The present invention relates to a hot water storage-type boiler having both a heat amount proportional control function and a backflow prevention function and, more specifically, to a hot water storage-type boiler having both a heat amount proportional control function and a backflow prevention function to prevent backflow of exhaust gas with a simple structure.
In general, gas boilers use gas as fuel and water as heat medium for heating. Especially in the case of a boiler for combined use of hot water, circulation water for heating is circulated inside the boiler through a three-way valve, and the boiler is a combustor that heats supplying water in a form of indirect heat exchange to enable using hot water as well. These gas boilers are classified into instantaneous-type boilers and hot water storage-type boilers according to a hot water supplying method.
An instantaneous-type boiler is heated by the main heat exchanger or hot water storage heat exchanger in the boiler when needed to supply hot water. Since such an instantaneous-type boiler quickly converts cold water into hot water by being instantaneously heated by a large-capacity electric heater, and a separate hot-water tank is not used, whereby a small sized boiler may also be hung on a wall. However, in the case of indoor heating and the like using the instantaneous-type boiler, there is a problem in that a large amount of electricity is consumed by using the large-capacity electric heater, incurring an excessively high cost for heating.
The hot water storage-type boiler is designed to store hot water in a hot water storage tank so that hot water may be used instantaneously when needed, which is different from the instantaneous-type boiler that operates a burner and generates hot water when needed. The hot water storage-type boiler is configured to provide with a heat exchanger inside the hot water storage tank so that the direct water stored in the hot water storage tank is heated to make hot water of a suitable high temperature by the heat exchange unit. Accordingly, users may use hot water or water for heating instantaneously.
Since such a conventional gas boiler does not have a separate backflow prevention means for preventing the exhaust gas combusted in the burner of the combustor from backflowing in a direction of the intake duct, the exhaust gas flows back in the direction of the intake duct as it is. This situation decreases the efficiency of the combustor and causes a problem in that exhaust gas may flow back into the house.
Some boilers install a separate damper on the outside of the combustor to solve this problem, but such a damper also have a problem that requires a separate space for installing the damper on the outside of the combustor.
An objective of the present invention for solving the problems of the related art as described above is to provide a hot water storage-type boiler having both a heat amount proportional control function and a backflow prevention function to prevent backflow of exhaust gas with a simple structure.
In order to achieve the objective of the present Invention, there is a hot water storage-type boiler having both a heat amount proportional control function and a backflow prevention function. The hot water storage-type boiler includes: a casing having a space therein and providing an independent firebox on an upper portion of the space; a burner body mounted on an upper portion of the firebox and provided therein with a burner to inject a flame into the firebox; a blower body connected to the burner body and provided therein with a blower to send air to the burner body; and a check valve provided on one side of the burner body coupled to the blower body or on one side of the blower body coupled to the burner body, and moving the air supplied from the blower toward the burner, wherein the check valve is configured to be opened by pressure of the air supplied from the blower and to be closed by pressure of gas generated by the flame injected by the burner.
In addition, a blower duct may extend at one side of the blower body to deliver outside air sent by the blower to the burner body, the burner body may have a burner duct extending in a direction of the blower duct to be connected to the blower duct, and the check valve may be provided inside the blower duct or the burner duct.
In addition, the check valve may include: a valve body fitted into an inner circumferential edge of the blower duct or the burner duct and having a penetration part provided on one surface thereof; and an opening and closing part which is provided to open and close the penetration part and is hinge-coupled to the valve body to be opened in a direction of the burner.
In addition, the hot water storage-type boiler may further include a guider protruding toward the burner along an edge of the valve body, wherein the guider protrudes in an inclined state to recede from the edge of the valve body toward a lower side of the valve body, and the opening and closing part is closely adhered to be inclined to the guider in a hinged state on an upper side of the valve body.
In addition, a weight plate may be provided in the opening and closing part.
In addition, the weight plate may be detachably coupled to the opening and closing part and configured to adjust weights of the weight plate.
In addition, an inner recess may be provided inside the opening and closing part in contact with the valve body, and a sealing unit may be mounted in the inner recess.
In addition, the sealing unit may have a double protrusion.
In addition, the hot water storage-type boiler may further include: a plurality of fire tubes in which one side thereof is connected to a lower surface of the firebox and the other side thereof extends to a lower direction of the space; and an exhaust gas part provided at a lower portion of the casing and connected to the fire tubes, wherein the flame injected by the burner is moved along insides of the fire tubes while heating the fire tubes and then moved to the exhaust gas part, and water supplied to one side of the space is moved to the other side of the space after passing through the space.
According to the present invention, since an opening area of a check valve is variable by a pressure of air supplied from a blower, an amount of air supplied from the blower to a burner body is also variable, through which an effect of heat amount proportional control is made possible. In addition, when the check valve closes a penetrating unit by a pressure of gas generated by the burner, there is an effect of blocking the gas generated by the burner from backflowing.
In addition, since the check valve is integrally coupled to a burner duct, there is a convenient effect of assembly. Further, since the check valve is built in the burner duct, the check valve does not protrude to the outside, thereby having an effect that a separate space is not needed.
In addition, since a weight plate is provided to be detachable to an opening and closing part of the check valve, there is an effect that the turndown ratio may be controlled by adjusting the weights of the weight plate.
In addition, since an inner side sealing unit mounted on the opening and closing part of the check valve is provided with a double protrusion for the inner side sealing unit to be in close contact with a guider, there is an effect that airtightness is improved. In addition, the opening and closing part and the inner side sealing unit are manufactured by double injection, thus there is an effect of reducing the production cost.
1000: Hot water storage-type boiler having both heat amount proportional control function and backflow prevention function
100: Casing 102: Inlet part
104: Outlet part 110: Space
120: Firebox 122: lower surface unit of firebox
200: Burner body 202: Burner duct
210: Burner 300: Blower body
302: Blower duct 304: Blower pipe
310: Blower 400: Check valve
410: Valve body 410a: Penetration part
412: Guider 420: Opening and closing part
420
a: Outer recess 420b: Inner recess
422: Hinge pin 424: Outer side sealing unit
426: Inner side sealing unit 426a: Fitting unit
426
b: First protrusion unit 426c: Second protrusion unit
430: Weight plate 432: Coupling bolt
500: Fire tube 600: Exhaust gas part
610: Exhaust gas duct
Hereinafter, with reference to the accompanying drawings a hot water storage-type boiler having both a heat amount proportional control function and a backflow prevention function according to a preferred embodiment of the present invention will be described in more detail.
Referring to
The casing 100 is provided in a circular pillar shape having an empty space 110 therein and having an upper portion roughly opened. In addition, an inlet part 102 is provided at a lower portion of the casing 100 so that water is supplied into the casing 100 from the outside, and an outlet part 104 is provided at the upper portion of the casing 100. Direct water supplied into the casing 100 through the inlet part 102 is heated through the fire tube 500 to be described later, and heated hot water is discharged to the outside through the outlet part 104. In addition, a firebox 120 is provided in a roughly circular column shape so that an independent space is provided in an upper portion of the space 110 of the casing 100. Then, an outer circumferential edge of the firebox 120 is provided to be smaller than an inner circumferential edge of the casing 100 so that an empty space is provided between the outer circumferential edge of the fire box 120 and the inner circumferential edge of the casing 100. When the water supplied into the casing 100 is heated by the fire tube 500, the heated hot water is guided to the empty space and then discharged to the outside of the casing 100 through the outlet part 104.
The burner body 200 is mounted on an upper portion of the firebox 120, and a burner 210 is mounted therein. The burner 210 is mounted in the burner body 200 to inject a flame into the fire box 120. Such a burner 210 has a conventional configuration that generates the flame by properly mixing a fuel such as gas with air and burning the mixed fuel. When the flame is injected into the firebox 120 from the burner 210, combustion gas with a high temperature due to the flame is generated in the firebox 120.
The blower body 300 is positioned on one side of the burner body 200, and a blower 310 is provided therein. The blower 310 has a conventional configuration that produces air flow. In addition, a blower pipe 304 is provided on one side of the blower body 300 so that the outside air flows into the inside of the blower body 300. Also, a blower duct 302 extends to deliver outside air sent by the blower 310 to the burner body 200 at the other side of the blower body 300. Then, a burner duct 202 extends in a direction of the blower duct 302 to be connected to the blower duct 302 on an upper portion of the burner body 200.
The check valve 400 is provided in the blower duct 302 or the burner duct 202. In an exemplary embodiment of the present invention, the check valve 400 is provided on an upper side of the burner duct 202 coupled to the blower duct 302. This check valve 400 is configured to be opened by a pressure of air supplied from the blower 310, and is configured to be closed by a pressure of gas generated by the flame injected by the burner 210. A detailed structure of the check valve 400 is described later. Since the check valve 400 is integrally coupled to the burner duct 202 in this way, there is an effect of convenient assembly. In addition, since the check valve 400 is built in the burner duct 202, the check valve 400 does not protrude to the outside. Thus, there is an effect that a separate space is not required.
The fire tube 500 is provided, for example, in a hollow pillar shape, and one end thereof is connected to penetrate through a lower surface unit of the fire box 122 located at a lower portion of the fire box 120, and the other end thereof is connected to penetrate through a lower surface of the casing 100. This fire tube 500 may be configured in plural and may be arranged radially inside the casing 100. When hot combustion gas generated in the firebox 120 is delivered to inside of the fire tube 500, the fire tube 500 is heated to the high temperature by heat of the combustion gas. In addition, the combustion gas which passed the fire tube 500 is exhausted to the exhaust gas part 600 to be described later. As such, the fire tube 500 is heated to the high temperature by the combustion gas via flame of the burner 210, so that the direct water supplied into the casing 100 is heat-exchanged with hot water.
The exhaust gas part 600 is mounted on a lower side of a lower surface of the casing 100, and exhausts the combustion gas, exhaust gas, and the like that have discharged from the fire tube 500 to the outside. To this end, the exhaust gas part 600 is further provided with an exhaust gas duct 610 connected to the outside.
Referring to
The valve body 410 is provided to be fitted to an end of the burner duct 202, and a penetration part 410a is provided through one surface thereof. A guider 412 protrudes toward the burner 210 along an edge of the valve body 410. Here, the guider 412 protrudes in an inclined state to recede from the edge of the valve body 410 toward a lower side of the valve body 410.
The opening and closing portion 420 is hinged to an upper side of the valve body 410 by a hinge pin 422 and is installed to be rotatable. The opening and closing part 420 is inclined to be closely adhered to the guider 412 to close the penetration part 410a or rotate away from the guider 412 to open the penetration part 410a.
The weight plate 430 is detachably coupled to the opening and closing part 420, and is provided with the weight plate 430 of various weights. In some cases, a heavy weight plate 430 may be mounted on the opening and closing part 420, or a light weight plate 430 may be mounted on the opening and closing part 420, thereby adjusting the weights of the weight plate 430. This is for controlling the turn down ratio (TDR) of combustion, and TDR refers to the ‘a ratio of maximum gas consumption to minimum gas consumption’ in a gas combustion device in which an amount of gas is variably controlled. The turndown ratio (TDR) indicates how stable the flame may be at minimum gas consumption conditions. In addition, the lighter the weight plate 430 is, the wider an opening area of the opening and closing part 420 is, the more significant an amount of air flowing into the burner 210 from the outside is, thus the burner 210 may stably maintain the flame. On the contrary, the heavier the weight plate 430 is, the narrower the opening area of the opening and closing part 420 is, and thus the amount of air flowed into the burner 210 from the outside is relatively small, and the flame of the burner 210 also becomes unstable. As such, the present invention has an effect of controlling the turndown ratio by adjusting the weights of the weight plate 430.
Referring to
Here, the inner side sealing unit 426 includes a fitting unit 426a fitted to the inner recess 420b, a first protrusion unit 426b protruding in a direction of the guider 412 along one edge of the fitting unit 426a, and a second protrusion unit 426c protruding in the direction of the guider 412 along the other edge of the fitting unit 426a. As such, since the inner side sealing unit 426 has a double protrusion, that is, the first and second protrusion units 426b and 426c, the inner side sealing unit 426 is closely adhered to the guider 412, and thus airtightness is improved. In addition, the opening and closing part 420 and the inner side and outer side sealing units 426 and 424 are manufactured by double injection, thereby reducing the production cost.
First, referring to
Subsequently, referring to
Although the present invention has been described in detail in the above embodiment, it is obvious that the present invention is not limited thereto. It is apparent that those skilled in the art will appreciate that various modifications and variations are possible within the scope of the present invention. If such variations and modifications fall within the scope of the appended claims, their technical spirit should also be regarded as belonging to the present invention.
Number | Date | Country | Kind |
---|---|---|---|
10-2018-0031394 | Mar 2018 | KR | national |
This application is a Continuation of International Application No. PCT/KR2019/000383 filed on Jan. 10, 2019, which claims benefit of priority to Korean Patent Application No. 10-2018-0031394 filed on Mar. 19, 2018, the entire content of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
20100095905 | Smelcer | Apr 2010 | A1 |
20180163994 | Suzuki | Jun 2018 | A1 |
20180187921 | Ojiro | Jul 2018 | A1 |
20180313577 | Ojiro | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
102563159 | Jul 2012 | CN |
2 871 393 | May 2015 | EP |
2017-020693 | Jan 2017 | JP |
10-0724601 | May 2007 | KR |
WO-2017006758 | Jan 2017 | WO |
Entry |
---|
CN 102563159A—machine translation (Year: 2010). |
International Search Report issued in PCT/KR2019/000383; dated May 10, 2019. |
Number | Date | Country | |
---|---|---|---|
20200064025 A1 | Feb 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/KR2019/000383 | Jan 2019 | US |
Child | 16655165 | US |