1. Field of the Invention
The present invention relates to a generator, and more particularly to a hot water and steam generator that can produce both of the hot water and the steam.
2. Description of the Related Art
A conventional heater is used to heat the water to produce a hot water, and a conventional vaporizer is used to vaporize the water into a steam or vapor so as to produce the steam. However, the heater and the vaporizer cannot be combined to produce the hot water and steam by the same machine, thereby limiting the versatility of the conventional heater and vaporizer.
In accordance with the present invention, there is provided a hot water and steam generator, comprising a base; a first seal plate mounted on the base; a protruding container mounted on a side of the first seal plate; a second seal plate mounted on the base; a mounting ring mounted between and sealed by the first seal plate and the second seal plate; and a rotation wheel rotatably mounted in the mounting ring.
The primary objective of the present invention is to provide a hot water and steam generator that can produce both of the hot water and the steam, thereby enhancing the versatility of the hot water and steam generator.
Another objective of the present invention is to provide a hot water and steam generator that increases the water temperature rapidly due to collision and friction of water molecules by rotation of the rotation wheel so as to produce hot water and steam easily, rapidly and conveniently.
A further objective of the present invention is to provide a hot water and steam generator, wherein the receiving space of the container, the rotation wheel, the mounting ring, the hot water outlet and the steam outlet are implanted with far infrared rays so as to produce hot water and steam with far infrared energy.
Further benefits and advantages of the present invention will become apparent after a careful reading of the detailed description with appropriate reference to the accompanying drawings.
Referring to the drawings and initially to
The first seal plate 40 is formed with a water inlet 48 connected to a water inlet pipe 480 (see
The container 41 has an inside formed with a receiving space 47 (see
The second seal plate 50 has a periphery formed with an annular positioning groove 500 mounted on a second end of the mounting ring 20. The second seal plate 50 is formed with a hot water outlet 52 and a steam outlet 51 located above the hot water outlet 52. The second seal plate 50 has a periphery formed with a plurality of positioning holes 53.
The hot water and steam generator 1 further comprises a plurality of positioning bolts 60 each extended through a respective one of the positioning holes 43 of the first seal plate 40 and a respective one of the positioning holes 53 of the second seal plate 50, so that the first seal plate 40 and the second seal plate 50 are combined with each other by the positioning bolts 23.
The hot water and steam generator 1 further comprises a positioning device 14 including two spaced positioning plates 15 mounted on the base 10 for supporting the first seal plate 40 and the second seal plate 50 and each formed with a plurality of through holes 16, and a plurality of locking bolts 600 each extended through a respective one of the through holes 16 of each of the positioning plates 15, a respective one of the positioning holes 43 of the first seal plate 40 and a respective one of the positioning holes 53 of the second seal plate 50, so that the first seal plate 40 and the second seal plate 50 are fixed on the positioning plates 15 by the locking bolts 230.
As shown in
The power device 11 includes a rotation shaft 57 secured in the rotation wheel 30 for rotating the rotation wheel 30 and having a first end extended through the through hole 42 of the container 41 and the first seal plate 40 and a second end extended through the second seal plate 50, a bearing 46 rotatably mounted between the first end of the rotation shaft 57 and the first seal plate 40, a bearing 56 rotatably mounted between the second end of the rotation shaft 57 and the second seal plate 50, a drive motor 18 mounted on the base 10 and having a drive shaft 12, and a coupling device 13 mounted between the drive shaft 12 of the drive motor 18 and the first end of the rotation shaft 57, so that the rotation shaft 57 is rotated by the drive shaft 12 of the drive motor 18.
The rotation shaft 57 is extended through the entrance hole 32 of the rotation wheel 30. The entrance hole 32 of the rotation wheel 30 has a diameter greater than that of the rotation shaft 57 and has a first side 34 located adjacent to the through hole 42 of the container 41 and a second side 35 protruded radially inward therefrom and fixed on the rotation shaft 57 by soldering, so that the rotation wheel 30 is fixed on the rotation shaft 57 to rotate therewith. In addition, the second side 35 of the rotation wheel 30 is sealed by the rotation shaft 57.
A bushing 45 is mounted on the first seal plate 40, and a bearing 44 is rotatably mounted between the bushing 45 and the first end of the rotation wheel 30. A bushing 55 is mounted on the second seal plate 50, and a bearing 54 is rotatably mounted between the bushing 55 and the second end of the rotation wheel 30.
As shown in
As shown in
As shown in
As shown in
As shown in
In operation, referring to
Then, the water is guided through the guide holes 33 into the impact holes 31 of the rotation wheel 30. At this time, the rotation wheel 30 is rotated at a high speed to produce a centrifugal force on the water, so that the water hits, rubs and impacts the wall of the impact holes 31 of the rotation wheel 30 strongly so as to increase the temperature of the water rapidly by the greater heat conduction of the rotation wheel 30 which is made of metallic material. After the water leaves the rotation wheel 30, the heated water is injected outward from the impact holes 31 of the rotation wheel 30 and is forced to hit, rub and impact the inner wall of the mounting ring 20 strongly so as to further increase the temperature of the heated water rapidly by the greater heat conduction of the mounting ring 20 which is made of metallic material, thereby producing hot water or steam.
In test, assuming the water temperature is about 20° C. to 25° C. when the water enters the rotation wheel 30, the temperature of the heated water that is rotated by the rotation wheel 30 and impacted rapidly by the impact holes 31 of the rotation wheel 30 during a period of time, about 90 seconds, is lifted to 58° C. to 63° C. Then, the hot water is drained outward from the hot water outlet 52 of the second seal plate 50.
In addition, when the rotation wheel 30 is rotated at a higher speed, the water is impacted more rapidly by the impact holes 31 of the rotation wheel is 30 to further increase the temperature of the heated water until the water is turned into steam. Then, the steam is drained outward from the steam outlet 51 of the second seal plate 50.
Accordingly, the hot water and steam generator increases the water temperature rapidly due to collision and friction of water molecules by rotation of the rotation wheel 30 so as to produce hot water and steam easily, rapidly and conveniently. In addition, the hot water and steam generator can produce both of the hot water and the steam, thereby enhancing the versatility of the hot water and steam generator. Further, the receiving space 47 of the container 41, the rotation wheel 30, the mounting ring 20, the hot water outlet 52 and the steam outlet 51 are implanted with far infrared rays so as to produce hot water and steam with far infrared energy.
Although the invention has been explained in relation to its preferred embodiment(s) as mentioned above, it is to be understood that many other possible modifications and variations can be made without departing from the scope of the present invention. It is, therefore, contemplated that the appended claim or claims will cover such modifications and variations that fall within the true scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
2090873 | Lasarus | Aug 1937 | A |
4256085 | Line | Mar 1981 | A |
5419306 | Huffman | May 1995 | A |
6596178 | Archibald et al. | Jul 2003 | B1 |
6910448 | Thoma | Jun 2005 | B1 |