Hot strips or heavy plates from a denitrated steel and method for their manufacture

Information

  • Patent Grant
  • 4397697
  • Patent Number
    4,397,697
  • Date Filed
    Wednesday, December 3, 1980
    44 years ago
  • Date Issued
    Tuesday, August 9, 1983
    41 years ago
Abstract
An improved method for the manufacture of hot strips or heavy plates from a denitrated steel composed of 0.04 to 0.16% carbon, 1.25 to 1.90% manganese, 0.2 to 0.55% silicon, 0.004 to 0.020% phosphorus, 0.002 to 0.015% sulfur, 0.02 to 0.08% aluminum, 0.02 to 0.08% niobium, the remainder iron and possibly contaminants, including the steps of having the hot strips or plates leaving the last finishing stand of rolls at a temperature of 750.degree. C. to 820.degree. C., cooling the hot strips or plates to an intermediates temperature of 450.degree. C. to 500.degree. C. at a cooling rate of 2.degree. to 10.degree. C./s and then slowly cooling the hot strips or plates in air to room temperature in a coil or in a pile.
Description

BACKGROUND OF THE INVENTION
The invention concerns a method for the manufacture of hot strips or heavy plates from a denitrated steel.
For a long time the demand continued for the development of higher strength steels with high toughness values at low temperature, in the form of hot strips or heavy plates. These are used, for example, in large diameter long-distance pipelines. Controlled hot rolling has been used more and more as an economical method for the production of thermo-mechanically treated hot strips or heavy plates. As part of a thermo-mechanical treatment for steels it is understood to effect a controlled transformation of the steel in a temperature range around the transformation point A.sub.r.sbsb.3 with a simultaneously controlled cooling and/or transformation of the structure.
It is known to use denitrated steel with a composition of 0.04 to 0.16% carbon, 1.25 to 1.90% manganese, 0.02 to 0.55% silicon, 0.004 to 0.020% phosphorus, 0.002 to 0.015% sulfur, 0.02 to 0.08% aluminum, 0.2 to 0.08% niobium, the remainder being iron and possibly contaminants. The steel can also be alloyed with the addition of 0.015 to 0.35% molybdenum, 0.10 to 0.30% chromium and/or 0.30 to 0.90% nickel, alone or in combination.
During the mechanical-technological testing of these steels, particularly with the presence of notches and over a wide temperature range, one frequently observes splits perpendicular to the fracture surface in the upper part of the complete brittle failure stage. These are designated "separations", "cleavage" or "splitting". This tendency of splitting at the fracture surface of thermo-mechanically treated steel is, for example, of significance in the operation of large diameter long-distance pipelines, since the capacity of these steels to stop fracture propagation is thereby reduced.
Proposals have already been made for the production of higher strength steels for use in large diameter long-distance pipelines in which splitting at the fracture during the notch impact testing is no longer found. However, high alloying and manufacturing costs are connected with all of them. For example, it is recommended in De-OS No. 26 53 847 to alloy the steel by up to 3.5% or 2.5% addition of chromium and manganese, after the steel has been subjected to a nitrogen enrichment up to a content of 0.012%. Furthermore the hot rolling of this steel is complicated. The rolled stock will be subjected to a deformation from 30 to 60% at temperatures between 950.degree. C. and 1100.degree. C., a subsequent prescribed interruption of hot rolling and a deformation of 75 to 95% of the original thickness at temperatures between 700.degree. C. and 900.degree. C. The deformed structure will finally be converted into the lower bainite stage. The alloying of the chromium and manganese additions raises the price of the known steels considerably. On account of the complicated and expensive rolling operation further increased manufacturing costs arise.
SUMMARY OF THE INVENTION
The object of the invention is to obtain an increased notch impact toughness for hot-rolled hot strips or heavy plates through a controlling of the occurrence of separations.
A further object of the present invention is to obtain such an increased notch impact toughness at low temperatures, that is to have a CVN-transition temperature TU.sub.50 of at least -30.degree. C.
These objects will be achieved according to the present invention by subjecting a steel of composition 0.04 to 0.16% carbon, 1.25 to 1.90% manganese, 0.02 to 0.55% silicon, 0.004 to 0.020% phosphorus, 0.002 to 0.015% sulfur, 0.02 to 0.08% aluminum, 0.02 to 0.08% niobium, the remainder iron and possibly contaminants, to a hot-rolling operation in which the hot strip or the plate leaves the last finishing stand of rolls with a temperature of 750.degree. and 820.degree. C., is cooled at a rate of 2.degree. to 10.degree. C. per second to an intermediate temperature of 450.degree. C. to 570.degree. C., and is at this temperature coiled or placed in a pile for further cooling.
Surprisingly, it turns out that only upon the observance of the described, relatively simple hot-rolling operations for the mentioned steel will there appear a significant reduction in splitting at the fracture during the CVN-notch impact test (CVN: Charpy-V-Notch) at CVN-transition temperatures as low as -30.degree. C., and therewith a considerably increased notch impact toughness.
Following the method according to the invention the usefulness of the steel, for example in large diameter long-distance pipelines, can be considerably improved without the necessity of excessive alloying.
The novel features which are considered as characteristic for the invention are set forth in particular in the appended claims. The invention itself, however, both as to its construction and its method of operation, together with additional objects and advantages thereof, will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a photo of a fracture struck in a notch impact test.
FIG. 2 is a graph relating notch impact toughness values (ordinate) to the ratio Cvmax: Cv100 (abscissa).
FIG. 3 is analogous to FIG. 2, using steels of various composition.
FIGS. 4 and 6 are graphs relating notch impact toughness values to coiling temperature.
FIGS. 5 and 7 are graphs relating the ratio Cvmax:Cv100 to coiling temperature.





DESCRIPTION OF THE PREFERRED EMBODIMENTS
It turns out that a particularly favorable enhancement in the strength characteristics of steel produced according to the present invention is obtained with the addition of 0.02 to 0.10% vanadium, since the precipitations of vanadium carbonitrites occur mainly in the ferrite grain and not at the grain boundaries.
Observance of an intermediate temperature of 450.degree. C. to 500.degree. C. allows for completely avoiding the formation of separations. The steel exhibits a ferritic-pearlitic structure and the ratio of Cvmax to Cv100 lies between 1.0 and 1.3. Cv100 signifies the minimum notch impact value of the upper shelf which will show a 100% ductile fracture. Cvmax is the value, in dependence on the temperature, at which the highest notch impact toughness for the entire test is produced. The steel manufactured according to the present invention displays a complete lack of fracture splitting in the CVN-notch impact tests (CVN: Charpy-V-Notch) and simultaneously CVN-transition temperatures of as low as -30.degree. C.
With the observance of an intermediate temperature of 500.degree. C. to 570.degree. C., steel of the mentioned composition exhibits a decreased number of separations. Nevertheless it still displays a substantially increased notch impact toughness values. Notch impact toughness tests involving hot strips and/or plates afflicted with separations have shown that with increased number of "separations" in the fracture surface of the CVN-tests the notch impact toughness (in J/cm.sup.2) decreases. The basis for this decrease in the notch impact toughness lies in the fact that the separations proceed perpendicular to the main fracture surface and parallel to the sample surface, particularly before the spreading of the main tear begins, as is evident from FIG. 1, so that a small amount of energy is required for the begin of yielding, which occurs during bending of the samples in the course of the notch impact test. This is of significance to the extent that material "free of separations" having highest notch impact toughness values, are not always required for the production of hot strips or plates, so that use is found for material with some slight number of " separations", however with increased notch impact toughness. A material of that kind will be obtained with the observance of an intermediate temperature from 500.degree. to 570.degree. C.
A steel with additions of 0.15 to 0.35% molybdenum, 0.10 to 0.35% chromium and/or 0.30 to 0.90% nickel, alone or in combination, suffices for the production of a "separations-free" material if the same cooling conditions of 2.degree. to 10.degree. C./sec also to an intermediate temperature of 550.degree. C. are retained, so that the cooling need ensue only to this temperature.
For the production of a steel with said alloying, displaying a reduced number of separations but an increased notch impact toughness, it is sufficient if the intermediate temperature amounts to 550.degree. C. to 620.degree. C. and the finishing temperatures are lying between 750.degree. C. and 850.degree. C.
The advantage of a reduction in the number of "separations" insofar as the notch impact test is concerned is seen clearly in FIGS. 2 and 3.
For example, decrease in the ratio Cvmax to Cv100 from about 2.0 at a value of 1.3 corresponds to an increase in the notch impact toughness values in cross-section from 150 J/cm.sup.2 to about 230 J/cm.sup.2 among X70 quality steels alloyed with addition of molybdenum, chromium or nickel (FIG. 3), and from 160 J/cm.sup.2 to 280 J/cm.sup.2 for niobium-vanadium-containing steels of X70 quality (FIG. 2), which correspond to an increase in the notch impact toughness of 53 and 75% respectively. The representation of notch impact toughness as a function of the ratio of Cvmax to Cv100 was for that reason selected for FIGS. 2 and 3 since the ratio of Cvmax to Cv100 responds more sharply to the number of separations than to all other parameters.
The steels of Tables 1 and 2 were made in an oxygen blowing converter, and were rolled into hot strips or heavy plates according to the conditions indicated in Tables 3, 4 and 5.
The results obtained, represented additionally in FIGS. 4 and 5 or FIGS. 6 and 7, indicate that a distinct increase in notch impact toughness is realized in contrast to the customarily hot rolled microalloyed steels.
It was established that the temperature at which the hot strip or plate leaves the last finishing stand is not required to be as completely confined for a separations reduced steel according to the present invention as for the manufacture of a separations-free steel. A temperature range of 750.degree. to 850.degree. C. is possible.
According to the invention performance of the new methods with an intermediate temperature from 550.degree. to 620.degree. C. can be accomplished also with further addition of 0.002 to 0.08% zirconium and/or 0.004 to 0.051% cerium.
For the manufacture of separations-free steels, tests were carried out on eleven types of steel with different carbon contents and combinations of microalloying additives niobium, vanadium, nickel and chromium.
The compositions of the steels are indicated in Table 6, in which fractions of the components contained in the steel are given in percent. The melt numbers serve merely for identification of the steel.
The steels were manufactured according to the parameters given in Table 7. The outlet thickness, the thickness of the rolled steel plates, the pusher furnace temperature, the finishing temperature and the temperature after the controlled cooling (coiling temperature) are given. In all cases with the exception of sheet A the steel was coiled up. The last column gives the cooling rate from the finishing stand temperature (WET) to the coiling temperature (T.sub.H) in .degree.C./sec. In the coil the steel was then cooled down slowly, for example at a rate of about 0.5.degree. C./hour.
The mechanical-technological characteristics of the examined and separations-free steels are summarized in Table 8. The letters "L" and "Q" characterize the test positions with regard to the direction of rolling, namely "L" a length test and "Q" a transverse test, for which the notch impact test was conducted. The further three columns contain the usual statements concerning yielding stress and tensile strength. The a.sub.k -value gives the energy absorption of the steel at different points on the a.sub.k -curve as a function of the temperature. Cv100 characterizes the energy absorption at the minimum temperature at which a complete ductile fracture is instituted. Cvmax characterizes the maximum energy absorption, whereas TU.sub.50 is for the temperature at which in the transition region between brittle fracture and ductile fracture of the Charpy-V-notch impact test according to German Industrial Specification DIN 50.115, 50% ductile fracture is exhibited in the fracture surface.
The next two columns give the transition temperature for Cv100 and TU.sub.50. It is evident that TU.sub.50 always lies considerably below -30.degree. C., so that a high toughness is also guaranteed at minimum temperatures. The steel distinguishes itself by a high energy absorption. With the separations-free steel according to the invention the quotient Cvmax to Cv100 is situated close to 1, namely between 1 and 1.3. All of the steels are free of separations perpendicular to the fracture surface.
Whereas Tables 1 to 5 have to do with separations-poor steels according to the invention having a high notch impact toughness, Tables 6 to 8 characterize separations-free steels that, according to constitution, display a very high notch impact toughness.
It will be understood that each of the elements described above, or two or more together, may also find a useful application in other types of steel differing from the types described above.
While the invention has been illustrated and described as embodied in hot strips or heavy plates from a denitrated steel, and methods for their manufacture, it is not intended to be limited to the details shown, since various modifications and structural changes may be made without departing in any way from the spirit of the present invention.
Without further analysis, the foregoing will so fully reveal the gist of the present invention that others can, by applying current knowledge, readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of this invention.
TABLE 1__________________________________________________________________________Chemical Composition of the Tested Steels in %Melt Nr. C Si Mn P S Al N V Nb__________________________________________________________________________67649 0,11 0,34 1,61 0,019 0,008 0,039 0,0058 0,09 0,0438069 0,10 0,35 1,59 0,021 0,013 0,051 0,0057 0,08 0,0438070 0,10 0,39 1,59 0,016 0,012 0,041 0,0072 0,09 0,0539907 0,10 0,27 1,54 0,020 0,013 0,037 0,0057 0,07 0,0410527 0,09 0,26 1,58 0,015 0,003 0,051 0,0107 0,07 0,0344359 0,09 0,24 1,49 0,014 0,004 0,039 0,0108 0,06 0,0310381 0,09 0,33 1,58 0,015 0,011 0,059 0,0080 0,09 0,0410179 0,11 0,37 1,55 0,020 0,009 0,055 0,0040 0,09 0,0543940 0,11 0,31 1,53 0.017 0,010 0,051 0,0072 0,08 0,0543941 0,10 0,29 1,54 0,016 0,012 0,041 0,0057 0,08 0,0567008 0,11 0,31 1,59 0,021 0,012 0,028 0,0057 0,08 0,0567138 0,12 0,37 1,62 0,016 0,007 0,067 0,0072 0,09 0,0611608 0,10 0,38 1,56 0,020 0,003 0,049 0,0106 0,08 0,0411798 0,09 0,38 1,56 0,015 0,002 0,037 0,0084 0,08 0,0446277 0,09 0,39 1,62 0,018 0,005 0,044 0,0077 0,08 0,0446279 0,10 0,39 1,61 0,020 0,004 0,036 0,0091 0,07 0,0446366 0,08 0,36 1,60 0,020 0,006 0,048 0,0061 0,07 0,0446368 0,09 0,36 1,60 0,020 0,004 0,045 0,0088 0,07 0,0471445 0,10 0,37 1,62 0,015 0,002 0,050 0,0089 0,09 0,0471451 0,09 0,39 1,55 0,019 0,002 0,030 0,0089 0,08 0,0471548 0,09 0,33 1,57 0,015 0,004 0,037 0,0086 0,08 0,0471915 0,10 0,38 1,58 0,018 0,003 0,031 0,0092 0,08 0,0572148 0,09 0,38 1,61 0,018 0,004 0,051 0,0077 0,07 0,0472255 0,09 0,35 1,65 0,020 0,007 0,039 0,0124 0,08 0,04__________________________________________________________________________
TABLE 2__________________________________________________________________________Chemical Composition of the Tested Steels in %Warmband C Si Mn P S N Al Nb V Mo Cer Zr Cr Remarks__________________________________________________________________________817/21 0,10 0,32 1,53 0,026 0,012 0,0068 0,036 0,07 0,04 0,16 -- -- -- The chemical com-817/22 0,10 0,33 1,55 0,029 0,013 0,0069 0,036 0,08 0,04 0,15 -- -- -- position of hot817/26 0,10 0,33 1,54 0,027 0,012 0,0070 0,036 0,07 0,04 0,15 -- -- -- strips S, T, U, C,817/27 0,10 0,32 1,50 0,025 0,014 0,0072 0,034 0,10 0,06 0,21 -- -- -- D and E is given817/30 0,10 0,33 1,51 0,016 0,011 0,0076 0,044 0,07 0,04 0,15 -- -- -- in applicants'886/31 0,04 0,29 1,26 0,026 0,008 0,0063 0,034 0,09 -- 0,33 0,051 -- -- German priority886/33 0,04 0,29 1,23 0,021 0,008 0,0058 0,033 0,08 -- 0,33 0,005 -- -- application886/34 0,04 0,29 1,27 0,023 0,009 0,0058 0,034 0,09 -- 0,33 0,004 -- -- P 29 49 124.593861 0,04 0,30 1,27 0,023 0,008 0,0055 0,031 0,09 -- 0,35 -- -- --93859 0,08 0,35 1,76 0,015 0,010 0,0059 0,048 0,10 -- 0,34 -- -- --907022 bis 0,07 0,26 1,68 0,019 0,004 0,0084 0,048 0,04 0,06 -- -- -- 0,30907024995211 0,07 0,21 1,41 0,017 0,008 0,0067 0,035 0,06 -- 0,33 -- -- --995213 0,07 0,22 1,46 0,020 0,009 0,0061 0,028 0,06 -- 0,34 -- -- --995214 0,04 0,18 1,55 0,014 0,008 0,0082 0,036 0,06 -- 0,29 -- 0,002 --995215 0,06 0,23 1,47 0,021 0,009 0,0058 0,038 0,06 -- 0,34 -- -- --0849/03 K* 0,13 0,35 1,60 0,019 0,002 0,0104 0,060 0,03 -- -- -- -- -- *contains addition- ally 0.69% Ni995219 0,04 0,18 1,51 0,013 0,007 0,0074 0,047 0,07 -- 0,36 -- 0,07 --995225 0,04 0,20 1,51 0,013 0,008 0,0064 0,051 0,07 -- 0,37 -- 0,07 --__________________________________________________________________________
TABLE 3__________________________________________________________________________ CVN-a.sub.k -Value Finishing Coil or Nr. Hot Strip and/or Heavy Plate Thickness in mm in J/cm.sup.2 at -20.degree. C.mumMaxi- ##STR1## temper- ature in .degree.C. pile temp. in .degree.C. .DELTA.T in .degree.C. Cooling rate .degree.C./s REMARKS__________________________________________________________________________1 2 3 45 6 7 8 9 10 11__________________________________________________________________________1 691160 13,5 113 164 1,82 790 540 250 7,202 " 13,5 103 155 1,78 790 560 230 6,65 Melt 676493 " 13,5 104 148 1,83 790 570 220 6,44 702339 13,5 128 137 1,23 790 520 270 7,75 " 13,5 125 134 1,07 790 480 290 8,96 " 13,5 123 129 1,05 790 500 290 8,37 " 13,5 125 130 1,04 800 460 340 9,58 702340 13,5 143 145 1,18 790 510 280 8,09 " 13,5 126 150 1,19 790 500 290 8,310 " 13,5 126 149 1,18 790 500 290 8,3 Melt 3806911 " 13,5 121 140 1,16 790 460 330 9,512 702341 13,5 124 137 1,10 790 500 290 8,313 " 13,5 126 137 1,09 790 500 290 8,314 " 13,5 125 143 1,14 790 470 320 9,115 " 13,5 114 137 1,20 800 450 350 9,416 725534 13,5 158 172 1,42 780 510 270 8,017 725535 13,5 155 173 1,29 790 500 290 8,3 Melt 3807018 725536 13,5 158 173 1,09 800 460 340 9,519 725545 13,5 88 136 2,19 790 590 200 6,00 Melt 3807020 725546 13,5 91 149 2,22 780 590 190 6,0021 749682 13,5 84 132 1,94 790 600 190 5,8022 " 13,5 80 130 1,83 790 590 200 6,0023 " 13,5 77 123 1,81 780 600 180 6,0024 749684 13,5 127 149 1,41 800 530 270 7,425 " 13,5 109 131 1,39 790 520 270 7,7 Melt 3990726 " 13,5 107 130 1,41 800 530 270 7,427 749685 13,5 110 129 1,17 790 500 290 8,328 " 13,5 111 132 1,19 790 490 300 8,6029 " 13,5 116 145 1,25 790 500 290 8,330 996962 14,8 285 329 1,60 770 540 230 5,95 Melt 1052731 " 14,8 296 314 1,20 780 470 310 7,8032 996963 14,8 247 276 1,51 780 530 250 6,20 Melt 4435933 996964 14,8 282 300 1,15 760 500 260 7,0034 " 14,8 281 290 1,05 770 480 290 7,6035 996966 14,8 266 302 1,29 780 510 270 6,75 Melt 1052736 " 14,8 246 281 1,31 780 510 270 6,7537 857749 14,8 89 142 1,89 780 630 150 4,20 Melt 103838 857750 14,8 89 135 2,14 780 600 180 4,70 Melt 101739 857751 14,8 84 140 1,92 790 600 190 4,7040 857752 14,8 104 167 1,80 780 600 180 4,7 Melt 439441 857754 14,8 152 180 1,46 760 520 240 6,50 Melt 103842 857755 14,8 143 191 1,34 780 500 280 7,00 Melt 101743 857756 14,8 157 185 1,30 770 490 280 7,15 Melt 439444 857764 14,8 201 201 1,26 770 500 270 7,00 Melt 103845 857765 14,8 163 174 1,32 760 500 260 7,00 Melt 101746 857766 14,8 156 185 1,34 770 490 280 7,1547 857767 14,8 176 199 1,28 770 490 280 7,15 Melt 439448 857768 14,8 129 188 2,09 780 590 190 4,75 Melt 103849 857769 14,8 128 191 1,97 770 600 170 4,7050 857770 14,8 101 164 2,25 780 600 180 4,70 Melt 101951 857771 14,8 119 184 2,52 790 610 180 4,5052 878523 16,0 118 145 2,16 790 580 210 4,55 Melt 116053 997273 16,0 122 137 1,88 790 560 230 5,00 Melt 714454 997300 16,0 169 199 1,89 790 550 240 5,30 Melt 714555 880162 16,0 134 182 1,92 780 570 210 4,70 Melt 1160856 997321 16,0 175 201 1,73 770 550 220 5,30 Melt 7154857 903190 16,0 232 277 1,36 790 510 280 6,40 Melt 7214858 903195 16,0 289 290 1,07 800 480 320 7,40 Melt 1178959 903202 16,0 165 234 1,89 800 550 250 5,30 Melt 7191560 903203 16,0 247 253 1,26 790 490 300 7,061 903231 16,0 154 210 1,69 810 560 250 5,00 Melt 4627962 906978 16,0 176 228 1,74 760 580 180 4,65 Melt 4636663 906992 16,0 217 237 1,21 790 490 300 7,00 Melt 4627764 906998 16,0 181 224 1,76 790 560 230 5,0065 909470 16,0 137 216 1,83 790 550 240 5,30 Melt 7225566 909484 16,0 269 280 1,14 780 490 290 7,00 Melt 4636867 670103 16,9 93 139 1,85 800 580 220 4,2068 670105 16,9 107 160 1,86 790 570 220 4,45 Melt 6700869 670107 16,9 117 159 1,97 790 560 230 4,6570 675840 16,9 184 232 1,18 800 490 310 6,90 Melt 67138__________________________________________________________________________
TABLE 4__________________________________________________________________________ Thick- Cool-Hot Strip CVN-Value Coil or ness ingand/or in J/cm.sup.2 pile temp. Chemical Composition in % in rate MeltNr. Heavy Plate at -20.degree. C. in .degree.C. C Si Mn P S Al N V Nb mm .degree.C./s Nr.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16__________________________________________________________________________1 878513 119 620 0,10 0,36 1,60 0,017 0,002 0,038 0,0110 0,08 0,04 16,0 3,80 116062 878523 118 580 16,1 4,503 880162 134 570 0,10 0,38 1,56 0,020 0,003 0,049 0,0106 0,08 0,04 16,0 4,75 116084 880162 124 570 16,3 4,605 902083 138 580 0,10 0,37 1,55 0,017 0,003 0,042 0,0065 0,08 0,04 15,9 4,55 117966 902058 191 540 0,10 0,36 1,57 0,016 0,002 0,029 0,0064 0,07 0,04 15,9 5,60 117977 903195 307 480 0,09 0,38 1,56 0,015 0,002 0,037 0,0084 0,08 0,04 16,3 7,30 117988 903195 289 480 16,1 7,409 907001 175 550 0,10 0,36 1,59 0,018 0,004 0,032 0,0092 0,07 0,04 16,0 5,30 4627810 903231 151 560 0,10 0,39 1,61 0,020 0,004 0,036 0,0091 0,07 0,04 16,0 5,00 4627911 903231 154 560 16,1 4,9512 906983 167 560 0,09 0,36 1,60 0,020 0,004 0,045 0,0088 0,07 0,04 16,3 4,90 4636813 909484 269 490 15,9 7,014 997273 122 560 0,10 0,37 1,62 0,015 0,002 0,050 0,0089 0,09 0,04 16,1 4,95 7144515 880171 252 470 16,3 7,9016 997278 139 560 0,09 0,32 1,60 0,018 0,004 0,033 0,0081 0,08 0,04 15,9 5,10 7144617 880174 236 470 0,10 0,38 1,66 0,020 0,002 0,050 0,0089 0,08 0,04 16,1 7,70 7145018 880174 240 490 0,10 0,38 1,66 0,020 0,002 0,050 0,0089 0,08 0,04 16,0 7,0 7145019 997300 169 550 16,1 5,2520 880160 158 550 0,09 0,39 1,55 0,019 0,002 0,030 0,0089 0,08 0,04 16,0 5,30 7145121 880160 194 520 16,2 6,1022 880166 134 560 0,10 0,40 1,59 0,017 0,002 0,047 0,0089 0,08 0,04 16,0 5,0 7145223 997329 149 550 0,09 0,38 1,67 0,018 0,002 0,047 0,0087 0,08 0,04 16,3 5,15 7151424 997337 149 570 0,10 0,38 1,62 0,019 0,004 0,029 0,0086 0,08 0,04 15,9 4,75 7151625 997321 175 550 0,09 0,33 1,57 0,015 0,004 0,037 0,0086 0,08 0,04 16,1 5,25 7154826 997324 163 540 15,9 5,6027 997309 204 530 0,09 0,37 1,55 0,014 0,003 0,043 0,0085 0,08 0,04 15,9 5,85 7154928 880161 141 590 0,10 0,34 1,55 0,019 0,003 0,050 0,0050 0,08 0,04 16,0 4,35 7155029 885026 210 500 0,09 0,34 1,60 0,018 0,003 0,044 0,0076 0,07 0,04 16,3 6,50 7169030 885023 152 570 0,08 0,34 1,61 0,018 0,003 0,030 0,0089 0,08 0,04 16,1 4,70 7169131 902052 127 600 0,10 0,37 1,65 0,020 0,003 0,032 0,0082 0,08 0,04 16,0 4,15 7169732 902064 243 510 0,09 0,36 1,64 0,020 0,003 0,049 0,0090 0,07 0,05 16,2 6,30 7191033 903214 188 550 0,09 0,38 1,64 0,020 0,004 0,037 0,0092 0,08 0,04 16,0 5,30 7191134 903227 131 590 0,10 0,38 1,60 0,016 0,003 0,036 0,0109 0,07 0,04 15,9 4,35 7191435 903202 176 540 0,10 0,38 1,58 0,018 0,003 0,031 0,0092 0,08 0,05 16,0 5,50 7191536 903202 165 550 16,2 5,2037 903203 247 490 16,0 7,0038 903218 151 560 0,10 0,37 1,60 0,020 0,003 0,039 0,0064 0,07 0,04 16,3 4,90 7191639 907018 222 540 0,10 0,35 1,60 0,108 0,003 0,050 0,0089 0,07 0,05 15,9 5,60 7214740 903190 244 500 0,09 0,38 1,61 0,018 0,004 0,051 0,0077 0,07 0,04 15,9 6,70 7214841 903190 232 510 16,0 6,4042 996961 141 600 0,09 0,26 1,58 0,015 0,003 0,051 0,0107 0,07 0,03 14,8 4,75 1052743 996961 144 590 14,7 4,9044 996962 296 470 14,8 7,8045 996964 282 500 14,9 7,046 996964 281 480 14,7 7,6047 996966 266 510 14,8 6,7548 996966 246 510 14,7 6,8049 996963 247 530 0,10 0,24 1,49 0,014 0,004 0,039 0,0108 0,06 0,03 14,8 6,20 44359__________________________________________________________________________
TABLE 5__________________________________________________________________________ CVN-a.sub.k -Value Thick- in J/cm.sup.2 Test Finishing Coil or Nr. Hot Strip and/or Heavy Plate ness in mm -40.degree. C. at upper shelf ##STR2## Position to the Axis pipe Temper- ature in .degree.C. pile temp. in .degree.C. .DELTA.T in Cooling rate in .degree.C./s REMARKS__________________________________________________________________________1 2 3 4 5 6 7 8 9 10 11 12__________________________________________________________________________1 886/31CE/R 15.2 80 183 2.29 60.degree. zur RA 820 150 3.35 Customary hot 670 strips or heavy2 15.2 104 231 2.22 90.degree. zur RA 820 150 3.35 plates, displaying3 93859 CA 18.0 85 155 1.82 60.degree. zur RA 790 140 2.5 a maximal num-4 18.0 94 214 2.28 90.degree. zur RA 790 140 2.5 ber of separa-5 817/26CE/R 14.3 92 158 1.72 60.degree. zur RA 800 650 150 4.2 tions with the6 9381 A/R 17.6 106 153 1.44 60.degree. zur RA 780 130 2.65 Notch Impact7 886/31CM/R 15.2 90 191 2.12 90.degree. zur RA 820 175 3.75 Test.8 15.2 103 231 2.24 60.degree. zur RA 820 645 175 3.759 15.2 70 113 1.61 90.degree. zur RA 820 175 3.7510 817/30CE/R 14.2 76 136 1.79 90.degree. zur RA 800 640 160 4.4211 886/31CA/R 15.2 50 120 2.40 90.degree. zur RA 820 185 3.9012 15.2 80 151 1.89 60.degree. zur RA 820 635 185 3.9013 817/21CM/R 14.9 110 162 1.47 60.degree. zur RA 810 175 4.214 S 18.5 118 214 1.81 60.degree. zur RA 750 630 120 2.415 817/26CM/R 14.5 82 135 1.65 90.degree. zur RA 810 625 185 4.516 907023 16.0 130 235 1.81 90.degree. zur RA 770 150 3.717 817/30CA/R 14.3 101 178 1.76 90.degree. zur RA 800 620 180 4.6518 14.3 101 168 1.66 90.degree. zur RA 800 180 4.65 19 817/30CM/R 14.4 103 160 1.55 60.degree. zur RA 800 185 4.75 61520 817/27CE/R 14.3 103 149 1.45 90.degree. zur RA 800 185 4.8021 907024 16.0 173 277 1.60 90.degree. zur RA 790 180 4.0022 16.0 171 272 1.59 90.degree. zur RA 790 610 180 4.00 According to23 817/27CM/R 14.5 107 167 1.56 60.degree. zur RA 800 190 4.85 the invention,24 817/27CA/R 14.5 130 187 1.44 60.degree. zur RA 800 195 4.90 hot strips or 605 heavy plates25 14.5 82 114 1.39 90.degree. zur RA 800 195 4.90 displaying a26 995219/CM/R 18.4 115 217 1.40 60.degree. zur RA 810 220 3.55 small number 590 of separations27 18.4 110 147 1.34 90.degree. zur RA 810 220 3.55 with the28 089/03 KA 17.1 186 259 1.39 60.degree. zur RA 820 240 4.10 Notch Impact29 907023 16.0 179 303 1.69 90.degree. zur RA 770 190 4.55 Test than the30 16.0 176 281 1.60 90.degree. zur RA 770 580 190 4.55 customary31 907022 16.0 138 276 2.0 90.degree. zur RA 800 220 4.55 hot strips32 886/33 CA 15.5 130 223 1.72 90.degree. zur RA 810 240 4.9033 15.5 157 223 1.42 90.degree. zur RA 810 240 4.9034 U 18.3 123 246 2.0 60.degree. zur RA 780 570 210 4.2035 995214CM/R 18.2 220 290 1.32 90.degree. zur RA 810 240 3.85 36 995214/CM/R 18.2 185 254 1.37 90.degree. zur RA 810 240 3.85 According to 570 the invention,37 886/34 CER 15.5 142 206 1.45 90.degree. zur RA 820 250 4.80 hot strips or38 995213 CA 18.2 222 300 1.35 60.degree. zur RA 830 270 4.25 heavy plates39 18.2 165 225 1.36 90.degree. zur RA 830 560 270 4.25 displaying a40 817/21 CA/R 15.0 170 228 1.34 60.degree. zur RA 800 240 5.00 small number41 T 18.3 131 256 1.95 60.degree. zur RA 850 550 300 6.00 of separation with the Notch Impact test than the customary hot strips 42 995214 CA 18.1 197 201 1.02 90.degree. zur RA 820 270 4.55 Hot strips pre-43 18.1 320 322 1.00 60.degree. zur RA 820 270 4.55 pared according44 18.1 322 323 1.00 60.degree. zur RA 820 270 4,55 to the conditions45 995215 CA 18.3 199 215 1.08 90.degree. zur RA 790 240 4.50 of applicants'46 18.3 244 283 1.16 60.degree. zur RA 790 550 240 4.50 German priority47 18.3 254 262 1.03 60.degree. zur RA 790 240 4.50 application48 907023 16.0 215 277 1.29 90.degree. zur RA 770 220 5.30 P 29 49 124.549 817/22CM/R 14.4 145 165 1.14 60.degree. zur RA 800 250 6.1050 817/26CA/R 14.4 180 190 1.06 60.degree. zur RA 800 255 6.2051 14.4 176 198 1.13 60.degree. zur RA 800 255 6.2052 886/34CA/R 15.3 285 317 1.12 60.degree. zur RA 815 545 270 5.6553 D 18.3 201 247 1.23 60.degree. zur RA 810 265 5.40 54 886/34CM/R 15.4 264 288 1.09 60.degree. zur RA 825 285 5.70 Hot strips pre-55 15.4 187 240 1.28 90.degree. zur RA 825 285 5.70 pared according56 15.4 287 292 1.023 60.degree. zur RA 825 540 285 5.70 to the conditions57 C 18.3 246 308 1.25 90.degree. zur RA 800 260 5.2 of applicants'58 15.3 276 312 1.13 60.degree. zur RA 815 280 5.90 German priority59 886/34CA/R 15.3 287 326 1.14 60.degree. zur RA 815 535 280 5.90 application60 15.3 207 253 1.22 90.degree. zur RA 815 280 5.90 P 29 49 124.561 E 18.3 222 272 1.23 90.degree. zur RA 800 530 270 5.462 886/34CE/R 15.5 292 305 1.04 60.degree. zur RA 820 300 5.9563 15.5 226 268 1.19 90.degree. zur RA 820 300 5.9564 995225/CA/R 18.9 250 250 1.0 90.degree. zur RA 780 260 4.9565 18.9 156 165 1.06 90.degree. zur RA 780 520 260 4.9566 995225/CM/R 18.9 149 165 1.10 90.degree. zur RA 790 270 4.9567 907022 16.0 186 241 1.30 90.degree. zur RA 800 280 5.80__________________________________________________________________________
TABLE 6__________________________________________________________________________Chemical compositions of the Tested Steels in %Hot Strip Chemical Compositionor Plate MELT C Si Mn P S Al N Nb V Mo Cr Ni Sn Cu__________________________________________________________________________A 11294 .15 .32 1.59 .012 .003 .054 .0098 .02 -- -- .03 .75 <.01 .05B 79486 .08 .35 1.76 .015 .010 .048 .0059 .10 -- .34 .02 .01 <.01 .03C 79639 .04 .30 1.27 .023 .008 .031 .0055 .09 -- .35 .02 .02 <.01 .05D 55161 .06 .23 1.47 .022 .007 .040 .0056 .07 -- .33 .01 .02 <.01 .03F 38070 .10 .34 1.59 .016 .012 .041 .0072 .05 .09 -- .02 .03 <.01 .04G 38069 .10 .35 1.59 .021 .013 .051 .0057 .04 .08 -- .03 .03 <.01 .04H 10381 .09 .33 1.58 .015 .011 .059 .0080 .04 .09 -- .01 .02 <.01 .03I 43941 .10 .29 1.54 .016 .012 .041 .0057 .08 -- -- .02 .03 <.01 .05J 10527 .09 .26 1.58 .015 .003 .051 .0107 .03 .07 -- .02 .03 <.01 .03K 44359 .10 .24 1.49 .014 .004 .039 .0108 .03 .06 -- .02 .03 <.01 .04L 12078 .07 .26 1.67 .019 .004 .048 .0084 .04 .06 -- .30 .02 <.01 .03__________________________________________________________________________
TABLE 7__________________________________________________________________________Manufacturing Conditions for "Separations-free" SteelsSpecies of Outlet Steel Plate Pusher Furnace Finishing Coil or Cooling Rate FromSteel MELT Thickness Thickness Temperature Temperature Pile temp. WET to T.sub.H__________________________________________________________________________ .degree.C./SA 11294 200 20 1230 750 540 .sup. 2,5.degree.B 79486 210 18,3 1180 790 540 5C 79639 205 18,3 1180 800 540 5,2D 55161 210 18,3 1180 810 545 5,4E 203 18,3 1180 800 530 5,4F 38070 201 13,5 1220 790 480 8,7G 38069 200 13,5 1220 800 500 8,5H 10381 200 14,8 1180 770 490 7,2I 43941 205 14,8 1180 770 485 7,5J 10527 205 14,8 1180 760 460 8,0K 44359 200 14,8 1180 770 500 7,2L 12078 200 16,0 1180 780 550 5,1__________________________________________________________________________
TABLE 8__________________________________________________________________________The mechanical-technological characteristics of "separations-free"steelsCharacteristicHot Yield Tensile TransitionStrip or Plate Test Position Stress R.sub.p0,2 Mpa Strength R.sub.m MpaA.sub.5 % a.sub.k -Value in J/cm.sup.2 C.sub.V.sup.100C.sub.V.s up.maxTU.sub.50% Temperature in .degree.C. C.sub.V.sup.100 U.sub.50% ##STR3##__________________________________________________________________________A L 441 490 28,1 210 258 140 -35 -50 1.23 Q 471 587 29,4 229 259 165 -80 -45 1.13B L 561 756 20,4 102 110 73 -35 -48 1.08 Q 610 765 18,2 40 48 26 -30 -51 1.20C L 499 621 22,0 246 308 94 -76 -104 1.25 Q 539 641 19,1 64 66 58 -30 -49 1.03D L 503 629 22,7 201 247 67 -72 -108 1.23 Q 518 651 18,3 80 95 62 -36 -58 1.19E L 521 634 22,5 222 272 125 -65 -74 1.23 Q 571 660 19,8 74 79 55 -30 -52 1.06F L 546 651 24,3 175 187 60 -30 -67 1.07 Q 589 672 12,3 49 56 34 -30 -60 1.14G L 556 660 24,2 119 139 62 -60 -77 1.17 Q 599 689 21,6 45 50 34 -30 -65 1.11H L 506 629 26,7 160 201 65 -60 -93 1.26 Q 551 639 23,7 58 63 30 -40 -82 1.09I L 505 625 25,6 155 189 86 -60 -92 1.22 Q 535 635 22,1 53 59 45 -40 -57 1.11J L 535 632 26,8 246 277 129 -80 -90 1.13 Q 560 648 22,8 154 186 80 -60 -82 1.21K L 522 622 27,1 183 227 83 -80 -100 1.24 Q 565 637 23,1 152 169 65 -60 -95 1.11L L 555 657 25,7 233 303 125 -90 -110 1.30 Q 616 692 21,3 140 170 70 -69 -100 1.21__________________________________________________________________________
Claims
  • 1. In a method for the manufacture of hot strips or heavy plates from a denitrated steel composed of 0.04 to 0.16% carbon, 1.25 to 1.90% manganese, 0.2 to 0.55% silicon, 0.004 to 0.020% phosphorus, 0.002 to 0.015% sulfur, 0.02 to 0.08% aluminum, 0.02 to 0.08% niobium, the remainder iron and possibly contaminants, the improvement comprising the steps of having the hot strips or plates leaving the last finishing stand of rolls at a temperature of 750.degree. C. to 820.degree. C., cooling the hot strips or plates to an intermediate temperature of 450.degree. C. to 500.degree. C. at a cooling rate of 2.degree. to 10.degree. C./s and then slowly cooling the hot strips or plates in air to room temperature in a coil or in a pile.
  • 2. Method according to claim 1, wherein the steel is alloyed with 0.02 to 0.10% addition of vanadium.
  • 3. In a method for the manufacture of hot strips or heavy plates from a denitrated steel composed of 0.04 to 0.16% carbon, 1.25 to 1.90% manganese, 0.02 to 0.55% silicon, 0.004 to 0.020% phosphorus, 0.002 to 0.015% sulfur, 0.02 to 0.08% aluminum, 0.02 to 0.08% niobium, as well as addition of 0.15 to 0.35% molybdenum, 0.10 to 0.30% chromium and/or 0.30 to 0.90% nickel, alone or in combination, the remainder iron and possibly contaminants, the improvement comprising the steps of having the hot strips or plates leaving the last finishing stand of rolls at a temperature of 750.degree. C. to 850.degree. C., cooling the hot strips or plates to an intermediate temperature of 450.degree. C. to 500.degree. C. at a cooling rate of 2.degree. to 10.degree. C./s and then slowly cooling the hot strips or plates in air to room temperature in a coil or in a pile.
  • 4. Method according to claim 3, wherein the steel is alloyed with 0.02 to 0.10% addition of vanadium.
  • 5. Method according to claim 3 or 4, wherein the finishing temperature lies between 750.degree. C. and 820.degree. C.
  • 6. Method according to claim 3, wherein the steel includes an addition of 0.002 to 0.08% zirconium.
  • 7. Method according to claim 3, wherein the steel includes an addition of 0.004 to 0.051% cerium.
  • 8. Hot strips or heavy plates manufactured according to the method of claim 1 or 3.
  • 9. Hot strips or heavy plates according to claim 8, wherein the steel exhibits a ferritic-perlitic structure.
  • 10. Hot strips or heavy plates according to claim 8, wherein the ratio of Cvmax to Cv100 lies between 1.0 and 1.3.
  • 11. Hot strips or heavy plates according to claim 8, wherein the ratio of Cvmax to Cv100 lies between 1.3 and 2.0.
  • 12. Hot strips or heavy plates according to claim 8, having a maximum impact tenacity value of 280 J/cm.sup.2 at a test temperature of -20.degree. C.
  • 13. Hot strips or heavy plates according to claim 8, having a maximum impact tenacity value of 230 J/cm.sup.2 at a test temperature of -40.degree. C.
Priority Claims (2)
Number Date Country Kind
2949124 Dec 1979 DEX
3030060 Aug 1980 DEX
US Referenced Citations (7)
Number Name Date Kind
3704180 Heitmann et al. Nov 1972
3849209 Ishizaki et al. Nov 1974
3918999 Sekine et al. Nov 1975
3976514 Matsukura et al. Aug 1976
4137104 Nashiwa et al. Jan 1979
4184898 Ouchi et al. Jan 1980
4219371 Nakasugi et al. Aug 1980
Foreign Referenced Citations (1)
Number Date Country
52-20322 Feb 1977 JPX