The present invention relates to a hot water apparatus.
A hot water apparatus including a heat exchanger for exchanging heat between heating gas and water and/or hot water is disclosed in International Publication WO2015/141995, for example. The hot water apparatus disclosed in this literature includes a sensible heat recovery heat exchanger and a latent heat recovery heat exchanger. The sensible heat recovery heat exchanger and the latent heat recovery heat exchanger have cases that communicate with each other. The case of the sensible heat recovery heat exchanger has a lower end provided with a first flange portion, and the case of the latent heat recovery heat exchanger has an upper end provided with a second flange portion. The first flange portion and the second flange portion are connected to each other.
In the hot water apparatus disclosed in the above-described literature, drainage water produced inside the sensible heat recovery heat exchanger flows downward along the inner surface of the case of the sensible heat recovery heat exchanger. When this drainage water flows to the lower end of the case of the sensible heat recovery heat exchanger, this drainage water may flow out through between the first flange portion of the sensible heat recovery heat exchanger and the second flange portion of the latent heat recovery heat exchanger.
The present invention has been made in light of the above-described problems. An object of the present invention is to provide a hot water apparatus capable of suppressing drainage water produced inside a heat exchanger from flowing out through between a first flange portion of a heat exchanger and a second flange portion connected to the first flange portion.
A hot water apparatus of the present invention includes a heat exchanger and a housing. The heat exchanger includes a heat exchange portion and a first case in which the heat exchange portion is housed. The housing includes a second case connected to the first case of the heat exchanger. The first case of the heat exchanger includes a first circumferential wall portion, a first opening provided at a lower end of the first circumferential wall portion, and a first flange portion located above the first opening and extending outward from the first circumferential wall portion. The second case of the housing includes a second flange portion connected to the first flange portion, a second circumferential wall portion arranged inside the second flange portion, and a second opening provided at an upper end of the second circumferential wall portion. The first circumferential wall portion of the heat exchanger includes a downwardly-extending wall portion inserted through the second opening of the housing into an inside of the second circumferential wall portion. In a state where the downwardly-extending wall portion is arranged inside the second circumferential wall portion, the first opening is located below an upper surface of the second flange portion.
According to the hot water apparatus of the present invention, in the state where the downwardly-extending wall portion is arranged inside the second circumferential wall portion, the first opening is located below an upper surface of the second flange portion. Accordingly, the drainage water produced inside the heat exchanger flows along the downwardly-extending wall portion downward from the first opening. Thus, the drainage water can be suppressed from flowing through the first opening onto the upper surface of the second flange portion. Thereby, the drainage water produced inside the heat exchanger can be suppressed from flowing out through between the first flange portion and the second flange portion.
In the above-described hot water apparatus, the first opening is located below a lower surface of the second flange portion. Accordingly, the distance from the first opening to the upper surface of the second flange portion in the vertical direction is greater than the distance from the upper surface of the second flange portion to the lower surface thereof in the vertical direction. Thus, the drainage water produced inside the heat exchanger can be effectively suppressed from flowing through the first opening onto the upper surface of the second flange portion.
In the above-described hot water apparatus, the downwardly-extending wall portion is provided on an entire circumference of the first circumferential wall portion. Thus, the drainage water produced inside the heat exchanger can be suppressed from flowing through the first opening onto the upper surface of the second flange portion in the entire circumference of the first circumferential wall portion.
In the above-described hot water apparatus, the first circumferential wall portion includes a plate member. The downwardly-extending wall portion is formed by folding the plate member at the lower end of the first circumferential wall portion. Accordingly, the drainage water produced inside the heat exchanger can be prevented from flowing from the lower end of the first circumferential wall portion into the inside of the downwardly-extending wall portion. Thus, the downwardly-extending wall portion can be prevented from corroding from its inside due to the drainage water.
In the above-described hot water apparatus, the downwardly-extending wall portion is arranged such that a gap is interposed between the downwardly-extending wall portion and the second circumferential wall portion. Accordingly, the drainage water produced inside the heat exchanger can be suppressed from flowing, due to surface tension, from the first opening through between the downwardly-extending wall portion and the second circumferential wall portion onto the upper surface of the second flange portion.
In the above-described hot water apparatus, the housing includes a connection portion connected to a lower end of the second circumferential wall portion. The connection portion extends toward an inside of the second circumferential wall portion, and is arranged such that a gap is interposed between the connection portion and a lower end of the downwardly-extending wall portion. The gap between the downwardly-extending wall portion and the second circumferential wall portion is greater than the gap between the downwardly-extending wall portion and the connection portion. Accordingly, the drainage water produced inside the heat exchanger is likely to flow more into the gap between the downwardly-extending wall portion and the connection portion than into the gap between the downwardly-extending wall portion and the second circumferential wall portion. Thus, the drainage water can be suppressed from flowing through between the downwardly-extending wall portion and the second circumferential wall portion. Thereby, the drainage water produced inside the heat exchanger can be suppressed from flowing through between the downwardly-extending wall portion and the second circumferential wall portion onto the upper surface of the second flange portion.
In the above-described hot water apparatus, the housing includes a connection portion connected to a lower end of the second circumferential wall portion. The connection portion is inclined so as to be downwardly sloped toward the inside of the second circumferential wall portion, and is arranged such that a gap is interposed between the connection portion and a lower end of the downwardly-extending wall portion. Accordingly, the drainage water produced inside the heat exchanger flows along the connection portion toward the inside of the second circumferential wall portion. Thus, the drainage water can be suppressed from flowing toward the second flange portion. Thereby, the drainage water produced inside the heat exchanger can be suppressed from flowing onto the upper surface of the second flange portion.
In the above-described hot water apparatus, the housing includes a rising coupling portion arranged inside the connection portion and rising upward from the connection portion, a through hole surrounded by the rising coupling portion, and a main body portion inserted into the through hole. The rising coupling portion is joined from outside to an upper end of the main body portion. Accordingly, the rising coupling portion can be readily welded to the upper end of the main body portion.
In the above-described hot water apparatus, the rising coupling portion includes a first cutout portion provided at an upper end of the rising coupling portion. The main body portion includes a second cutout portion provided at the upper end of the main body portion. The first cutout portion is arranged so as to overlap with the second cutout portion. Accordingly, the drainage water can be caused to flow from the first cutout portion and the second cutout portion into the through hole. Thereby, the drainage water can be readily discharged.
The foregoing and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.
The embodiments of the present invention will be hereinafter described with reference to the accompanying drawings.
First, the configuration of a hot water apparatus in the first embodiment of the present invention will be hereinafter described with reference to
As shown in
Fuel gas flows through gas valve 36 and orifice 35 into venturi 34. The mixed gas mixed in venturi 34 is fed to fan assembly 32. Fan assembly 32 serves to supply the mixed gas to burner 30.
Fan assembly 32 is connected to chamber 31 that is connected to burner 30. The mixed gas supplied from fan assembly 32 is fed to burner 30 through chamber 31.
Burner 30 serves to produce heating gas to be supplied to sensible heat recovery heat exchanger (heat exchanger) 10. The mixed gas blown out of burner 30 is ignited by ignition plug 14 and turned into combustion gas.
Burner 30, sensible heat recovery heat exchanger 10 and latent heat recovery heat exchanger 20 are connected such that combustion gas flows sequentially through sensible heat recovery heat exchanger 10 and latent heat recovery heat exchanger 20 so as to be heat-exchanged with water and/or hot water. Exhaust collection and guide member 70 is connected to latent heat recovery heat exchanger 20. To exhaust collection and guide member 70, duct 33 is connected, which extends to the outside of housing 50. Thereby, combustion gas having passed through latent heat recovery heat exchanger 20 is caused to flow through exhaust collection and guide member 70 and discharged through duct 33 to the outside of housing 50.
A portion of pipe 40 on the hot water exit side relative to sensible heat recovery heat exchanger 10 is connected to bypass pipe 41 by three-way valve 42. Liquid to liquid heat exchanger 43 is connected to bypass pipe 41. The warm water flowing through the inside of liquid to liquid heat exchanger 43 flows on the outside of warm water pipe 44, thereby allowing heat exchange between the warm water flowing through liquid to liquid heat exchanger 43 and the warm water flowing through warm water pipe 44.
Then, the configuration of a heat exchanger set of the present embodiment will be hereinafter described with reference to
As shown in
As shown in
Case 11 houses heat exchange portion 15. Case 11 has a circumferential wall portion (first circumferential wall portion) 111, an upper opening 112, a lower opening (first opening) 113, and a flange portion (first flange portion) 114. Case 11 has a first sidewall 11a, a second sidewall 11b, a third sidewall 11c, and a fourth sidewall 11d. First sidewall 11a to fourth sidewall 11d are connected to one another so as to form a rectangular frame shape. First sidewall 11a to fourth sidewall 11d constitute circumferential wall portion 111.
Case 11 having the above-described frame shape has upper opening 112 and lower opening 113. This allows combustion gas to be supplied to the inside of case 11 through upper opening 112 of case 11. This also allows combustion gas to be emitted through lower opening 113 of case 11 to the outside of case 11.
Header 12 is provided on the outer surface of first sidewall 11a. Header 12 provided on the outer surface of first sidewall 11a is provided with a joint 13a on the water entry side and a joint 13b on the hot water exit side. Header 12 (not shown) is provided also on the outer surface of third sidewall 11c.
Header 12 provided on the outer surface of first sidewall 11a and header 12 provided on the outer surface of third sidewall 11c are connected to each other through a plurality of heat transfer tubes 13. The plurality of heat transfer tubes 13 include heat transfer tubes 13 located inside case 11 and heat transfer tubes 13 located outside case 11.
Water and/or hot water flowing through header 12 and heat transfer tube 13 is, for example, as described below.
Water and/or hot water introduced through joint 13a on the water entry side flows into heat transfer tube 13 located inside case 11 through header 12 provided on the side closest to one end of the outer surface of first sidewall 11a. Water and/or hot water having flown into heat transfer tube 13 reaches header 12 (not shown) provided on the outer surface of third sidewall 11c. Water and/or hot water that reaches header 12 provided on the outer surface of third sidewall 11c flows through another heat transfer tube 13 connected to this header 12 and reaches a header 12 provided on the outer surface of first sidewall 11a. Thus, water and/or hot water flows from the side of first sidewall 11a toward third sidewall 11c and thereafter turns back from the side of third sidewall 11c toward first sidewall 11a. Then, water and/or hot water flows while repeating turning back toward third sidewall 11c and turning back toward first sidewall 11a.
Water and/or hot water that reaches header 12 provided on the side closest to the other end of the outer surface of first sidewall 11a as described above reaches header 12 provided on the outer surface of third sidewall 11c through heat transfer tube 13 provided on the outer surface of second sidewall 11b. Water and/or hot water that reaches header 12 provided on the outer surface of third sidewall 11c flows through heat transfer tube 13 provided on the outer surface of fourth sidewall 11d and reaches header 12 provided on the outer surface of first sidewall 11a. Finally, water and/or hot water exits from joint 13b on the hot water exit side.
As shown in
As shown in
As shown in
Referring to
Case 21 has a circumferential wall portion (second circumferential wall portion) 211, an upper opening (second opening) 212, a lower opening 213, a flange portion (second flange portion) 214, a connection portion 215, a rising coupling portion 216, a through hole 217, and a main body portion 218.
Case 21 houses heat exchange portion 22. Circumferential wall portion 211 of case 21 is configured to surround the circumference of downwardly-extending wall portion 11w. Circumferential wall portion 211 is configured to have a rectangular frame shape. Case 21 having the above-described frame shape has upper opening 212 and lower opening 213. This allows combustion gas to be supplied to the inside of case 21 through upper opening 212 of case 21. This also allows combustion gas to be emitted to the outside of case 21 through lower opening 213 of case 21.
Heat exchange portion 22 is to perform heat exchange between heating gas flowing outside heat exchange portion 22 and water and/or hot water flowing inside heat exchange portion 22. Heat exchange portion 22 has a plurality of heat transfer plates. The plurality of heat transfer plates are stacked on one another. The heat transfer plates adjacent to each other among the plurality of heat transfer plates are brazed to each other. A gap between a pair of adjacent heat transfer plates of the plurality of heat transfer plates defines a flow path through which water and/or hot water flows. A space between a pair of adjacent heat transfer plates of the plurality of heat transfer plates defines a flow path through which combustion gas flows.
A pair of joint portions 23 serves to cause water and/or hot water to flow therethrough into and out of the plurality of heat transfer plates in heat exchange portion 22. The pair of joint portions 23 each serves as a joint for connecting pipes. The pair of joint portions 23 each has a flow path that is connected to an internal flow path in each of the plurality of heat transfer plates. Therefore, water and/or hot water introduced from joint portion 23 on the water entry side flows through the internal flow path in each of the pair of heat transfer plates, and thereafter, exits from joint portion 23 on the hot water exit side.
As shown in
Rising coupling portion 216 is arranged inside connection portion 215. Rising coupling portion 216 rises upward from connection portion 215. Through hole 217 is surrounded by rising coupling portion 216. Main body portion 218 is inserted into through hole 217. Main body portion 218 is configured to surround the circumference of heat exchange portion 22. Rising coupling portion 216 is joined from outside to the upper end of main body portion 218 inserted into through hole 217.
As shown in
In the state where the upper end of main body portion 218 is inserted into through hole 217, first cutout portion 216a is arranged so as to overlap with second cutout portion 218a. Namely, first cutout portion 216a and second cutout portion 218a are arranged so as to communicate with each other.
Through hole 217 is formed in a rectangular shape when flange portion 214 is seen from above. First cutout portion 216a and second cutout portion 218a are provided at each of four corners of through hole 217.
As shown in
Circumferential wall portion 111 of case 11 includes a plate member. Downwardly-extending wall portion 11w of circumferential wall portion 111 is formed by folding the plate member at the lower end of circumferential wall portion 111. In other words, downwardly-extending wall portion 11w is formed by folding one plate member. Also, in the present embodiment, flange portion 114 is formed by bending one plate member. In other words, in each of first sidewall 11a to fourth sidewall 11d of case 11, circumferential wall portion 111, downwardly-extending wall portion 11w and flange portion 114 are formed of one plate member.
Downwardly-extending wall portion 11w of case 11 is arranged such that a gap is interposed between this downwardly-extending wall portion 11w of case 11 and circumferential wall portion 211 of case 21. In other words, downwardly-extending wall portion 11w is not in close contact with circumferential wall portion 211. A gap between downwardly-extending wall portion 11w and circumferential wall portion 211 is provided on the outside of circumferential wall portion 111. In the present embodiment, the gap between downwardly-extending wall portion 11w and circumferential wall portion 211 is provided around the entire circumference of circumferential wall portion 111.
Connection portion 215 of case 21 is connected to the lower end of circumferential wall portion 211. Connection portion 215 extends toward the inside of circumferential wall portion 211. Connection portion 215 is arranged such that a gap is interposed between this connection portion 215 and the lower end of downwardly-extending wall portion 11w. The gap between connection portion 215 and the lower end of downwardly-extending wall portion 11w is provided directly below the lower end of downwardly-extending wall portion 11w. The gap between downwardly-extending wall portion 11w and circumferential wall portion 211 is greater than the gap between downwardly-extending wall portion 11w and connection portion 215. In the present embodiment, connection portion 215 is inclined so as to be downwardly sloped toward the inside of circumferential wall portion 211.
As shown in
As shown in
Then, the functions and effects of the present embodiment will be hereinafter described in comparison with a comparative example.
Since the comparative example has the same configuration as that of the above-described present embodiment unless otherwise specified, the same components are designated by the same reference characters, and the description thereof will not be repeated.
The comparative example will be hereinafter described with reference to
On the other hand, according to hot water apparatus 100 of the present embodiment, as shown in
Furthermore, lower opening (first opening) 113 is located below the lower surface of flange portion (second flange portion) 214. Accordingly, the distance from lower opening (first opening) 113 to the upper surface of flange portion (second flange portion) 214 in the vertical direction is greater than the distance from the upper surface of flange portion (second flange portion) 214 to the lower surface thereof in the vertical direction. Thus, the drainage water produced inside sensible heat recovery heat exchanger 10 can be effectively suppressed from flowing through lower opening (first opening) 113 onto the upper surface of flange portion (second flange portion) 214.
Furthermore, as shown in
Also as shown in
Furthermore, downwardly-extending wall portion 11w is arranged such that a gap is interposed between downwardly-extending wall portion 11w and circumferential wall portion (second circumferential wall portion) 211. Accordingly, drainage water produced inside sensible heat recovery heat exchanger 10 can be suppressed from flowing, due to surface tension, onto the upper surface of flange portion (second flange portion) 214 from lower opening (first opening) 113 through between downwardly-extending wall portion 11w and circumferential wall portion (second circumferential wall portion) 211.
Furthermore, the gap between downwardly-extending wall portion 11w and circumferential wall portion (second circumferential wall portion) 211 is greater than the gap between downwardly-extending wall portion 11w and connection portion 215. Accordingly, drainage water produced inside sensible heat recovery heat exchanger 10 is likely to flow more into the gap between downwardly-extending wall portion 11w and connection portion 215 than into the gap between downwardly-extending wall portion 11w and circumferential wall portion (second circumferential wall portion) 211. Thus, drainage water can be suppressed from flowing through between downwardly-extending wall portion 11w and circumferential wall portion (second circumferential wall portion) 211. Thereby, the drainage water produced inside sensible heat recovery heat exchanger 10 can be suppressed from flowing onto the upper surface of flange portion (second flange portion) 214 through between downwardly-extending wall portion 11w and circumferential wall portion (second circumferential wall portion) 211.
Furthermore, connection portion 215 is inclined so as to be downwardly sloped toward the inside of circumferential wall portion (second circumferential wall portion) 211. Thereby, the drainage water produced inside sensible heat recovery heat exchanger 10 flows along the inner surface of connection portion 215 toward the inside of circumferential wall portion (second circumferential wall portion) 211. Thus, the drainage water can be suppressed from flowing toward flange portion (second flange portion) 214. Accordingly, the drainage water produced inside sensible heat recovery heat exchanger 10 can be suppressed from flowing onto the upper surface of flange portion (second flange portion) 214. Furthermore, when latent heat recovery heat exchanger 20 is entirely inclined to the outside of circumferential wall portion (second circumferential wall portion) 211, the drainage water adhering to connection portion 215 can be suppressed from flowing toward flange portion (second flange portion) 214.
As shown in
Furthermore, first cutout portion 216a provided at the upper end of rising coupling portion 216 is arranged so as to overlap with second cutout portion 218a provided at the upper end of main body portion 218. Accordingly, drainage water can be caused to flow from first cutout portion 216a and second cutout portion 218a into through hole 217. Thereby, drainage water can be readily discharged.
Since the second embodiment of the present invention has the same configuration as that of the above-described first embodiment of the present invention unless otherwise specified, the same components are designated by the same reference characters, and the description thereof will not be repeated.
The above-described first embodiment has been explained with regard to the situation where sensible heat recovery heat exchanger 10 corresponds to a heat exchanger in the claims, and latent heat recovery heat exchanger 20 corresponds to a housing in the claims. In contrast, in the present embodiment, latent heat recovery heat exchanger 20 corresponds to a heat exchanger in the claims, and exhaust collection and guide member 70 corresponds to a housing in the claims.
As shown in
Latent heat recovery heat exchanger 20 has a case (first case) 21 provided with a flange portion (first flange portion) 219. Flange portion 219 is located above lower opening (first opening) 213 and extends outward from main body portion (first circumferential wall portion) 218. Main body portion 218 has a downwardly-extending wall portion 21w arranged at the lower end of main body portion 218.
Exhaust collection and guide member 70 mainly has a case (second case) 71 and a partition plate 72. Case 71 is connected to case 21 of latent heat recovery heat exchanger 20. Case 71 has a circumferential wall portion (second circumferential wall portion) 711, an upper opening (second opening) 712, a connection opening 713, and a flange portion (second flange portion) 714.
Circumferential wall portion 711 of case 71 is arranged on the outside of downwardly-extending wall portion 21w. Combustion gas can be supplied to the inside of case 71 through upper opening 712 of case 71. Also, combustion gas can be emitted to duct 33 through connection opening 713 of case 71.
Flange portion 714 is arranged at the upper end of case 71. Flange portion 714 extends from circumferential wall portion 711 to the outside of case 71. Flange portion 714 is connected to the upper end of circumferential wall portion 711. Circumferential wall portion 711 is arranged on the inside of flange portion 714. Upper opening 712 is provided at the upper end of circumferential wall portion 711. Upper opening 712 is provided on the inside of circumferential wall portion 711. Connection opening 713 is connected to duct 33. Sealing member 80 is placed on flange portion 714.
Flange portion 714 of case 71 is connected to flange portion 214 of case 21 in latent heat recovery heat exchanger 20. Downwardly-extending wall portion 21w of case 21 is inserted into the inside of circumferential wall portion 711 through upper opening 712 of case 71. In the state where downwardly-extending wall portion 21w of case 21 is arranged on the inside of circumferential wall portion 711 of case 71, lower opening 213 of case 21 is located below the upper surface of flange portion 714 of case 71. In the present embodiment, lower opening 213 of case 21 is located below the lower surface of flange portion 714 of case 71.
Downwardly-extending wall portion 21w of case 21 is arranged such that a gap is interposed between downwardly-extending wall portion 21w and circumferential wall portion 711 of case 71. The gap between downwardly-extending wall portion 21w and circumferential wall portion 711 is provided on the outside of circumferential wall portion 711.
Case 71 houses a partition plate 72. Partition plate 72 is arranged below heat exchange portion 22. Partition plate 72 is provided with a plurality of holes 72a. Combustion gas having flown into exhaust collection and guide member 70 from latent heat recovery heat exchanger 20 flows through the plurality of holes 72a into duct 33. Furthermore, the drainage water having flown into exhaust collection and guide member 70 from latent heat recovery heat exchanger 20 is discharged through the plurality of holes 72a from an exhaust port 71a provided in the lower surface of case 71.
Then, the functions and effects of the present embodiment will be hereinafter described.
According to hot water apparatus 100 of the present embodiment, drainage water produced inside latent heat recovery heat exchanger 20 flows along the inner surface of downwardly-extending wall portion 21w downward from lower opening (first opening) 213. Accordingly, the drainage water can be suppressed from flowing onto the upper surface of flange portion (second flange portion) 714 located above lower opening (first opening) 213. Thereby, the drainage water produced inside latent heat recovery heat exchanger 20 can be suppressed from flowing through between the lower surface of flange portion (first flange portion) 214 and the upper surface of flange portion (second flange portion) 714.
Furthermore, lower opening (first opening) 213 is located below the lower surface of flange portion (second flange portion) 714. Accordingly, the distance from lower opening (first opening) 213 to the upper surface of flange portion (second flange portion) 714 in the vertical direction is greater than the distance from the upper surface of flange portion (second flange portion) 714 to the lower surface thereof in the vertical direction. Thus, the drainage water produced inside latent heat recovery heat exchanger 20 can be effectively suppressed from flowing through lower opening (first opening) 213 onto the upper surface of flange portion (second flange portion) 714.
Furthermore, downwardly-extending wall portion 21w is arranged such that a gap is interposed between downwardly-extending wall portion 21w and circumferential wall portion (second circumferential wall portion) 711. Accordingly, the drainage water produced inside latent heat recovery heat exchanger 20 can be suppressed from flowing, due to surface tension, from lower opening (first opening) 213 through between downwardly-extending wall portion 21w and circumferential wall portion (second circumferential wall portion) 711 onto the upper surface of flange portion (second flange portion) 714.
Although the embodiments of the present invention have been described as above, it should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the meaning and scope equivalent to the terms of the claims.
Number | Date | Country | Kind |
---|---|---|---|
2017-002621 | Jan 2017 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4421066 | Gordbegli | Dec 1983 | A |
4444156 | Iwasaki | Apr 1984 | A |
4737102 | Jinno | Apr 1988 | A |
20020166587 | Weaver | Nov 2002 | A1 |
20080006226 | Takeda | Jan 2008 | A1 |
20100170452 | Ford | Jul 2010 | A1 |
20100229804 | Okamoto | Sep 2010 | A1 |
20110155079 | Matsunaga | Jun 2011 | A1 |
20110174891 | Kowald | Jul 2011 | A1 |
20120272928 | Kameyama | Nov 2012 | A1 |
20130264037 | Otsubo | Oct 2013 | A1 |
20140174382 | Oohigashi | Jun 2014 | A1 |
20140190425 | Oohigashi | Jul 2014 | A1 |
20160010891 | Wada | Jan 2016 | A1 |
20160025377 | Matsunaga | Jan 2016 | A1 |
20160116228 | Huang | Apr 2016 | A1 |
20160341424 | Kashihara | Nov 2016 | A1 |
20170059205 | Kim | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
2015141995 | Sep 2015 | WO |
Number | Date | Country | |
---|---|---|---|
20180195742 A1 | Jul 2018 | US |