
0.28
0.145
0.0025




S8
0.45
0.43
1.25
0.004
0.0017
0.0030
0.0014
0.049
0.036
0.029
0.27
0.161
0.0027




T1
0.46
0.45
1.27
0.004
0.0021
0.0026
0.0021
0.042
0.030
0.025
0.32
0.204
0.0024




T2
0.46
0.42
1.34
0.009
0.0004
0.0021
0.0035
0.040
0.021
0.034
0.26
0.217
0.0020




T3
0.46
0.39
1.21
0.007
0.0022
0.0023
0.0032
0.044
0.031
0.038
0.27
0.177
0.0025




T4
0.45
0.41
1.29
0.007
0.0009
0.0023
0.0034
0.039
0.018
0.033
0.24
0.181
0.0033




T5
0.47
0.42
1.30
0.004
0.0006
0.0027
0.0016
0.048
0.028
0.038
0.26
0.206
0.0019




T6
0.45
0.45
1.24
0.005
0.0019
0.0032
0.0014
0.045
0.031
0.043
0.23
0.227
0.0020




T7
0.47
0.41
1.29
0.009
0.0003
0.0030
0.0029
0.050
0.034
0.031
0.34
0.159
0.0032




T8
0.45
0.42
1.25
0.008
0.0009
0.0025
0.0027
0.040
0.034
0.040
0.31
0.138
0.0022




U1
0.46
0.45
1.23
0.008
0.0014
0.0029
0.0021
0.045
0.024
0.034
0.34
0.203
0.0022




U2
0.47
0.42
1.33
0.004
0.0017
0.0020
0.0035
0.042
0.024
0.039
0.27
0.193
0.0032




U3
0.47
0.39
1.32
0.009
0.0015
0.0029
0.0014
0.043
0.029
0.032
0.28
0.172
0.0024




U4
0.45
0.40
1.28
0.006
0.0014
0.0028
0.0025
0.041
0.037
0.033
0.34
0.181
0.0029




U5
0.46
0.45
1.32
0.005
0.0021
0.0030
0.0021
0.039
0.036
0.036
0.27
0.158
0.0023




U6
0.46
0.40
1.31
0.006
0.0020
0.0023
0.0034
0.041
0.021
0.041
0.26
0.165
0.0030




U7
0.45
0.43
1.28
0.005
0.0008
0.0032
0.0028
0.043
0.031
0.041
0.23
0.209
0.0022




U8
0.46
0.43
1.32
0.004
0.0007
0.0021
0.0025
0.050
0.039
0.035
0.26
0.149
0.0023




V1
0.45
0.45
1.35
0.006
0.0017
0.0032
0.0014
0.047
0.021
0.032
0.31
0.150
0.0021




V2
0.47
0.41
1.32
0.007
0.0004
0.0022
0.0022
0.046
0.020
0.043
0.31
0.203
0.0028




V3
0.45
0.44
1.34
0.009
0.0016
0.0032
0.0031
0.047
0.035
0.046
0.28
0.210
0.0025




V4
0.46
0.45
1.35
0.009
0.0017
0.0025
0.0033
0.040
0.039
0.042
0.27
0.228
0.0023




V5
0.47
0.42
1.31
0.007
0.0010
0.0028
0.0032
0.049
0.023
0.029
0.33
0.159
0.0021




V6
0.46
0.43
1.33
0.005
0.0021
0.0028
0.0022
0.044
0.028
0.033
0.33
0.203
0.0025




V7
0.46
0.45
1.25
0.009
0.0006
0.0026
0.0018
0.047
0.035
0.039
0.33
0.189
0.0024




V8
0.46
0.40
1.22
0.004
0.0006
0.0025
0.0028
0.047
0.041
0.044
0.27
0.230
0.0031




W1
0.46
0.45
1.35
0.008
0.0006
0.0025
0.0021
0.046
0.034
0.034
0.32
0.175
0.0028




W2
0.46
0.41
1.23
0.007
0.0009
0.0032
0.0032
0.049
0.031
0.030
0.30
0.152
0.0023




W3
0.46
0.41
1.30
0.005
0.0007
0.0026
0.0033
0.047
0.024
0.037
0.32
0.174
0.0023




W4
0.46
0.41
1.34
0.007
0.0020
0.0032
0.0023
0.050
0.018
0.032
0.34
0.230
0.0033




W5
0.45
0.42
1.24
0.005
0.0003
0.0023
0.0025
0.044
0.038
0.030
0.30
0.148
0.0024




W6
0.47
0.45
1.24
0.009
0.0017
0.0024
0.0014
0.047
0.024
0.026
0.30
0.203
0.0028




W7
0.46
0.40
1.32
0.005
0.0004
0.0025
0.0014
0.050
0.023
0.040
0.30
0.228
0.0019




W8
0.46
0.44
1.31
0.006
0.0009
0.0030
0.0022
0.048
0.019
0.042
0.29
0.178
0.0018




X1
0.45
0.40
1.21
0.006
0.0016
0.0030
0.0025
0.046
0.027
0.025
0.34
0.207
0.0021




X2
0.46
0.39
1.22
0.008
0.0010
0.0028
0.0018
0.048
0.031
0.037
0.30
0.132
0.0024




X3
0.46
0.45
1.24
0.006
0.0020
0.0022
0.0031
0.043
0.022
0.039
0.32
0.212
0.0033




Y1
0.47
0.40
1.24
0.009
0.0007
0.0019
0.0019
0.040
0.038
0.026
0.33
0.202
0.0029




Y2
0.46
0.44
1.21
0.007
0.0008
0.0026
0.0030
0.049
0.035
0.031
0.31
0.142
0.0018




Y3
0.45
0.39
1.28
0.009
0.0013
0.0032
0.0024
0.043
0.039
0.041
0.29
0.161
0.0029




Y4
0.46
0.39
1.32
0.008
0.0004
0.0019
0.0028
0.041
0.021
0.039
0.29
0.147
0.0021




Y5
0.46
0.43
1.31
0.005
0.0013
0.0022
0.0020
0.041
0.042
0.027
0.33
0.174
0.0028




Y6
0.46
0.41
1.35
0.004
0.0020
0.0031
0.0021
0.046
0.025
0.036
0.31
0.216
0.0033




Y7
0.45
0.40
1.22
0.004
0.0005
0.0023
0.0020
0.045
0.039
0.037
0.31
0.173
0.0032




Y8
0.47
0.42
1.31
0.006
0.0015
0.0031
0.0026
0.049
0.036
0.027
0.31
0.142
0.0025




Y9
0.46
0.45
1.28
0.004
0.0017
0.0033
0.0018
0.045
0.029
0.030
0.24
0.170
0.0031




Y10
0.45
0.42
1.34
0.004
0.0018
0.0022
0.0014
0.050
0.019
0.035
0.33
0.180
0.0029




Z1
0.46
0.45
1.28
0.006
0.0020
0.0025
0.0020
0.039
0.021
0.037
0.24
0.147
0.0022




Z2
0.45
0.40
1.35
0.005
0.0015
0.0019
0.0035
0.043
0.026
0.032
0.27
0.223
0.0026




Z3
0.46
0.39
1.25
0.004
0.0019
0.0023
0.0031
0.042
0.035
0.041
0.32
0.206
0.0018




74
0.47
0.43
1.24
0.005
0.0006
0.0019
0.0017
0.050
0.026
0.044
0.26
0.195
0.0032




Z5
0.47
0.45
1.21
0.005
0.0008
0.0030
0.0033
0.048
0.030
0.026
0.32
0.138
0.0032




Z6
0.46
0.44
1.23
0.007
0.0014
0.0032
0.0015
0.045
0.038
0.025
0.25
0.145
0.0026




Z7
0.47
0.41
1.33
0.009
0.0016
0.0022
0.0015
0.044
0.026
0.036
0.33
0.224
0.0018




Z8
0.46
0.42
1.26
0.006
0.0009
0.0029
0.0024
0.050
0.034
0.036
0.32
0.145
0.0031




Z9
0.45
0.39
1.26
0.004
0.0006
0.0031
0.0017
0.046
0.034
0.037
0.24
0.208
0.0023




Z10
0.46
0.44
1.35
0.006
0.0005
0.0029
0.0024
0.043
0.027
0.032
0.29
0.171
0.0031




AA1
0.46
0.44
1.28
0.005
0.0020
0.0020
0.0030
0.048
0.018
0.026
0.25
0.181
0.0022




AA2
0.47
0.43
1.23
0.004
0.0015
0.0027
0.0029
0.045
0.028
0.043
0.27
0.212
0.0022




AA3
0.46
0.44
1.35
0.008
0.0015
0.0033
0.0019
0.043
0.023
0.030
0.23
0.148
0.0022




AA4
0.47
0.45
1.26
0.004
0.0007
0.0028
0.0027
0.043
0.040
0.042
0.30
0.173
0.0019




AA5
0.46
0.44
1.24
0.005
0.0009
0.0020
0.0020
0.046
0.031
0.040
0.34
0.174
0.0022




AA6
0.47
0.45
1.24
0.005
0.0015
0.0027
0.0020
0.042
0.019
0.044
0.24
0.203
0.0020




AA7
0.45
0.44
1.31
0.005
0.0004
0.0023
0.0025
0.044
0.029
0.029
0.25
0.191
0.0033




AA8
0.47
0.41
1.24
0.006
0.0005
0.0028
0.0023
0.040
0.030
0.044
0.24
0.163
0.0025




AA9
0.46
0.44
1.27
0.004
0.0013
0.0022
0.0018
0.039
0.028
0.032
0.27
0.182
0.0019




AA10
0.47
0.42
1.34
0.009
0.0013
0.0022
0.0023
0.042
0.034
0.032
0.28
0.191
0.0023




BB1
0.46
0.44
1.33
0.007
0.0009
0.0030
0.0032
0.041
0.019
0.034
0.26
0.145
0.0032




BB2
0.47
0.43
1.24
0.008
0.0007
0.0029
0.0023
0.041
0.028
0.041
0.31
0.151
0.0022




BB3
0.46
0.39
1.30
0.004
0.0014
0.0020
0.0030
0.048
0.025
0.040
0.31
0.171
0.0024




BB4
0.45
0.40
1.24
0.008
0.0014
0.0019
0.0024
0.044
0.029
0.035
0.29
0.184
0.0019




BB5
0.47
0.39
1.21
0.008
0.0018
0.0027
0.0017
0.044
0.039
0.031
0.34
0.219
0.0033




BB6
0.46
0.42
1.31
0.006
0.0015
0.0030
0.0033
0.042
0.029
0.033
0.25
0.196
0.0032




BB7
0.47
0.43
1.33
0.009
0.0017
0.0019
0.0023
0.039
0.035
0.045
0.30
0.225
0.0028




BB8
0.47
0.44
1.27
0.006
0.0014
0.0019
0.0031
0.040
0.027
0.025
0.27
0.227
0.0024




BB9
0.46
0.41
1.22
0.007
0.0009
0.0024
0.0031
0.050
0.029
0.043
0.34
0.162
0.0018




BB10
0.45
0.45
1.34
0.008
0.0007
0.0027
0.0034
0.044
0.042
0.043
0.25
0.141
0.0022




CC1
0.46
0.44
1.21
0.005
0.0013
0.0026
0.0015
0.047
0.020
0.043
0.34
0.140
0.0033




CC2
0.45
0.40
1.24
0.009
0.0019
0.0025
0.0027
0.049
0.025
0.035
0.33
0.173
0.0031




CC3
0.46
0.42
1.30
0.005
0.0006
0.0021
0.0031
0.039
0.025
0.046
0.25
0.230
0.0024




CC4
0.47
0.41
1.31
0.007
0.0022
0.0021
0.0024
0.044
0.026
0.032
0.28
0.167
0.0021




CC5
0.46
0.45
1.24
0.007
0.0022
0.0024
0.0034
0.048
0.040
0.025
0.25
0.148
0.0032




CC6
0.47
0.39
1.22
0.006
0.0013
0.0027
0.0026
0.042
0.026
0.027
0.23
0.171
0.0033




CC7
0.46
0.39
1.29
0.008
0.0021
0.0022
0.0030
0.043
0.026
0.040
0.27
0.200
0.0022




CC8
0.46
0.39
1.22
0.008
0.0009
0.0020
0.0030
0.044
0.032
0.029
0.29
0.203
0.0018




CC9
0.45
0.40
1.22
0.004
0.0005
0.0029
0.0028
0.044
0.030
0.038
0.25
0.148
0.0033




CC10
0.47
0.43
1.28
0.009
0.0008
0.0031
0.0029
0.041
0.032
0.037
0.25
0.160
0.0020




DD1
0.46
0.41
1.25
0.006
0.0011
0.0025
0.0029
0.048
0.025
0.025
0.23
0.192
0.0033




DD2
0.46
0.42
1.26
0.007
0.0006
0.0033
0.0026
0.044
0.027
0.038
0.34
0.148
0.0027




DD3
0.46
0.39
1.24
0.004
0.0017
0.0033
0.0023
0.047
0.018
0.026
0.32
0.141
0.0027




DD4
0.45
0.45
1.22
0.007
0.0013
0.0026
0.0015
0.049
0.031
0.026
0.30
0.131
0.0022




DD5
0.47
0.43
1.25
0.009
0.0012
0.0023
0.0019
0.045
0.019
0.035
0.24
0.230
0.0022




DD6
0.46
0.41
1.26
0.006
0.0022
0.0023
0.0024
0.043
0.034
0.030
0.27
0.147
0.0027




DD7
0.46
0.39
1.30
0.007
0.0014
0.0022
0.0026
0.044
0.028
0.040
0.24
0.168
0.0024




DD8
0.45
0.44
1.35
0.008
0.0017
0.0021
0.0035
0.047
0.018
0.037
0.25
0.181
0.0020




DD9
0.47
0.42
1.24
0.004
0.0014
0.0032
0.0032
0.050
0.032
0.041
0.29
0.194
0.0020




DD10
0.46
0.39
1.26
0.008
0.0016
0.0024
0.0015
0.050
0.027
0.034
0.31
0.209
0.0020




EE1
0.46
0.40
1.22
0.007
0.0022
0.0030
0.0028
0.054
0.021
0.036
0.32
0.157
0.0028

0.08


EE2
0.48
0.41
1.21
0.004
0.0024
0.0019
0.0023
0.046
0.032
0.045
0.35
0.136
0.0026




EE3
0.47
0.41
1.29
0.003
0.0008
0.0032
0.0020
0.057
0.033
0.042
0.33
0.222
0.0020
1.02



EE4
0.45
0.45
1.30
0.009
0.0021
0.0023
0.0019
0.053
0.030
0.034
0.35
0.204
0.0035

0.05


EE5
0.46
0.45
0.81
0.007
0.0011
0.0020
0.0017
0.045
0.032
0.042
0.24
0.213
0.0033




EE6
0.47
0.45
1.30
0.006
0.0005
0.0029
0.0015
0.048
0.020
0.029
0.27
0.190
0.0021




EE7
0.45
0.43
2.05
0.003
0.0011
0.0022
0.0027
0.046
0.040
0.031
0.27
0.159
0.0027




EE8
0.46
0.44
2.24
0.004
0.0005
0.0032
0.0035
0.040
0.023
0.029
0.32
0.210
0.0026












Chemical composition (mass %), bal.: Fe and impurities























Steel
Cu
V
Ca
Mg
REM
Sb
Zr
Sn
As
W
Ta
Re
Os
Ir
Tc
Remarks





A1















Comp. steel


A2















Inv. steel


A3















Inv. steel


A4















Inv. steel


A5















Inv. steel


A6















Inv. steel


A7















Inv. steel


A8















Inv. steel


A9















Inv. steel


A10















Inv. steel


A11















Inv. steel


A12















Inv. steel


A13















Inv. steel


A14















Comp. steel


B1















Comp. steel


B2















Inv. steel


B3















Inv. steel


B4















Inv. steel


B5















Inv. steel


B6















Inv. steel


B7















Inv. steel


B8















Inv. steel


B9















Inv. steel


B10















Inv. steel


B11















Inv. steel


B12















Inv. steel


B13















Inv. steel


B14















Inv. steel


B15















Comp. steel


C1















Comp. steel


C2















Inv. steel


C3















Inv. steel


C4















Inv. steel


C5















Inv. steel


C6















Inv. steel


C7















Inv. steel


C8















Inv. steel


C9















Inv. steel


C10















Inv. steel


C11















Inv. steel


C12















Inv. steel


C13















Inv. steel


C14















Comp. steel


D1















Inv. steel


D2















Inv. steel


D3















Inv. steel


D4















Inv. steel


D5















Inv. steel


D6















Inv. steel


D7















Inv. steel


D8















Inv. steel


D9















Comp. steel


E1















Inv. steel


E2















Inv. steel


E3















Inv. steel


E4















Inv. steel


E5















Inv. steel


E6















Inv. steel


E7















Inv. steel


E8















Inv. steel


E9















Comp. steel


F1















Inv. steel


F2















Inv. steel


F3















Inv. steel


F4















Inv. steel


F5















Inv. steel


F6















Inv. steel


F7















Inv. steel


F8















Inv. steel


F9















Comp. steel


G1















Inv. steel


G2















Inv. steel


G3















Inv. steel


G4















Inv. steel


G5















Inv. steel


G6















Inv. steel


G7















Inv. steel


G8















Comp. steel


H1















Comp. steel


H2















Inv. steel


H3















Inv. steel


H4















Inv. steel


H5















Inv. steel


H6















Inv. steel


H7















Inv. steel


H8















Inv. steel


H9















Inv. steel


H10















Inv. steel


H11















Inv. steel


H12















Inv. steel


H13















Inv. steel


H14















Comp. steel


I1















Comp. steel


I2















Inv. steel


I3















Inv. steel


I4















Inv. steel


I5















Inv. steel


I6















Inv. steel


I7















Inv. steel


I8















Inv. steel


I9















Inv. steel


I10















Inv. steel


I11















Inv. steel


I12















Inv. steel


I13















Inv. steel


I14















Comp. steel


J1















Comp. steel


J2















Inv. steel


J3















Inv. steel


J4















Inv. steel


J5















Inv. steel


J6















Inv. steel


J7















Inv. steel


J8















Inv. steel


J9















Inv. steel


J10















Inv. steel


J11















Inv. steel


J12















Comp. steel


K1















Comp. steel


K2















Inv. steel


K3















Inv. steel


K4















Inv. steel


K5















Inv. steel


K6















Inv. steel


K7















Inv. steel


K8















Inv. steel


K9















Inv. steel


K10















Inv. steel


K11















Inv. steel


K12















Inv. steel


K13















Inv. steel


K14















Comp. steel


LI















Comp. steel


L2















Inv. steel


L3















Inv. steel


L4















Inv. steel


L5















Inv. steel


L6















Inv. steel


L7















Inv. steel


L8















Inv. steel


L9















Inv. steel


L10















Inv. steel


L11















Inv. steel


L12















Inv. steel


L13















Comp. steel


M1















Comp. steel


M2















Inv. steel


M3















Inv. steel


M4















Inv. steel


M5















Inv. steel


M6















Inv. steel


M7















Inv. steel


M8















Inv. steel


M9















Inv. steel


M10















Inv. steel


M11















Comp. steel


N1















Inv. steel


N2















Inv. steel


N3















Inv. steel


N4















Inv. steel


N5















Inv. steel


N6















Inv. steel


N7















Inv. steel


N8















Inv. steel


N9















Inv. steel


N10















Inv. steel


N11















Inv. steel


N12















Inv. steel


N13















Inv. steel


O1















Inv. steel


O2















Inv. steel


O3















Inv. steel


O4















Inv. steel


O5















Inv. steel


O6















Inv. steel


O7















Inv. steel


O8















Inv. steel


O9















Inv. steel


O10















Inv. steel


O11















Inv. steel


O12















Inv. steel


P1
0.05














Inv. steel


P2
0.11














Inv. steel


P3
0.23














Inv. steel


P4
0.42














Inv. steel


P5
0.83














Inv. steel


P6
1.32














Inv. steel


P7
1.63














Inv. steel


P8
1.84














Inv. steel


P9
2.21














Inv. steel


P10
2.45














Inv. steel


P11
2.74














Inv. steel


P12
2.91














Inv. steel


Q1

0.05













Inv. steel


Q2

0.11













Inv. steel


Q3

0.21













Inv. steel


Q4

0.47













Inv. steel


Q5

0.84













Inv. steel


Q6

1.29













Inv. steel


Q7

1.55













Inv. steel


Q8

1.81













Inv. steel


Q9

2.21













Inv. steel


Q10

2.46













Inv. steel


Q11

2.63













Inv. steel


Q12

2.88













Inv. steel


R1


0.001












Inv. steel


R2


0.01












Inv. steel


R3


0.13












Inv. steel


R4


0.27












Inv. steel


R5


0.41












Inv. steel


R6


0.65












Inv. steel


R7


0.75












Inv. steel


R8


0.91












Inv. steel


S1



0.003











Inv. steel


S2



0.02











Inv. steel


S3



0.12











Inv. steel


S4



0.25











Inv. steel


S5



0.47











Inv. steel


S6



0.63











Inv. steel


S7



0.74











Inv. steel


S8



0.96











Inv. steel


T1




0.001










Inv. steel


T2




0.04










Inv. steel


T3




0.12










Inv. steel


T4




0.25










Inv. steel


T5




0.39










Inv. steel


T6




0.63










Inv. steel


T7




0.75










Inv. steel


T8




0.91










Inv. steel


U1





0.002









Inv. steel


U2





0.03









Inv. steel


U3





0.13









Inv. steel


U4





0.25









Inv. steel


U5





0.41









Inv. steel


U6





0.64









Inv. steel


U7





0.71









Inv. steel


U8





0.92









Inv. steel


V1






0.002








Inv. steel


V2






0.04








Inv. steel


V3






0.14








Inv. steel


V4






0.25








Inv. steel


V5






0.39








Inv. steel


V6






0.57








Inv. steel


V7






0.76








Inv. steel


V8






0.93








Inv. steel


W1







0.002







Inv. steel


W2







0.03







Inv. steel


W3







0.12







Inv. steel


W4







0.27







Inv. steel


W5







0.44







Inv. steel


W6







0.64







Inv. steel


W7







0.75







Inv. steel


W8







0.92







Inv. steel


X1








0.004






Inv. steel


X2








0.021






Inv. steel


X3








0.077






Inv. steel


Y1









0.002





Inv. steel


Y2









0.008





Inv. steel


Y3









0.02





Inv. steel


Y4









0.06





Inv. steel


Y5









0.12





Inv. steel


Y6









0.17





Inv. steel


Y7









0.28





Inv. steel


Y8









0.51





Inv. steel


Y9









0.71





Inv. steel


Y10









0.88





Inv. steel


Z1










0.002




Inv. steel


Z2










0.007




Inv. steel


Z3










0.03




Inv. steel


Z4










0.06




Inv. steel


Z5










0.14




Inv. steel


Z6










0.18




Inv. steel


Z7










0.28




Inv. steel


Z8










0.52




Inv. steel


Z9










0.69




Inv. steel


Z10










0.87




Inv. steel


AA1











0.002



Inv. steel


AA2











0.006



Inv. steel


AA3











0.04



Inv. steel


AA4











0.07



Inv. steel


AA5











0.12



Inv. steel


AA6











0.19



Inv. steel


AA7











0.25



Inv. steel


AA8











0.51



Inv. steel


AA9











0.65



Inv. steel


AA10











0.84



Inv. steel


BB1












0.003


Inv. steel


BB2












0.006


Inv. steel


BB3












0.05


Inv. steel


BB4












0.07


Inv. steel


BB5












0.15


Inv. steel


BB6












0.18


Inv. steel


BB7












0.25


Inv. steel


BB8












0.49


Inv. steel


BB9












0.63


Inv. steel


BB10












0.88


Inv. steel


CC1













0.002

Inv. steel


CC2













0.005

Inv. steel


CC3













0.04

Inv. steel


CC4













0.08

Inv. steel


CC5













0.15

Inv. steel


CC6













0.17

Inv. steel


CC7













0.21

Inv. steel


CC8













0.46

Inv. steel


CC9













0.66

Inv. steel


CC10













0.91

Inv. steel


DD1














0.002
Inv. steel


DD2














0.007
Inv. steel


DD3














0.03
Inv. steel


DD4














0.08
Inv. steel


DD5














0.11
Inv. steel


DD6














0.17
Inv. steel


DD7














0.23
Inv. steel


DD8














0.49
Inv. steel


DD9














0.61
Inv. steel


DD10














0.92
Inv. steel


EE1
0.24














Inv. steel


EE2















Inv. steel


EE3















Inv. steel


EE4
0.27






0.122







Inv. steel


EE5















Inv. steel


EE6















Inv. steel


EE7















Inv. steel


EE8















Inv. steel





Underlines show outside scope of present invention.

















TABLE 2









Preheating step



















Hot rolling step


Average







Finish rolling
Coiling

cooling














final stage
step

speed down
Hot stamping step



















rolling
Coiling
Heating
to less than
Heating
Holding




Test

reduction
temp.
temp
350° C.
temp.
time


No.
Steel
%
° C.
° C.
° C./s
° C.
s
Others
Remarks





1
A1
54
583
1288
473
912
366

Comp. ex.


2
A2
55
655
1279
591
910
348

Inv. ex.


3
A3
51
679
1266
525
903
368

Inv. ex.


4
A4
55
643
1275
518
913
373

Inv. ex.


5
A5
54
646
1265
444
912
358

Inv. ex.


6
A6
52
669
1253
561
922
350

Inv. ex.


7
A7
54
645
1246
411
924
366

Inv. ex.


8
A8
51
648
1248
539
922
368

Inv. ex.


9
A9
54
683
1276
507
908
357

Inv. ex.


10
A10
51
651
1288
539
897
374

Inv. ex.


11
A11
51
616
1263
666
901
370

Inv. ex.


12
A12
54
606
1262
648
911
371

Inv. ex.


13
A13
52
655
1259
625
915
366

Inv. ex.


14
A14
51
694
1276
629
910
351

Comp. ex


15
B1
51
568
1279
445
912
358

Comp. ex.


16
B2
54
619
1283
421
919
350

Inv. ex.


17
B3
51
610
1256
504
912
366

Inv. ex.


18
B4
55
658
1272
560
915
355

Inv. ex


19
B5
54
665
1265
507
920
355

Inv. ex.


20
B6
54
677
1261
610
899
375

Inv. ex.


21
B7
51
604
1249
532
897
373

Inv. ex.


22
B8
55
643
1249
434
910
373

Inv. ex.


23
B9
51
641
1281
575
897
372

Inv. ex.


24
B10
55
624
1288
618
910
364

Inv. ex.


25
B11
53
717
1252
660
912
345

Inv. ex.


26
B12
53
577
1261
422
897
360

Inv. ex.


27
B13
53
593
1280
685
902
365

Inv. ex.


28
B14
51
662
1255
697
920
353

Inv. ex.


29
B15
55
705
1251
411
915
361

Comp. ex.


30
C1
51
684
1254
491
915
346

Comp. ex.


31
C2
55
699
1251
645
898
375

Inv. ex.


32
C3
53
717
1286
679
902
368

Inv. ex.


33
C4
51
717
1249
474
913
369

Inv. ex.


34
C5
55
562
1250
502
918
365

Inv. ex.


35
C6
53
725
1244
502
905
354

Inv. ex.


36
C7
51
688
1270
595
909
366

Inv. ex.


37
C8
55
713
1261
697
898
371

Inv. ex.


38
C9
54
693
1271
670
911
364

Inv. ex.


39
C10
55
612
1283
499
898
370

Inv. ex.


40
C11
55
712
1270
462
923
369

Inv. ex.


41
C12
55
568
1259
527
901
349

Inv. ex.


42
C13
55
687
1290
677
901
346

Inv. ex.


43
C14
51
554
1244
688
895
372

Comp. ex.


44
D1
54
643
1243
458
910
368

Inv. ex.


45
D2
51
626
1268
686
919
374

Inv. ex.


46
D3
54
707
1274
611
925
368

Inv. ex.


47
D4
55
605
1271
618
925
372

Inv. ex.


48
D5
53
719
1247
421
916
357

Inv. ex.


49
D6
51
677
1256
655
901
372

Inv. ex.


50
D7
52
551
1286
623
925
362

Inv. ex.


51
D8
55
575
1246
406
900
361

Inv. ex.














Preheating step



















Hot rolling step


Average







Finish rolling
Coiling

cooling














final stage
step

speed down
Hot stamping step



















rolling
Coiling
Heating
to less than
Heating
Holding




Test

reduction
temp.
temp.
350° C.
temp.
time


no
Steel
%
° C.
° C.
° C./s
° C.
s
Others
Remarks





52
D9
55
703
1271
481
905
355

Comp. ex.


53
E1
52
585
1242
684
921
355

Inv. ex.


54
E2
51
653
1249
438
918
375

Inv. ex.


55
E3
54
591
1289
539
911
348

Inv. ex.


56
E4
54
589
1250
496
916
357

Inv. ex.


57
E5
55
580
1245
640
918
374

Inv. ex.


58
E6
53
619
1253
402
915
373

Inv. ex.


59
E7
52
585
1253
538
907
361

Inv. ex.


60
E8
52
630
1281
467
897
356

Inv. ex.


61
E9
54
627
1273
515
904
346

Comp. ex.


62
F1
54
571
1287
680
922
348

Inv. ex.


63
F2
55
710
1254
424
904
367

Inv. ex.


64
F3
53
566
1258
570
905
357

Inv. ex.


65
F4
52
627
1275
599
900
369

Inv. ex.


66
F5
55
721
1279
609
914
353

Inv. ex.


67
F6
51
675
1271
593
911
362

Inv. ex.


68
F7
53
602
1274
586
902
361

Inv. ex.


69
F8
51
679
1287
406
906
359

Inv. ex.


70
F9
55
580
1278
499
920
354

Comp. ex.


71
G1
55
619
1244
646
916
348

Inv. ex.


72
G2
52
650
1264
485
921
359

Inv. ex.


73
G3
52
675
1279
699
913
354

Inv. ex.


74
G4
51
696
1265
608
910
354

Inv. ex.


75
G5
52
587
1265
415
916
364

Inv. ex.


76
G6
54
590
1290
582
915
355

Inv. ex.


77
G7
54
595
1269
438
902
348

Inv. ex.


78
G8
55
623
1268
649
901
364

Comp. ex.


79
H1
51
586
1287
641
914
346

Comp. ex.


80
H2
52
674
1281
457
925
366

Inv. ex.


81
H3
54
690
1278
687
905
359

Inv. ex.


82
H4
55
701
1270
416
904
362

Inv. ex.


83
H5
54
603
1270
443
916
347

Inv. ex.


84
H6
51
607
1269
622
901
345

Inv. ex.


85
H7
51
591
1271
680
916
345

Inv. ex.


86
H8
53
701
1262
636
914
345

Inv. ex


87
H9
51
552
1252
651
899
345

Inv. ex.


88
H10
55
672
1283
483
909
367

Inv. ex.


89
H11
54
612
1259
490
920
350

Inv. ex.


90
H12
51
648
1253
645
903
372

Inv. ex.


91
H13
53
558
1281
466
925
362

Inv. ex.


92
H14
51
585
1266
559
920
372

Comp. ex.


93
I1
53
717
1266
526
924
355

Comp. ex.


94
I2
51
702
1264
556
897
367

Inv. ex.


95
I3
51
611
1269
527
901
366

Inv. ex.


96
I4
52
721
1274
556
895
374

Inv. ex.


97
I5
55
708
1282
698
897
346

Inv. ex.


98
I6
53
559
1272
491
896
363

Inv. ex.


99
I7
51
715
1254
576
907
363

Inv. ex.


100
18
51
653
1262
579
903
374

Inv. ex.


101
I9
52
662
1263
466
911
361

Inv. ex.


102
I10
53
714
1269
678
923
375

Inv. ex.














Preheating step



















Hot rolling step


Average







Finish rolling
Coiling

cooling














final stage
step

speed down
Hot stamping step



















rolling
Coiling
Heating
to less than
Heating
Holding




Test

reduction
temp.
temp.
350° C.
temp.
time


no.
Steel
%
° C.
° C.
0° C./s
° C.
s
Others
Remarks





103
I11
54
671
1248
471
921
368

Inv. ex.


104
I12
52
566
1241
430
911
346

Inv. ex.


105
I13
55
629
1281
593
898
347

Inv. ex.


106
I14
52
637
1252
687
903
351

Comp. ex.


107
J1
51
650
1284
613
914
348

Comp. ex.


108
J2
51
714
1267
651
910
375

Inv. ex.


109
J3
53
726
1255
665
923
369

Inv. ex.


110
J4
51
557
1277
418
903
354

Inv. ex.


111
J5
53
601
1282
571
920
349

Inv. ex.


112
J6
55
695
1255
553
923
365

Inv. ex.


113
J7
51
673
1267
575
910
355

Inv. ex.


114
J8
55
691
1280
474
922
357

Inv. ex


115
J9
55
682
1264
510
925
356

Inv. ex.


116
J10
51
671
1265
541
924
346

Inv. ex.


117
J11
54
638
1285
631
910
368

Inv. ex.


118
J12
54
724
1244
503
904
375

Comp. ex.


119
K1
51
652
1272
569
906
347

Comp. ex.


120
K2
53
642
1249
637
917
363

Inv. ex.


121
K3
52
724
1284
471
897
353

Inv. ex.


122
K4
52
660
1240
689
921
360

Inv. ex.


123
KS
51
652
1280
417
902
350

Inv. ex


124
K6
55
696
1247
671
919
348

Inv. ex.


125
K7
55
551
1259
566
921
372

Inv. ex.


126
K8
55
588
1256
596
912
372

Inv. ex.


127
K9
54
694
1242
664
915
368

Inv. ex.


128
K10
53
658
1284
529
899
362

Inv. ex.


129
K11
53
674
1263
696
925
352

Inv. ex


130
K12
53
593
1289
493
897
374

Inv. ex.


131
K13
51
720
1258
636
896
359

Inv. ex.


132
K14
51
689
1268
501
895
359

Comp. ex.


133
L1
53
645
1254
410
913
355

Comp. ex.


134
L2
51
627
1260
628
925
353

Inv. ex.


135
L3
55
691
1282
679
905
352

Inv. ex


136
L4
52
572
1257
559
913
365

Inv. ex.


137
L5
52
714
1259
562
917
358

Inv. ex.


138
L6
54
657
1264
443
917
367

Inv. ex


139
L7
52
653
1281
433
917
368

Inv. ex.


140
L8
52
559
1273
454
897
354

Inv. ex.


141
L9
55
722
1265
565
912
362

Inv. ex.


142
L10
55
669
1250
476
919
349

Inv. ex.


143
L11
51
676
1286
541
915
365

Inv. ex.


144
L12
53
708
1243
676
904
363

Inv. ex


145
L13
53
606
1259
556
898
356

Comp. ex.


146
M1
52
720
1289
414
896
372

Comp. ex.


147
M2
53
608
1272
514
918
347

Inv. ex.


148
M3
54
627
1267
464
914
348

Inv. ex.


149
M4
55
586
1275
589
921
361

Inv. ex.


150
M5
51
575
1266
571
899
350

Inv. ex


151
M6
51
670
1259
427
921
353

Inv. ex.


152
M7
54
624
1267
433
919
358

Inv. ex.


153
M8
51
595
1276
462
915
359

Inv. ex.














Preheating step



















Hot rolling step


Average







Finish rolling
Coiling

cooling














final stage
step

speed down
Hot stamping step



















rolling
Coiling
Heating
to less than
Heating
Holding




Test

reduction
temp.
temp.
350° C.
temp.
time


no.
Steel
%
° C.
° C.
° C./s
° C.
s
Others
Remarks





154
M9
55
652
1277
630
909
358

Inv. ex.


155
M10
52
643
1256
662
912
357

Inv. ex.


156
M11
53
667
1251
516
896
372

Comp. ex.


157
N1
52
642
1256
552
915
354

Inv. ex.


158
N2
51
652
1276
439
908
364

Inv. ex.


159
N3
54
722
1278
663
898
370

Inv. ex.


160
N4
55
687
1288
469
909
368

Inv. ex.


161
N5
54
561
1265
504
918
374

Inv. ex.


162
N6
55
583
1279
492
895
366

Inv. ex.


163
N7
54
618
1284
668
909
364

Inv. ex.


164
N8
55
567
1270
490
912
357

Inv. ex.


165
N9
53
719
1269
685
920
360

Inv. ex.


166
N10
55
635
1262
578
906
366

Inv. ex.


167
N11
52
616
1273
466
921
357

Inv. ex.


168
N12
54
673
1272
521
921
359

Inv. ex.


169
N13
54
629
1282
442
909
366

Inv. ex.


170
O1
54
694
1290
434
919
356

Inv. ex.


171
O2
54
581
1263
648
905
357

Inv. ex.


172
O3
52
612
1279
495
923
348

Inv. ex.


173
O4
52
609
1278
563
896
364

Inv. ex.


174
O5
51
599
1266
466
920
371

Inv. ex.


175
O6
52
654
1249
695
913
365

Inv. ex.


176
O7
52
658
1256
544
899
375

Inv. ex.


177
O8
53
601
1248
587
924
369

Inv. ex.


178
O9
51
601
1274
403
908
345

Inv. ex.


179
O10
54
716
1268
424
912
371

Inv. ex.


180
O11
55
581
1251
476
898
351

Inv. ex.


181
O12
53
633
1271
642
901
372

Inv. ex.


182
P1
54
672
1289
434
901
347

Inv. ex.


183
P2
52
728
1249
420
899
357

Inv. ex.


184
P3
51
668
1281
525
904
370

Inv. ex.


185
P4
51
584
1283
690
913
370

Inv. ex.


186
P5
54
587
1275
420
910
356

Inv. ex.


187
P6
55
570
1286
524
896
348

Inv. ex.


188
P7
51
649
1267
485
924
369

Inv. ex.


189
P8
52
710
1240
611
909
356

Inv. ex.


190
P9
54
554
1276
697
916
360

Inv. ex.


191
P10
51
715
1273
586
924
350

Inv. ex.


192
P11
51
617
1280
677
906
371

Inv. ex.


193
P12
51
612
1266
636
896
347

Inv. ex.


194
Q1
52
567
1287
672
896
351

Inv. ex.


195
Q2
53
625
1258
596
905
358

Inv. ex.


196
Q3
53
713
1288
615
914
348

Inv. ex.


197
Q4
54
667
1270
410
897
354

Inv. ex.


198
Q5
53
642
1288
565
899
349

Inv. ex.


199
Q6
54
689
1288
693
922
361

Inv. ex.


200
Q7
53
647
1268
463
922
366

Inv. ex.


201
Q8
51
616
1284
503
906
362

Inv. ex.


202
Q9
54
612
1280
472
922
352

Inv. ex.


203
Q10
52
716
1289
415
897
347

Inv. ex.


204
Q11
51
681
1259
471
912
345

Inv. ex.














Preheating step



















Hot rolling step


Average







Finish rolling
Coiling

cooling














final stage
step

speed down
Hot stamping step



















rolling
Coiling
Heating
to less than
Heating
Holding




Test

reduction
temp.
temp.
350° C.
temp.
time


no.
Steel
%
° C.
° C.
° C./s
° C.
s
Others
Remarks





205
Q12
51
662
1249
696
906
345

Inv. ex.


206
R1
52
720
1260
492
897
359

Inv. ex.


207
R2
53
612
1261
550
914
370

Inv. ex.


208
R3
51
619
1261
584
912
348

Inv. ex.


209
R4
53
594
1254
487
898
346

Inv. ex.


210
R5
51
611
1259
698
900
355

Inv. ex.


211
R6
54
574
1255
601
901
368

Inv. ex.


212
R7
52
632
1267
503
917
372

Inv. ex.


213
R8
51
613
1244
531
910
349

Inv. ex.


214
S1
55
584
1261
602
916
351

Inv. ex.


215
S2
51
564
1244
554
910
361

Inv. ex.


216
S3
53
677
1249
439
904
372

Inv. ex.


217
S4
55
588
1261
447
911
372

Inv. ex.


218
S5
52
583
1247
519
901
357

Inv. ex.


219
S6
52
664
1275
699
911
350

Inv. ex.


220
S7
52
550
1264
692
916
355

Inv. ex.


221
S8
54
707
1240
466
904
374

Inv. ex.


222
T1
55
728
1256
525
898
374

Inv. ex.


223
T2
54
558
1277
680
906
345

Inv. ex.


224
T3
55
680
1247
490
906
365

Inv. ex.


225
T4
54
574
1271
548
911
345

Inv. ex.


226
T5
55
694
1252
467
922
372

Inv. ex.


227
T6
54
677
1273
621
921
371

Inv. ex.


228
T7
51
588
1253
490
913
352

Inv. ex.


229
T8
51
650
1247
469
912
369

Inv. ex.


230
U1
51
590
1253
448
909
369

Inv. ex.


231
U2
52
556
1264
547
919
373

Inv. ex.


232
U3
55
587
1263
424
919
375

Inv. ex.


233
U4
53
586
1276
581
903
346

Inv. ex.


234
U5
54
646
1282
620
906
352

Inv. ex.


235
U6
51
693
1269
517
915
349

Inv. ex.


236
U7
54
556
1241
650
912
355

Inv. ex.


237
U8
54
645
1277
520
909
364

Inv. ex.


238
V1
52
666
1285
652
911
370

Inv. ex.


239
V2
55
634
1273
574
900
365

Inv. ex.


240
V3
51
568
1252
545
910
354

Inv. ex.


241
V4
54
556
1288
442
897
347

Inv. ex.


242
V5
55
689
1250
404
911
353

Inv. ex.


243
V6
55
571
1288
474
922
359

Inv. ex.


244
V7
51
729
1276
676
897
373

Inv. ex.


245
V8
54
669
1250
569
897
353

Inv. ex.


246
W1
54
696
1274
619
904
346

Inv. ex.


247
W2
53
606
1257
517
914
345

Inv. ex.


248
W3
51
676
1289
456
903
357

Inv. ex.


249
W4
53
642
1253
653
907
354

Inv. ex.


250
W5
51
671
1256
510
913
373

Inv. ex.


251
W6
54
660
1287
692
897
357

Inv. ex.


252
W7
55
610
1270
694
909
374

Inv. ex.


253
W8
54
555
1269
698
896
358

Inv. ex.


254
X1
54
663
1246
629
903
368

Inv. ex.


255
X2
54
628
1240
473
918
375

Inv. ex.














Preheating step



















Hot rolling step


Average







Finish rolling
Coiling

cooling














final stage
step

speed down
Hot stamping step



















rolling
Coiling
Heating
to less than
Heating
Holding




Test

reduction
temp.
temp.
350° C.
temp.
time


no.
Steel
%
° C.
° C.
° C./s
° C.
s
Others
Remarks





256
X3
52
624
1282
508
895
356

Inv. ex.


257
Y1
55
657
1249
546
907
361

Inv. ex.


258
Y2
55
672
1277
480
919
358

Inv. ex.


259
Y3
53
667
1250
596
899
370

Inv. ex.


260
Y4
52
685
1243
650
910
349

Inv. ex.


261
Y5
53
555
1248
509
901
358

Inv. ex.


262
Y6
55
639
1288
466
914
350

Inv. ex.


263
Y7
54
644
1255
589
919
356

Inv. ex.


264
Y8
53
631
1266
690
911
366

Inv. ex.


265
Y9
54
653
1264
436
915
349

Inv. ex.


266
Y10
55
639
1265
553
914
364

Inv. ex.


267
Z1
51
653
1280
690
900
367

Inv. ex.


268
Z2
54
603
1253
697
912
369

Inv. ex.


269
Z3
54
620
1273
592
920
366

Inv. ex.


270
Z4
55
700
1277
505
910
373

Inv. ex.


271
Z5
53
601
1275
548
906
351

Inv. ex.


272
Z6
54
615
1242
421
902
365

Inv. ex.


273
Z7
52
650
1264
517
903
356

Inv. ex.


274
Z8
55
645
1256
678
919
374

Inv. ex.


275
Z9
53
568
1283
436
923
358

Inv. ex.


276
Z10
51
698
1245
688
925
371

Inv. ex.


277
AA1
51
656
1260
412
897
375

Inv. ex.


278
AA2
54
724
1261
557
896
375

Inv. ex.


279
AA3
53
627
1262
449
898
373

Inv. ex.


280
AA4
52
565
1263
547
920
355

Inv. ex.


281
AA5
55
612
1261
583
925
354

Inv. ex.


282
AA6
53
727
1284
693
910
373

Inv. ex.


283
AA7
55
682
1286
445
917
347

Inv. ex.


284
AA8
51
579
1257
670
922
361

Inv. ex.


285
AA9
51
648
1270
522
897
364

Inv. ex.


286
AA10
52
704
1242
532
923
346

Inv. ex.


287
BB1
53
581
1243
430
897
356

Inv. ex.


288
BB2
52
710
1257
475
923
356

Inv. ex.


289
BB3
54
622
1288
663
900
359

Inv. ex.


290
BB4
52
564
1245
518
914
349

Inv. ex.


291
BB5
52
724
1286
557
911
371

Inv. ex.


292
BB6
54
606
1267
696
898
367

Inv. ex.


293
BB7
52
639
1277
501
914
348

Inv. ex.


294
BB8
53
707
1248
588
925
365

Inv. ex.


295
BB9
54
553
1277
476
901
370

Inv. ex.


296
BB10
54
632
1284
487
908
359

Inv. ex.


297
CC1
55
676
1251
560
908
354

Inv. ex.


298
CC2
54
627
1241
504
915
371

Inv. ex.


299
CC3
51
668
1264
486
914
364

Inv. ex.


300
CC4
52
672
1272
552
898
361

Inv. ex.


301
CC5
53
608
1266
464
919
354

Inv. ex.


302
CC6
55
607
1252
681
922
351

Inv. ex.


303
CC7
52
607
1253
584
909
349

Inv. ex.


304
CC8
54
647
1279
458
916
358

Inv. ex.


305
CC9
54
727
1256
634
901
371

Inv. ex.


306
CC10
54
668
1258
536
915
361

Inv. ex.














Preheating step



















Hot rolling step


Average







Finish rolling
Coiling

cooling














final stage
step

speed down
Hot stamping step



















rolling
Coiling
Heating
to less than
Heating
Holding




Test

reduction
temp.
temp.
350° C.
temp.
time


no.
Steel
%
° C.
° C.
° C./s
° C.
s
Others
Remarks





307
DD1
55
723
1275
692
920
371

Inv. ex.


308
DD2
51
656
1284
616
916
373

Inv. ex.


309
DD3
53
568
1246
681
901
345

Inv. ex.


310
DD4
52
696
1244
687
917
353

Inv. ex.


311
DD5
55
628
1273
503
917
370

Inv. ex.


312
DD6
55
584
1284
584
925
359

Inv. ex.


313
DD7
54
595
1260
680
895
365

Inv. ex.


314
DD8
52
647
1278
433
910
363

Inv. ex.


315
DD9
52
565
1252
413
896
348

Inv. ex.


316
DD10
55
680
1256
442
901
364

Inv. ex.


317
EE1
53
657
1261
687
925
345

Inv. ex.


318
EE2
51
612
1241
419
909
361

Inv. ex.


319
EE3
54
565
1241
656
911
359

Inv. ex.


320
EE4
51
596
1289
550
922
356

Inv. ex.


321
EE5
53
567
1279
698
895
366

Inv. ex.


322
EE6
51
719
1246
619
924
354

Inv. ex.


323
EE7
51
578
1256
508
898
373

Inv. ex.


324
EE8
51
704
1278
444
904
364

Inv. ex.


325
EE6

16

609
1254
682
915
370

Comp. ex.


326
EE6
43
573
1244
470
914
346

Inv. ex.


327
EE6
50
575
1246
640
914
375

Inv. ex.


328
EE6
54
547
1270
662
920
364

Inv. ex.


329
EE6
55
612
1284
465
918
356

Inv. ex.


330
EE6
52
666
1243
561
902
364

Inv. ex.


331
EE6
55
712
1274
571
922
375

Inv. ex.


332
EE6
51
728
1241
696
901
350

Inv. ex.


333
EE6
54

769

1267
422
919
372

Comp. ex.


334
EE6
52
 28
1249
419
915
362
Softening treatment
Inv. ex.


335
EE6
51
261
1290
567
909
349
Softening treatment
Inv. ex.


336
EE6
54
421
1290
486
896
363
Softening treatment
Inv. ex.


337
EE6
55
714
1278
568
916
349
No cold rolling
Inv. ex.


338
EE6
55
703
1289
550
902
357
Annealing
Inv. ex.


339
EE6
51
612
1268
524
918
366
Al plating
Inv. ex.


340
EE6
55
723
1270
584
905
369
Al—Zn plating
Inv. ex.


341
EE6
51
582
1245
689
908
368
Al—Si plating
Inv. ex.


342
EE6
54
575
1240
552
924
349
Hot dip galvanization
Inv. ex.


343
EE6
51
576
1290
485
908
358
Electrogalvanization
Inv. ex.


344
EE6
54
720
1257
529
906
349
Hot dip galvannealing
Inv. ex.


345
EE6
51
582
1275
677
916
345
Zn—Ni plating
Inv. ex.


346
EE6
54
702
1262
669
915
368
Al—Mg—Zn plating
Inv. ex.


347
EE6
55
619
1281
455
905
352
Temper rolling
Inv. ex.


348
EE6
54
596

1160

617
906
351

Comp. ex.


349
EE6
51
593
1220
657
914
374

Inv. ex.


350
EE6
51
579
1250
665
922
374

Inv. ex.


351
EE6
55
614
1280
639
919
345

Inv. ex.


352
EE6
55
561
1320
418
904
361

Inv. ex.


353
EE6
53
619
1390
686
897
353

Inv. ex.


354
EE6
51
665
1287
6
914
366

Comp. ex.


355
EE6
53
679
1271
 12
925
375

Inv. ex.


356
EE6
53
720
1248
 53
915
361

Inv. ex.


357
EE6
51
681
1271
110
898
359

Inv. ex.
















Hot rolling

Preheating step



















step


Average







Finish


cooling




rolling
Coiling

speed














final stage
step

down to
Hot stamping step



















rolling
Coiling
Heating
less than
Heating
Holding




Test

reduction
temp.
temp
350° C.
temp.
time


no.
Steel
%
° C.
° C.
° C./s
° C.
s
Others
Remarks





358
EE6
52
641
1276
230
906
354

Inv. ex.


359
EE6
55
615
1266
509
920
370

Inv. ex.


360
EE6
55
655
1241
1021
901
355

Inv. ex.


361
EE6
55
599
1275
530

752

370

Comp. ex.


362
EE6
53
579
1279
676
804
353

Inv. ex.


363
EE6
54
583
1266
402
824
374

Inv. ex.


364
EE6
53
617
1272
524
840
371

Inv. ex.


365
EE6
52
713
1279
660
854
362

Inv. ex.


366
EE6
55
577
1280
513
868
347

Inv. ex.


367
EE6
52
593
1290
612
879
358

Inv. ex.


368
EE6
54
633
1274
496
888
359

Inv. ex.


369
EE6
54
690
1269
611
904
359

Inv. ex.


370
EE6
54
619
1269
511
922
350

Inv. ex.


371
EE6
55
728
1251
542
936
364

Inv. ex.


372
EE6
53
607
1277
474
953
347

Inv. ex.


373
EE6
54
602
1290
573
971
370

Inv. ex.


374
EE6
53
616
1245
428
986
357

Inv. ex.


375
EE6
53
629
1275
678

1021

356

Comp. ex.


376
EE6
53
573
1279
468
925
48

Comp. ex.


377
EE6
53
571
1246
493
915
 65

Inv. ex.


378
EE6
52
676
1247
679
925
 87

Inv. ex.


379
EE6
53
683
1281
685
910
102

Inv. ex.


380
EE6
51
589
1284
430
903
143

Inv. ex.


381
EE6
51
633
1263
625
897
199

Inv. ex


382
EE6
55
566
1287
508
909
241

Inv. ex.


383
EE6
52
643
1267
669
917
297

Inv. ex.


384
EE6
54
605
1276
607
902
337

Inv. ex


385
EE6
55
602
1264
430
920
371

Inv. ex.


386
EE6
54
641
1248
405
897
396

Inv. ex.


387
EE6
53
718
1269
566
921
444

Inv. ex.


388
EE6
53
595
1244
488
918
487

Inv. ex.


389
EE6
51
568
1262
672
909
533

Inv. ex.


390
EE6
51
559
1258
545
896
571

Inv. ex.


391
EE6
53
716
1289
444
920
589

Inv. ex.


392
EE6
52
554
1252
461
922

631


Comp. ex.


393
EE6
54
578
1264
491
907
352
Gas combustion atmosphere
Inv. ex.










(air-fuel ratio 0.80)


394
EE6
53
600
1255
699
924
369
Gas combustion atmosphere
Inv. ex.










(air-fuel ratio 0.85)


395
EE6
51
639
1260
432
908
370
Gas combustion atmosphere
Inv. ex.










(air-fuel ratio 1.1)


396
EE6
54
689
1252
491
909
348
Ambient air
Inv. ex.


397
EE6
51
722
1256
628
897
364
Nitrogen gas (dew point −30° C.)
Inv. ex.


398
EE6
53
570
1256
577
914
374
Nitrogen gas (dew point 0° C.)
Inv. ex.


399
EE6
55
617
1253
582
910
358
Nitrogen gas (dew point +10° C.)
Inv. ex.


400
EE6
52
553
1246
532
911
361
Ohmic heating
Inv. ex.


401
EE6
51
671
1248
530
901
347
Tempering temp. 152° C.
Inv. ex.


402
EE6
53
645
1259
685
901
347
Tempering temp. 170° C.
Inv. ex.


403
EE6
54
591
1240
642
907
348
Tempering temp. 201° C.
Inv. ex.


404
EE6
51
606
1273
467
920
353
Tempering temp. 341° C.
Inv. ex.


405
EE6
51
565
1269
572
906
374
Tempering temp. 433° C.
Inv. ex.


406
EE6
53
567
1258
607
913
366
Tempering temp. 521° C.
Inv. ex.


407
EE6
52
568
1252
601
919
375
Tempering temp. 591° C.
Inv. ex.


408
EE6
55
585
1244
698
901
355
Partial softening treatment
Inv. ex.





Underlines show values of properties which are not preferable.






The properties of the obtained hot stamped bodies were measured and evaluated by the following methods:


[Tensile Strength (TS)]

The tensile strength (TS) of a hot stamped body was obtained from any position of the hot stamped body by preparing a No. 5 test piece, removing the surface layer parts of the front and back surfaces of the test piece by machine grinding, and conducting a tensile test based on JIS Z 2241: 2011. The crosshead speed was 1 mm/min. If early fracture occurred at the time of the tensile test, i.e., if fracture occurred before reaching the maximum stress, the tensile strength of the hot stamped body was made the stress at the time of fracture.


[Early Fracture Resistance]

The early fracture resistance was evaluated by the value of the tensile strength of the hot stamped body obtained by the above method divided by the value of the Vickers hardness obtained by the following method times 3.3 (tensile strength/(Vickers hardness×3.3)). If this value was 0.80 or more, the hot stamped body was deemed excellent in early fracture resistance and judged as passing while if it was less than 0.80, it was judged as failing. The “value of the Vickers hardness times 3.3” is the tensile strength estimated from the hardness. If the measured value of the tensile strength is 0.80 time or more of the estimated tensile strength, the hot stamped body can be judged to be excellent in early fracture resistance.


The Vickers hardness used for evaluation of early fracture resistance was obtained by the following method. First, a sample was cut out from any position 50 mm or more from the end faces of the hot stamped body so as to enable a cross-section vertical to the surface (sheet thickness cross-section) to be examined. The size of the sample, while depending also on the measuring device, was made a size enabling 10 mm or so to be examined in a direction vertical to the sheet thickness direction. The cross-section of the sample was polished using #600 to #1500 silicon carbide paper, then a liquid comprised of particle size 1 to 6 μm diamond powder dispersed in alcohol or other diluent or pure water was used to polish the surface to a mirror finish. The mirror finished cross-section was measured for hardness at a ¼ depth position of the sheet thickness from the surface in a direction parallel to the sheet surface by a load of 1 kgf at intervals of 3 times or more the indents using a microVickers hardness tester. A total of 20 points were measured and the average value was calculated to thereby obtain the Vickers hardness.


A case where the tensile strength was 2200 MPa or more and the above numerical value relating to the early fracture resistance was 0.80 or more was evaluated as a hot stamped body which is high in strength and able to suppress early fracture. The results are shown in Table 3. The “area ratio of hard structures” in Table 3 means the total of the area ratios of the martensite, bainite, and tempered martensite. Further, the balance of the structures other than the hard structures was comprised of ferrite, retained austenite, and/or pearlite. While not shown in Table 3, when measuring the standard deviation in the grain size distribution of the former austenite grains, the grain size of the former austenite grains of the hot stamped bodies in the invention examples in Table 3 was 10 tm or less in all cases.
















TABLE 3










Standard
Amount of segregation of






Area ratio
deviation of grain
former γ grain boundaries

Early

















of hard
size distribution
Amount of
Total amount
Tensile
fracture



Test

structures
of former γ grains
segregation of
of segregation
strength
resistance


no.
Steel
%
μm
Mo atm %
atm %
MPa
evaluation
Remarks


















1
A1
100 
2.2
0.13
0.13

2173

0.93
Comp. ex.


2
A2
100 
1.9
0.14
0.14
2251
0.92
Inv. ex.


3
A3
97
2.5
0.14
0.14
2347
0.92
Inv. ex.


4
A4
99
2.1
0.14
0.14
2423
0.94
Inv. ex.


5
A5
97
2.5
0.13
0.13
2472
0.92
Inv. ex.


6
A6
99
1.9
0.13
0.13
2497
0.93
Inv. ex.


7
A7
100 
2.1
0.14
0.14
2517
0.94
Inv. ex.


8
A8
97
2.3
0.14
0.14
2600
0.88
Inv. ex.


9
A9
99
2.1
0.14
0.14
2697
0.87
Inv. ex.


10
A10
100 
2.1
0.13
0.13
2802
0.88
Inv. ex.


11
A11
99
1.9
0.13
0.13
3001
0.88
Inv. ex.


12
A12
99
2.1
0.13
0.13
3097
0.81
Inv. ex.


13
A13
100 
2.0
0.14
0.14
3203
0.80
Inv. ex.


14
A14
100
2.1
0.14
0.14
2517

0.48

Comp. ex.


15
B1
99
1.9
0.13
0.13

2170

0.91
Comp. ex.


16
B2
100 
2.1
0.14
0.14
2252
0.94
Inv. ex.


17
B3
97
2.0
0.13
0.13
2289
0.93
Inv. ex.


18
B4
100 
2.0
0.14
0.14
2347
0.94
Inv. ex.


19
B5
98
2.0
0.14
0.14
2388
0.91
Inv. ex.


20
B6
100 
1.9
0.14
0.14
2417
0.93
Inv. ex.


21
B7
100 
2.1
0.13
0.13
2468
0.93
Inv. ex.


22
B8
98
2.2
0.13
0.13
2498
0.90
Inv. ex.


23
B9
99
1.9
0.14
0.14
2518
0.91
Inv. ex.


24
B10
99
2.3
0.14
0.14
2541
0.92
Inv. ex.


25
B11
96
1.9
0.14
0.14
2351
0.87
Inv. ex.


26
B12
93
1.9
0.14
0.14
2290
0.80
Inv. ex.


27
B13
91
2.5
0.13
0.13
2248
0.80
Inv. ex.


28
B14
93
1.9
0.14
0.14
2212
0.85
Inv. ex.


29
B15

74

2.3
0.13
0.13

2172

0.80
Comp. ex.


30
C1
97

6.1

0.14
0.14
2420

0.73

Comp. ex.


31
C2
99
4.4
0.14
0.14
2412
0.81
Inv. ex.


32
C3
99
3.8
0.13
0.13
2464
0.87
Inv. ex.


33
C4
98
3.4
0.13
0.13
2447
0.87
Inv. ex.


34
C5
100 
2.1
0.13
0.13
2401
0.92
Inv. ex.


35
C6
99
2.4
0.13
0.13
2528
0.90
Inv. ex.


36
C7
98
2.0
0.14
0.14
2536
0.94
Inv. ex


37
C8
100 
1.9
0.13
0.13
2518
0.90
Inv. ex.


38
C9
98
2.1
0.14
0.14
2524
0.90
Inv. ex.


39
C10
97
2.0
0.14
0.14
2410
0.92
Inv. ex.


40
C11
100 
2.8
0.14
0.14
2534
0.87
Inv. ex.


41
C12
99
2.9
0.13
0.13
2522
0.88
Inv. ex.


42
C13
98
4.7
0.13
0.13
2476
0.80
Inv. ex.


43
C14
97

5.8

0.13
0.13
2500

0.51

Comp. ex.


44
D1
99
2.3
0.14
0.14
2472
0.93
Inv. ex.


45
D2
97
2.2
0.13
0.13
2438
0.94
Inv. ex.


46
D3
98
2.0
0.14
0.14
2527
0.93
Inv. ex.


47
D4
100 
1.9
0.14
0.14
2502
0.91
Inv. ex.


48
D5
97
2.4
0.14
0.14
2422
0.89
Inv. ex.


49
D6
99
2.4
0.14
0.14
2534
0.86
Inv. ex.


50
D7
97
1.9
0.13
0.13
2464
0.88
Inv. ex.


51
D8
97
2.4
0.14
0.14
2439
0.85
Inv. ex.


52
D9
100 
2.2
0.13
0.13
2510
0.76
Comp. ex.


53
E1
100 
2.0
0.14
0.14
2492
0.90
Inv. ex.


54
E2
99
2.1
0.14
0.14
2469
0.94
Inv. ex.


55
E3
97
2.5
0.13
0.13
2515
0.90
Inv. ex.


56
E4
99
2.5
0.13
0.13
2475
0.93
Inv. ex.


57
E5
98
1.9
0.13
0.13
2467
0.93
Inv. ex.


58
E6
100 
2.0
0.14
0.14
2410
0.89
Inv. ex.


59
E7
98
2.1
0.13
0.13
2485
0.87
Inv. ex.


60
E8
100 
1.9
0.13
0.13
2522
0.80
Inv. ex.


61
E9
97
2.0
0.14
0.14
2489
0.43
Comp. ex.


62
F1
100 
2.5
0.14
0.14
2448
0.93
Inv. ex.


63
F2
97
2.1
0.14
0.14
2457
0.91
Inv. ex.


64
F3
100 
2.2
0.14
0.14
2424
0.91
Inv. ex.


65
F4
100 
2.1
0.13
0.13
2507
0.94
Inv. ex.


66
F5
97
2.5
0.13
0.13
2474
0.89
Inv. ex.


67
F6
98
2.4
0.13
0.13
2406
0.88
Inv. ex.


68
F7
99
1.9
0.14
0.14
2473
0.80
Inv. ex.


69
F8
97
2.3
0.13
0.13
2417
0.82
Inv. ex.


70
F9
100 
2.3
0.14
0.14
2486

0.42

Comp. ex.


71
G1
100 
2.1
0.14
0.14
2539
0.91
Inv. ex.


72
G2
97
1.9
0.13
0.13
2459
0.94
Inv. ex.


73
G3
99
2.4
0.13
0.13
2432
0.91
Inv. ex.


74
G4
98
2.3
0.13
0.13
2490
0.93
Inv. ex.


75
G5
99
2.4
0.14
0.14
2452
0.86
Inv. ex.


76
G6
98
2.2
0.14
0.14
2451
0.86
Inv. ex.


77
G7
98
2.4
0.13
0.13
2442
0.85
Inv. ex.


78
G8
98
2.4
0.14
0.14
2540

0.51

Comp. ex.


79
H1
100 
2.0
0.14
0.14
2420

0.66

Comp. ex.


80
H2
97
2.4
0.13
0.13
2483
0.85
Inv. ex.


81
H3
98
2.5
0.14
0.14
2540
0.87
Inv. ex.


82
H4
97
2.0
0.13
0.13
2510
0.88
Inv. ex.


83
H5
97
2.5
0.14
0.14
2496
0.88
Inv. ex.


84
H6
97
2.1
0.14
0.14
2405
0.93
Inv. ex.


85
H7
97
1.9
0.14
0.14
2425
0.92
Inv. ex.


86
H8
100 
2.2
0.13
0.13
2427
0.90
Inv. ex.


87
H9
97
2.3
0.14
0.14
2500
0.90
Inv. ex.


88
H10
98
2.2
0.13
0.13
2478
0.86
Inv. ex.


89
H11
97
2.5
0.14
0.14
2539
0.88
Inv. ex.


90
H12
98
2.3
0.13
0.13
2452
0.87
Inv. ex.


91
H13
100 
2.3
0.13
0.13
2413
0.80
Inv. ex.


92
H14
100 
1.9
0.14
0.14
2471

0.50

Comp. ex.


93
I1
98
1.9
0.13
0.13

2093

0.90
Comp. ex.


94
I2
99
2.4
0.13
0.13
2218
0.94
Inv. ex.


95
I3
100 
2.0
0.14
0.14
2400
0.94
Inv. ex.


96
I4
98
2.4
0.14
0.14
2318
0.90
Inv. ex.


97
I5
100 
2.1
0.14
0.14
2398
0.92
Inv. ex.


98
I6
97
2.3
0.13
0.13
2466
0.94
Inv. ex.


99
I7
97
2.5
0.13
0.13
2488
0.93
Inv. ex.


100
I8
99
2.2
0.13
0.13
2412
0.91
Inv. ex.


101
I9
97
2.1
0.13
0.13
2496
0.90
Inv. ex.


102
I10
99
2.0
0.13
0.13
2434
0.94
Inv. ex.


103
I11
99
2.4
0.13
0.13
2446
0.88
Inv. ex.


104
I12
97
2.3
0.14
0.14
2466
0.89
Inv. ex.


105
I13
97
2.0
0.14
0.14
2480
0.81
Inv. ex.


106
I14
100 
2.1
0.14
0.14
2460

0.54

Comp. ex.


107
J1
100 
2.5
0.13
0.13

2005

0.92
Comp. ex.


108
J2
98
2.0
0.13
0.13
2230
0.94
Inv. ex.


109
J3
99
2.0
0.13
0.13
2303
0.92
Inv. ex.


110
J4
100 
2.1
0.14
0.14
2308
0.91
Inv. ex.


111
J5
98
2.0
0.13
0.13
2535
0.91
Inv. ex.


112
J6
100 
2.4
0.13
0.13
2406
0.94
Inv. ex.


113
J7
100 
2.3
0.14
0.14
2515
0.92
Inv. ex.


114
J8
98
1.9
0.13
0.13
2413
0.87
Inv. ex


115
J9
97
2.2
0.14
0.14
2546
0.89
Inv. ex.


116
J10
98
1.9
0.13
0.13
2521
0.82
Inv. ex.


117
J11
98
2.4
0.13
0.13
2537
0.80
Inv. ex.


118
J12
97
2.0
0.13
0.13
2523

0.51

Comp. ex.


119
K1
98
2.4
0.14
0.14

2008

0.90
Comp. ex.


120
K2
97
2.3
0.13
0.13
2295
0.92
Inv. ex.


121
K3
100 
2.4
0.14
0.14
2337
0.93
Inv. ex.


122
K4
99
1.9
0.13
0.13
2364
0.94
Inv. ex.


123
K5
98
2.0
0.13
0.13
2351
0.92
Inv. ex.


124
K6
100 
2.5
0.14
0.14
2321
0.94
Inv. ex.


125
K7
99
2.0
0.14
0.14
2522
0.93
Inv. ex.


126
K8
100 
2.1
0.13
0.13
2534
0.90
Inv. ex.


127
K9
100 
2.4
0.13
0.13
2407
0.93
Inv. ex.


128
K10
100 
1.9
0.13
0.13
2525
0.86
Inv. ex.


129
K11
99
2.2
0.13
0.13
2434
0.86
Inv. ex.


130
K12
98
2.4
0.14
0.14
2450
0.87
Inv. ex.


131
K13
100 
1.9
0.14
0.14
2484
0.81
Inv. ex.


132
K14
97
2.3
0.14
0.14
2518

0.52

Comp. ex.


133
L1
100 
2.1
0.05

0.05

2522

0.50

Comp. ex.


134
L2
98
2.2
0.11
0.11
2498
0.84
Inv. ex.


135
L3
98
2.3
0.14
0.14
2510
0.87
Inv. ex.


136
L4
99
2.1
0.14
0.14
2452
0.89
Inv. ex.


137
L5
97
2.3
0.14
0.14
2429
0.89
Inv. ex.


138
L6
99
1.9
0.16
0.16
2528
0.94
Inv. ex.


139
L7
99
2.4
0.19
0.19
2467
0.94
Inv. ex.


140
L8
100 
2.4
0.15
0.15
2407
0.90
Inv. ex.


141
L9
97
2.5
0.21
0.21
2493
0.88
Inv. ex.


142
L10
98
2.5
0.13
0.13
2521
0.88
Inv. ex.


143
L11
98
2.1
0.13
0.13
2426
0.89
Inv. ex.


144
L12
98
2.3
0.11
0.11
2436
0.84
Inv. ex.


145
L13
97
2.2
0.03

0.03

2446

0.73

Comp. ex.


146
M1
100 
2.4
0.14
0.14

2098

0.92
Comp. ex.


147
M2
99
2.4
0.13
0.13
2260
0.94
Inv. ex.


148
M3
99
1.9
0.14
0.14
2395
0.94
Inv. ex.


149
M4
99
1.9
0.13
0.13
2499
0.91
Inv. ex.


150
M5
99
2.3
0.14
0.14
2423
0.92
Inv. ex.


151
M6
97
2.3
0.13
0.13
2474
0.92
Inv. ex.


152
M7
98
2.1
0.13
0.13
2482
0.86
Inv. ex.


153
M8
100 
2.4
0.14
0.14
2448
0.89
Inv. ex.


154
M9
98
2.1
0.14
0.14
2436
0.85
Inv. ex.


155
M10
97
2.1
0.13
0.13
2505
0.84
Inv. ex.


156
M11
97
2.5
0.14
0.14
2464

0.66

Comp. ex.


157
N1
97
2.5
0.13
0.13
2726
0.93
Inv. ex.


158
N2
98
2.5
0.13
0.13
2979
0.93
Inv. ex.


159
N3
100 
2.1
0.14
0.14
2769
0.93
Inv. ex.


160
N4
99
2.1
0.13
0.13
2796
0.91
Inv. ex.


161
N5
98
1.9
0.14
0.14
2652
0.90
Inv. ex.


162
N6
98
2.2
0.14
0.14
2789
0.90
Inv. ex.


163
N7
100 
2.2
0.14
0.14
2965
0.91
Inv. ex.


164
N8
99
2.2
0.14
0.14
2580
0.93
Inv. ex.


165
N9
97
2.0
0.13
0.13
2936
0.91
Inv. ex.


166
N10
99
2.0
0.13
0.13
2910
0.91
Inv. ex.


167
N11
100 
2.4
0.14
0.14
2626
0.92
Inv. ex.


168
N12
100 
2.2
0.13
0.13
2922
0.93
Inv. ex.


169
N13
100 
1.9
0.13
0.13
2708
0.90
Inv. ex.


170
O1
97
2.1
0.14
0.14
2936
0.93
Inv. ex.


171
O2
98
2.2
0.14
0.14
2909
0.93
Inv. ex.


172
O3
99
2.4
0.13
0.13
2822
0.92
Inv. ex.


173
O4
98
2.3
0.13
0.13
2850
0.92
Inv. ex.


174
O5
100 
2.5
0.14
0.14
2892
0.90
Inv. ex.


175
O6
98
2.1
0.14
0.14
2648
0.93
Inv. ex.


176
O7
99
2.2
0.13
0.13
2810
0.91
Inv. ex.


177
O8
99
2.0
0.13
0.13
2570
0.90
Inv. ex.


178
O9
99
2.2
0.13
0.13
2682
0.92
Inv. ex.


179
O10
100 
2.2
0.13
0.13
2735
0.92
Inv. ex.


180
O11
97
2.5
0.14
0.14
2953
0.91
Inv. ex.


181
O12
98
2.1
0.14
0.14
2770
0.91
Inv. ex.


182
P1
98
2.4
0.13
0.13
2764
0.91
Inv. ex.


183
P2
98
2.1
0.13
0.13
2869
0.93
Inv. ex.


184
P3
100 
2.4
0.13
0.13
2739
0.90
Inv. ex.


185
P4
97
1.9
0.14
0.14
2623
0.90
Inv. ex.


186
P5
97
2.5
0.14
0.14
2581
0.92
Inv. ex.


187
P6
100 
1.9
0.13
0.13
2880
0.93
Inv. ex.


188
P7
100 
2.0
0.14
0.14
2603
0.91
Inv. ex.


189
P8
99
2.4
0.14
0.14
2557
0.94
Inv. ex.


190
P9
100 
2.4
0.14
0.14
2789
0.93
Inv. ex.


191
P10
99
2.3
0.14
0.14
2885
0.93
Inv. ex.


192
P11
98
2.0
0.14
0.14
2608
0.91
Inv. ex.


193
P12
98
2.5
0.13
0.13
2562
0.94
Inv. ex.


194
Q1
100 
2.1
0.14
0.14
2842
0.92
Inv. ex.


195
Q2
100 
2.3
0.14
0.14
2972
0.94
Inv. ex.


196
Q3
97
1.9
0.14
0.14
2593
0.93
Inv. ex.


197
Q4
99
2.5
0.13
0.13
2909
0.91
Inv. ex.


198
Q5
97
2.0
0.14
0.14
2621
0.91
Inv. ex.


199
Q6
98
2.4
0.14
0.14
2875
0.93
Inv. ex.


200
Q7
98
2.4
0.14
0.14
2561
0.91
Inv. ex.


201
Q8
97
2.3
0.13
0.13
2707
0.94
Inv. ex.


202
Q9
97
2.0
0.13
0.13
2946
0.90
Inv. ex.


203
Q10
99
2.3
0.13
0.13
2782
0.94
Inv. ex.


204
Q11
100 
2.1
0.13
0.13
2997
0.94
Inv. ex.


205
Q12
99
1.9
0.13
0.13
2677
0.92
Inv. ex.


206
R1
98
2.5
0.14
0.14
2404
0.90
Inv. ex.


207
R2
100 
1.9
0.14
0.14
2528
0.92
Inv. ex.


208
R3
99
2.2
0.14
0.14
2465
0.92
Inv. ex.


209
R4
97
1.9
0.13
0.13
2504
0.90
Inv. ex.


210
R5
99
1.9
0.13
0.13
2509
0.90
Inv. ex.


211
R6
99
1.9
0.14
0.14
2433
0.94
Inv. ex.


212
R7
98
2.2
0.14
0.14
2512
0.92
Inv. ex.


213
R8
98
2.4
0.13
0.13
2524
0.93
Inv. ex.


214
S1
98
2.1
0.13
0.13
2491
0.91
Inv. ex.


215
S2
100 
2.3
0.14
0.14
2462
0.94
Inv. ex.


216
S3
98
2.4
0.14
0.14
2427
0.90
Inv. ex.


217
S4
98
2.5
0.13
0.13
2513
0.93
Inv. ex.


218
S5
98
2.5
0.13
0.13
2472
0.94
Inv. ex.


219
S6
100 
2.5
0.14
0.14
2420
0.92
Inv. ex.


220
S7
98
2.3
0.14
0.14
2490
0.91
Inv. ex.


221
S8
100 
2.4
0.13
0.13
2534
0.90
Inv. ex.


222
T1
97
2.1
0.13
0.13
2407
0.92
Inv. ex.


223
T2
100 
2.4
0.13
0.13
2411
0.91
Inv. ex.


224
T3
98
2.4
0.14
0.14
2406
0.91
Inv. ex.


225
T4
98
2.5
0.14
0.14
2526
0.93
Inv. ex.


226
T5
100 
1.9
0.14
0.14
2481
0.90
Inv. ex.


227
T6
97
2.2
0.13
0.13
2509
0.92
Inv. ex.


228
T7
99
2.0
0.13
0.13
2540
0.92
Inv. ex.


229
T8
98
2.4
0.14
0.14
2413
0.92
Inv. ex.


230
U1
99
2.0
0.14
0.14
2538
0.92
Inv. ex.


231
U2
98
2.3
0.13
0.13
2446
0.92
Inv. ex.


232
U3
97
2.0
0.13
0.13
2541
0.90
Inv. ex.


233
U4
98
1.9
0.13
0.13
2510
0.93
Inv. ex.


234
U5
98
1.9
0.14
0.14
2406
0.94
Inv. ex.


235
U6
98
1.9
0.13
0.13
2407
0.93
Inv. ex.


236
U7
97
2.3
0.14
0.14
2444
0.92
Inv. ex.


237
U8
100 
2.0
0.13
0.13
2422
0.91
Inv. ex.


238
V1
98
1.9
0.13
0.13
2413
0.92
Inv. ex.


239
V2
99
2.3
0.14
0.14
2493
0.92
Inv. ex.


240
V3
97
2.1
0.14
0.14
2511
0.90
Inv. ex.


241
V4
99
2.5
0.14
0.14
2488
0.92
Inv. ex.


242
V5
99
2.0
0.13
0.13
2496
0.90
Inv. ex.


243
V6
98
2.1
0.14
0.14
2474
0.93
Inv. ex.


244
V7
97
2.0
0.14
0.14
2548
0.92
Inv. ex.


245
V8
99
2.2
0.14
0.14
2435
0.90
Inv. ex.


246
W1
98
2.3
0.14
0.14
2471
0.90
Inv. ex.


247
W2
99
2.1
0.14
0.14
2446
0.94
Inv. ex.


248
W3
98
2.3
0.13
0.13
2530
0.92
Inv. ex.


249
W4
97
2.0
0.14
0.14
2550
0.92
Inv. ex.


250
W5
99
2.2
0.13
0.13
2537
0.93
Inv. ex.


251
W6
100 
2.4
0.13
0.13
2439
0.92
Inv. ex.


252
W7
99
2.5
0.14
0.14
2412
0.92
Inv. ex.


253
W8
97
2.3
0.13
0.13
2470
0.94
Inv. ex.


254
X1
100 
2.0
0.13
0.13
2430
0.91
Inv. ex.


255
X2
99
2.1
0.13
0.13
2476
0.93
Inv. ex.


256
X3
97
2.1
0.13
0.13
2522
0.90
Inv. ex.


257
Y1
100 
2.0
0.13
0.16
2413
0.98
Inv. ex.


258
Y2
97
2.2
0.14
0.23
2474
0.95
Inv. ex.


259
Y3
99
2.2
0.14
0.19
2537
0.98
Inv. ex.


260
Y4
97
2.4
0.13
0.21
2479
0.96
Inv. ex.


261
Y5
97
2.0
0.13
0.21
2506
0.95
Inv. ex.


262
Y6
99
2.4
0.13
0.17
2501
0.96
Inv. ex.


263
Y7
97
2.2
0.13
0.24
2404
0.99
Inv. ex.


264
Y8
100 
2.0
0.14
0.24
2476
0.96
Inv. ex.


265
Y9
98
2.1
0.14
0.23
2416
0.99
Inv. ex.


266
Y10
100 
2.5
0.13
0.15
2485
0.96
Inv. ex.


267
Z1
99
2.1
0.14
0.23
2437
0.97
Inv. ex.


268
Z2
98
2.1
0.13
0.22
2543
0.95
Inv. ex.


269
Z3
100 
2.3
0.13
0.24
2538
0.98
Inv. ex.


270
Z4
98
2.1
0.13
0.15
2526
0.96
Inv. ex.


271
Z5
99
2.3
0.13
0.21
2427
0.98
Inv. ex.


272
Z6
100 
1.9
0.14
0.25
2483
0.96
Inv. ex.


273
Z7
100 
2.0
0.14
0.19
2491
0.99
Inv. ex.


274
Z8
100 
2.5
0.14
0.25
2497
0.95
Inv. ex.


275
Z9
99
2.1
0.14
0.21
2468
0.97
Inv. ex.


276
Z10
99
2.4
0.14
0.15
2425
0.98
Inv. ex.


277
AA1
98
2.0
0.13
0.25
2463
0.98
Inv. ex.


278
AA2
100 
2.0
0.14
0.24
2414
0.97
Inv. ex.


279
AA3
98
2.3
0.14
0.19
2513
0.97
Inv. ex.


280
AA4
99
2.5
0.13
0.23
2477
0.99
Inv. ex.


281
AA5
100 
2.5
0.13
0.23
2408
0.98
Inv. ex.


282
AA6
100 
2.3
0.13
0.15
2469
0.99
Inv. ex.


283
AA7
98
2.2
0.14
0.16
2496
0.95
Inv. ex.


284
AA8
99
2.2
0.13
0.15
2404
0.98
Inv. ex.


285
AA9
97
2.0
0.14
0.18
2432
0.97
Inv. ex.


286
AA10
99
2.0
0.14
0.21
2432
0.95
Inv. ex.


287
BB1
98
2.1
0.13
0.19
2480
0.97
Inv. ex.


288
BB2
98
2.4
0.13
0.18
2436
0.96
Inv. ex.


289
BB3
100 
2.2
0.13
0.20
2471
0.96
Inv. ex.


290
BB4
100 
2.4
0.14
0.15
2464
0.95
Inv. ex.


291
BB5
100 
2.2
0.14
0.15
2525
0.95
Inv. ex.


292
BB6
100 
2.3
0.13
0.17
2531
0.98
Inv. ex.


293
BB7
98
2.0
0.14
0.23
2461
0.99
Inv. ex.


294
BB8
99
2.2
0.14
0.24
2425
0.95
Inv. ex.


295
BB9
97
2.1
0.14
0.17
2528
0.95
Inv. ex.


296
BB10
98
1.9
0.14
0.20
2453
0.99
Inv. ex.


297
CC1
98
2.3
0.14
0.20
2510
0.95
Inv. ex.


298
CC2
98
2.4
0.13
0.16
2425
0.97
Inv. ex.


299
CC3
97
2.0
0.13
0.19
2482
0.99
Inv. ex.


300
CC4
99
2.5
0.14
0.25
2448
0.96
Inv. ex.


301
CC5
98
2.1
0.13
0.18
2538
0.95
Inv. ex.


302
CC6
97
2.0
0.14
0.23
2550
0.95
Inv. ex.


303
CC7
98
2.0
0.13
0.16
2453
0.96
Inv. ex.


304
CC8
98
1.9
0.13
0.21
2410
0.96
Inv. ex.


305
CC9
98
2.1
0.13
0.18
2514
0.95
Inv. ex.


306
CC10
99
2.5
0.14
0.22
2499
0.99
Inv. ex.


307
DD1
97
2.0
0.14
0.16
2503
0.96
Inv. ex.


308
DD2
100 
2.0
0.13
0.20
2427
0.97
Inv. ex.


309
DD3
100 
2.4
0.14
0.18
2539
0.98
Inv. ex.


310
DD4
100 
2.1
0.13
0.15
2538
0.99
Inv. ex.


311
DD5
98
2.1
0.14
0.20
2449
0.97
Inv. ex.


312
DD6
97
2.3
0.14
0.16
2461
0.99
Inv. ex.


313
DD7
97
2.2
0.14
0.23
2419
0.97
Inv. ex.


314
DD8
100 
2.4
0.14
0.21
2540
0.98
Inv. ex.


315
DD9
100 
2.5
0.14
0.23
2467
0.98
Inv. ex.


316
DD10
100 
2.4
0.14
0.22
2468
0.96
Inv. ex.


317
EE1
97
2.3
0.13
0.13
2546
0.91
Inv. ex.


318
EE2
97
2.1
0.14
0.14
2427
0.96
Inv. ex.


319
EE3
97
1.9
0.13
0.13
2516
0.92
Inv. ex.


320
EE4
97
2.1
0.14
0.14
2541
0.94
Inv. ex.


321
EE5
98
3.7
0.14
0.14
2440
0.87
Inv. ex.


322
EE6
99
1.9
0.14
0.14
2419
0.92
Inv. ex.


323
EE7
97
2.3
0.13
0.13
2451
0.91
Inv. ex.


324
EE8
99
2.1
0.13
0.13
2508
0.92
Inv. ex.


325
EE6
99

5.7

0.13
0.13
2417

0.50

Comp. ex.


326
EE6
97
2.8
0.13
0.13
2474
0.88
Inv. ex.


327
EE6
98
2.1
0.14
0.14
2413
0.93
Inv. ex.


328
EE6
100 
1.9
0.14
0.14
2477
0.90
Inv. ex.


329
EE6
98
2.4
0.14
0.14
2453
0.90
Inv. ex


330
EE6
98
2.8
0.14
0.14
2431
0.88
Inv. ex.


331
EE6
97
3.4
0.14
0.14
2495
0.88
Inv. ex.


332
EE6
100 
4.7
0.14
0.14
2417
0.82
Inv. ex.


333
EE6
99

6.4

0.13
0.13
2495

0.65

Comp. ex.


334
EE6
100 
2.0
0.13
0.13
2532
0.94
Inv. ex.


335
EE6
99
2.3
0.13
0.13
2467
0.91
Inv. ex.


336
EE6
97
2.3
0.13
0.13
2536
0.94
Inv. ex.


337
EE6
99
2.3
0.13
0.13
2485
0.94
Inv. ex.


338
EE6
99
2.4
0.13
0.13
2480
0.94
Inv. ex.


339
EE6
99
2.0
0.13
0.13
2491
0.91
Inv. ex.


340
EE6
100 
2.2
0.13
0.13
2542
0.94
Inv. ex.


341
EE6
97
2.5
0.13
0.13
2543
0.91
Inv. ex.


342
EE6
99
2.1
0.14
0.14
2548
0.90
Inv. ex.


343
EE6
99
2.2
0.14
0.14
2471
0.94
Inv. ex.


344
EE6
100 
1.9
0.14
0.14
2413
0.92
Inv. ex.


345
EE6
100 
2.2
0.13
0.13
2424
0.90
Inv. ex.


346
EE6
97
2.0
0.14
0.14
2527
0.90
Inv. ex.


347
EE6
100 
2.4
0.14
0.14
2460
0.90
Inv. ex.


348
EE6
99
2.3
0.04

0.04

2457

0.74

Comp. ex.


349
EE6
99
2.2
0.12
0.12
2502
0.84
Inv. ex.


350
EE6
97
2.3
0.13
0.13
2415
0.86
Inv. ex.


351
EE6
100 
2.2
0.13
0.13
2454
0.86
Inv. ex.


352
EE6
100 
2.5
0.15
0.15
2548
0.98
Inv. ex.


353
EE6
99
2.1
0.25
0.25
2441
0.95
Inv. ex.


354
EE6
100 
2.3
0.08

0.08

2493

0.65

Comp. ex.


355
EE6
97
2.2
0.11
0.11
2506
0.83
Inv. ex.


356
EE6
98
1.9
0.14
0.14
2407
0.88
Inv. ex.


357
EE6
99
2.0
0.13
0.13
2507
0.88
Inv. ex.


358
EE6
97
2.4
0.14
0.14
2477
0.86
Inv. ex.


359
EE6
98
2.0
0.21
0.21
2530
0.98
Inv. ex.


360
EE6
100 
2.1
0.25
0.25
2458
0.96
Inv. ex.


361
EE6

77


5.2

0.13
0.13

2078


0.42

Comp. ex.


362
EE6
91
1.9
0.13
0.13
2271
0.93
Inv. ex.


363
EE6
94
2.1
0.13
0.13
2396
0.93
Inv. ex.


364
EE6
99
2.5
0.14
0.14
2449
0.94
Inv. ex.


365
EE6
100 
2.5
0.13
0.13
2403
0.91
Inv. ex


366
EE6
98
2.4
0.14
0.14
2435
0.91
Inv. ex.


367
EE6
99
2.2
0.13
0.13
2496
0.91
Inv. ex.


368
EE6
100 
2.0
0.13
0.13
2531
0.92
Inv. ex.


369
EE6
97
2.2
0.13
0.13
2519
0.90
Inv. ex.


370
EE6
97
2.2
0.14
0.14
2536
0.94
Inv. ex


371
EE6
99
3.6
0.13
0.13
2522
0.88
Inv. ex.


372
EE6
100 
2.7
0.14
0.14
2459
0.87
Inv. ex.


373
EE6
100 
2.8
0.13
0.13
2523
0.87
Inv. ex.


374
EE6
99
4.1
0.13
0.13
2529
0.85
Inv. ex.


375
EE6
98

5.6

0.13
0.13
2402

0.41

Comp. ex.


376
EE6
100 

6.2

0.14
0.14
2488

0.59

Comp. ex.


377
EE6
98
4.9
0.14
0.14
2433
0.83
Inv. ex.


378
EE6
98
3.0
0.14
0.14
2535
0.87
Inv. ex.


379
EE6
97
2.8
0.14
0.14
2418
0.88
Inv. ex.


380
EE6
99
2.2
0.13
0.13
2529
0.92
Inv. ex.


381
EE6
98
2.1
0.13
0.13
2425
0.92
Inv. ex.


382
EE6
99
2.1
0.13
0.13
2426
0.91
Inv. ex.


383
EE6
97
2.3
0.14
0.14
2457
0.92
Inv. ex.


384
EE6
97
2.2
0.14
0.14
2536
0.93
Inv. ex.


385
EE6
97
2.4
0.13
0.13
2425
0.93
Inv. ex.


386
EE6
99
1.9
0.13
0.13
2456
0.91
Inv. ex.


387
EE6
99
2.5
0.14
0.14
2457
0.93
Inv. ex.


388
EE6
97
1.9
0.14
0.14
2503
0.90
Inv. ex.


389
EE6
98
2.7
0.13
0.13
2474
0.87
Inv. ex.


390
EE6
100 
3.7
0.13
0.13
2493
0.88
Inv. ex.


391
EE6
99
4.8
0.14
0.14
2497
0.80
Inv. ex.


392
EE6
99

5.6

0.14
0.14
2466

0.48

Comp. ex.


393
EE6
98
2.5
0.13
0.13
2458
0.91
Inv. ex.


394
EE6
98
2.2
0.13
0.13
2547
0.92
Inv. ex.


395
EE6
97
2.1
0.13
0.13
2506
0.91
Inv. ex.


396
EE6
97
2.5
0.14
0.14
2499
0.90
Inv. ex.


397
EE6
100 
2.1
0.13
0.13
2495
0.93
Inv. ex.


398
EE6
97
2.4
0.13
0.13
2444
0.93
Inv. ex.


399
EE6
99
2.2
0.13
0.13
2522
0.94
Inv. ex.


400
EE6
99
2.0
0.14
0.14
2550
0.92
Inv. ex.


401
EE6
98
2.5
0.14
0.14
2419
0.93
Inv. ex.


402
EE6
97
2.5
0.14
0.14
2418
0.93
Inv. ex.


403
EE6
97
2.4
0.13
0.13
2351
0.90
Inv. ex.


404
EE6
99
2.0
0.13
0.13
2349
0.90
Inv. ex.


405
EE6
100 
1.9
0.14
0.14
2247
0.94
Inv. ex.


406
EE6
99
2.0
0.13
0.13
2250
0.92
Inv. ex.


407
EE6
98
2.2
0.14
0.14
2253
0.94
Inv. ex.


408
EE6
97
2.3
0.13
0.13
2423
0.93
Inv. ex.





Underlines show outside scope of present invention or values of properties which are not preferable.






Referring to Table 3, in Comparative Example 1, the C content was low, therefore the tensile strength fell. In Comparative Example 14, the C content was high, therefore the early fracture resistance fell. In Comparative Example 15, the Si content was low, therefore the tensile strength fell. In Comparative Example 29, the Si content was high, therefore the amount of ferrite increased, the desired metallographic structure was not obtained, and as a result the tensile strength similarly fell. In Comparative Example 30, the Mn content was low, therefore the standard deviation at the grain size distribution of the former austenite grains became greater and the early fracture resistance fell. In Comparative Example 43, the Mn content was high, therefore it is believed that in the hot rolled steel sheet, transformation from austenite to pearlite was promoted too much. As a result, in the hot stamped body, the standard deviation in the grain size distribution of the former austenite grains could not be made within the desired range and the early fracture resistance fell. In Comparative Examples 52, 61, 70, 78, 79, and 92, the respective P, S, N, O, or Al contents were not suitable, therefore the early fracture resistances fell. In Comparative Examples 93, 107, and 119, the respective Nb, Ti, and Cr contents were low, therefore the strengths could not be sufficiently improved by precipitation strengthening or solid solution strengthening and the tensile strengths fell. In Comparative Examples 106, 118, and 132, the respective Nb, Ti, and Cr contents were high, therefore it is believed large amounts of carbonitrides were formed or coarse intermetallic compounds were formed and as a result the early fracture resistances fell. In Comparative Example 133, the Mo content was low, therefore the total amount of segregation of the grain boundary strengthening elements at the former austenite grain boundaries become lower and the early fracture resistance fell. In Comparative Examples 145 and 156, the respective Mo and B contents were high, therefore it is believed that coarse intermetallic compounds were formed at the hot stamped bodies and as a result the early fracture resistance fell. In Comparative Example 146, the B content was low, therefore the tensile strength fell.


In Comparative Example 325, the rolling reduction of the final stage in the finish rolling of the hot rolling step was low, therefore it is believed the pearlite could not be evenly dispersed at the hot rolled steel sheet after rolling. As a result, in the hot stamped body, the standard deviation at the grain size distribution of the former austenite grains became greater and the early fracture resistance fell. In Comparative Example 333, the coiling temperature was high, therefore it is believed the ferrite was arranged connected and the pearlite could not be evenly dispersed. As a result, in the hot stamped body, the standard deviation at the grain size distribution of the former austenite grains became larger and the early fracture resistance fell. In Comparative Example 348, the heating temperature at the preheating step was low, therefore it is believed the grain boundary strengthening elements could not sufficiently dissolve in the steel sheet. As a result, the total amount of segregation of the grain boundary strengthening elements at the former austenite grain boundaries became low and the early fracture resistance fell. In Comparative Example 354, the average cooling speed at the preheating step was slow, therefore it is believed the grain boundary strengthening elements dissolved in the steel sheet due to the preheating precipitated as compounds. As a result, the total amount of segregation of the grain boundary strengthening elements at the former austenite grain boundaries became low and the early fracture resistance fell. In Comparative Example 361, the heating temperature at the hot stamping step was low, therefore the austenization became insufficient, the area ratio of the hard structures and the standard deviation at the grain size distribution of the former austenite grains could not be controlled to within the desired ranges, and the tensile strength and early fracture resistance fell. In Comparative Example 375, the heating temperature at the hot stamping step was high, therefore austenite grains excessively grew, the standard deviation at the grain size distribution of the former austenite grains could not be controlled to within the desired range, and the early fracture resistance fell. In Comparative Example 376, the holding time at the hot stamping step was long, therefore austenization became insufficient, the standard deviation at the grain size distribution of the former austenite grains could not be controlled to within the desired range, and the early fracture resistance fell. In Comparative Example 392, the holding time at the hot stamping step was long, therefore austenite grains excessively grew, the standard deviation at the grain size distribution of the former austenite grains could not be controlled to within the desired range, and the early fracture resistance fell.


In contrast to this, the hot stamped bodies according to all of the invention examples have the predetermined chemical compositions and metallographic structures, have standard deviations at the grain size distributions of the former austenite grains controlled to 5.0 μm or less, and have total amounts of segregation of the grain boundary strengthening elements at the former austenite grain boundaries, i.e., at least one of Mo, W, Ta, Re, Os, Ir, and Tc, controlled to 0.10 atm % or more, whereby early fracture can be reliably suppressed regardless of having high tensile strengths of 2200 MPa or more.

Claims
  • 1. A hot stamped body having a chemical composition comprising, by mass %, C: 0.40 to 0.70%,Si: 0.010 to 3.00%,Mn: 0.50 to 3.00%,P: 0.100% or less,S: 0.0100% or less,N: 0.0200% or less,O: 0.0200% or less,Al: 0.0010 to 0.500%,Nb: 0.0010 to 0.100%,Ti: 0.010 to 0.200%,Cr: 0.010 to 1.00%,Mo: 0.0010 to 1.000%,B: 0.0005 to 0.0200%,Co: 0 to 4.00%,Ni: 0 to 3.00%,Cu: 0 to 3.00%,V: 0 to 3.00%,Ca: 0 to 1.000%,Mg: 0 to 1.000%,REM: 0 to 1.000%,Sb: 0 to 1.00%,Sn: 0 to 1.00%,Zr: 0 to 1.00%,As: 0 to 0.100%,at least one of W, Ta, Re, Os, Ir, and Tc: 0 to 1.00% in total, andbalance: Fe and impurities, anda microstructure comprising, by area ratio, at least one of martensite, bainite, and tempered martensite: 90% or more in total, whereina standard deviation in grain size distribution of former austenite grains is 5.0 μm or less, anda total amount of segregation of at least one of Mo, W, Ta, Re, Os, Ir, and Tc at former austenite grain boundaries is 0.10 atm % or more.
  • 2. The hot stamped body according to claim 1, wherein the amount of segregation of Mo at the former austenite grain boundaries is 0.10 atm % or more.
  • 3. The hot stamped body according to claim 1, wherein the total amount of segregation is 0.15 atm % or more.
  • 4. The hot stamped body according to claim 2, wherein the total amount of segregation is 0.15 atm % or more.
Priority Claims (1)
Number Date Country Kind
2022-060624 Mar 2022 JP national
PCT Information
Filing Document Filing Date Country Kind
PCT/JP2023/007869 3/2/2023 WO