For design reasons, contemporary kitchens often include cabinets and household appliances without externally visible handles. In the case of a fully integrated household appliance, a completely paneled door may blend in with the other kitchen elements. Many household appliances have a door that must be opened to access an internal chamber prior to or sometime after performing a cycle of operation. Contemporary appliances often include visible feedback relating the status of the appliance or a cycle of operation to a user of the appliance.
One aspect of the present disclosure relates to a household appliance including a cabinet defining a treating chamber with an open face, a door moveably mounted to the cabinet for movement between opened and closed conditions to selectively close the open face, a door opening mechanism for automatically opening the door, and a proximity sensor configured to sense a presence of at least a portion of a person within a predetermined range of the door and out of contact with the door when the door is in the closed condition.
In the drawings:
While exemplified in a dishwasher, the description below is equally applicable to any household appliance having a door for accessing an interior treating chamber where the treating chamber can receive one or more article(s) and the appliance may treat the article(s) according to a useful cycle of operation. That is, the household appliance may be any domestic appliance that performs a particular job in a home, including those relating to cleaning, cooking, or food preservation. Non-limiting examples of household appliances include a refrigerator, a clothes washing machine, a clothes dryer, a freezer, a range, a kitchen stove, an oven, a cooker, and a microwave.
In
It should be appreciated that the door assembly 18 may be secured to the lower front edge of the cabinet 12 or to the lower front edge of the tub 14 via a hinge assembly (not shown) configured to pivot the door assembly 18. When the door assembly 18 is closed, user access to the treating chamber 16 may be prevented, whereas user access to the treating chamber 16 may be permitted when the door assembly 18 is open.
Dish holders, illustrated in the form of upper and lower dish racks 26, 28, are located within the treating chamber 16 and receive dishes for washing. The upper and lower racks 26, 28 are typically mounted for slidable movement in and out of the treating chamber 16 for ease of loading and unloading. Other dish holders may be provided, such as a silverware basket. As used in this description, the term “dish(es)” is intended to be generic to any item, single or plural, that may be treated in the dishwasher 10, including, without limitation, dishes, plates, pots, bowls, pans, glassware, and silverware.
A spray system is provided for spraying liquid in the treating chamber 16 and is illustrated in the form of a first lower spray assembly 34, a second lower spray assembly 36, a rotating mid-level spray arm assembly 38, and/or an upper spray arm assembly 40. Upper sprayer 40, mid-level rotatable sprayer 38 and lower rotatable sprayer 34 are located, respectively, above the upper rack 26, beneath the upper rack 26, and beneath the lower rack 28 and are illustrated as rotating spray arms. The second lower spray assembly 36 is illustrated as being located adjacent the lower dish rack 28 toward the rear of the treating chamber 16. The second lower spray assembly 36 is illustrated as including a vertically oriented distribution header or spray manifold 44. Such a spray manifold is set forth in detail in U.S. Pat. No. 7,594,513, issued Sep. 29, 2009, and titled “Multiple Wash Zone Dishwasher,” which is incorporated herein by reference in its entirety.
A recirculation system is provided for recirculating liquid from the treating chamber 16 to the spray system. The recirculation system may include a sump 30 and a pump assembly 31. The sump 30 collects the liquid sprayed in the treating chamber 16 and may be formed by a sloped or recess portion of a bottom wall of the tub 14. The pump assembly 31 may include both a drain pump 32 and a recirculation pump 33. The drain pump 32 may draw liquid from the sump 30 and pump the liquid out of the dishwasher 10 to a household drain line (not shown). The recirculation pump 33 may draw liquid from the sump 30 and the liquid may be simultaneously or selectively pumped through a supply tube 42 to each of the assemblies 34, 36, 38, 40 for selective spraying. While not shown, a liquid supply system may include a water supply conduit coupled with a household water supply for supplying water to the treating chamber 16.
A heating system including a heater 46 may be located within the sump 30 for heating the liquid contained in the sump 30.
A controller 50 may also be included in the dishwasher 10, which may be operably coupled with various components of the dishwasher 10 to implement a cycle of operation. The controller 50 may be located within the door 18 as illustrated, or it may alternatively be located somewhere within the cabinet 12. The controller 50 may also be operably coupled with a control panel or user interface 56 for receiving user-selected inputs and communicating information to the user. The user interface 56 may include operational controls such as dials, lights, switches, and displays enabling a user to input commands, such as a cycle of operation, to the controller 50 and receive information. The user interface 56 may include elements that may be provided along the top edge 62 and/or on the external surface of the door assembly 18. Thus, the user interface 56 may be one or more elements, which may be centralized or dispersed relative to each other. For example, input and display element may be centralized while corresponding sensor elements may be spaced related to the centralized input and display elements.
As illustrated schematically in
The proximity sensor 68 may be located anywhere on the front of face of the door 18 of the dishwasher 10, but may preferably be located so that a consumer may readily identify the sensing location. As shown, the proximity sensor 66, 68 may be located at either of the top corners of the door 18.
When the consumer's hand 72 is placed within a predetermined range and out of contact with the door 18, the proximity sensor 68 may signal the controller 50. The controller 50 may determine, based on the output signal of the proximity sensor 68, to send a signal to a door-opening mechanism 70 that may include an actuator and a spring mechanism to release the door 18 from the closed position.
Consequently, as shown in
In addition to sensing the presence of the consumer at a predetermined range, the controller 50 may require persistent sensing for a predetermined time before signaling the release of the door 18. Preferably, the predetermined time duration may be one second though other durations are contemplated. Other durations may range from a quarter of a second to five seconds.
To provide feedback to a consumer, a light source, shown as an LED 69, provided on the door 18 may visually indicate the sensing of the presence within the predetermined range of the door 18. For example, the LED 69 may blink slowly, or “beat”, a number of times (e.g., three) to indicate that the proximity sensor 68 is detecting the presence of the consumer.
As shown in
As shown in
Referring now to
As an example of a proximity sensing modality, in step 112, a capacitive proximity sensor senses a presence by detecting a change in an electrostatic field. A capacitive proximity sensor detects the presence of conductive objects or objects with a dielectric different from that of air. Typically, a capacitive proximity sensor establishes an electromagnetic field that is responsive to nearby conductive objects. For example, the sensor may detect a change in frequency of the established electromagnetic field that corresponds to a conductive object entering or leaving the field.
As another example of a proximity sensing modality, in step 114, a visual (or optical) proximity sensor senses a presence by measuring changes in the visible (or near infrared or ultraviolet) region of the electromagnetic spectrum. The optical proximity sensor typically includes an integrated circuit with a window overtop a photo detector (e.g. a charge-coupled device or CCD). The relative placement of the optical elements of the sensor may determine the observable field of view of the optical element as is well known in the field of optical design. By configuring multiple photo detecting elements (e.g. CCDs) with partially overlapping, non-parallel fields of view, an optical proximity sensor may be configured to sense a presence at certain positions or standoff. Optical sensing devices are often combined with infrared lights or optical filters to minimize false detections caused by external light sources. Other optical proximity sensors include laser range finders that actively transmit pulses of light and measure the time required to detect the return pulse whereby a distance is determined by calculating the time interval between the transmitted and received pulses.
As another example of a proximity sensing modality, in step 116, an acoustic proximity sensor senses a presence by transmitting pulses of ultrasonic waves and measuring the reflections. Ultrasonic sensors (typically embodied as transducers) work on a principle similar a laser range finder's measurement of range to a target by comparison of transmitted and reflected pulses. Ultrasonic sensors generate high frequency acoustic waves and evaluate the echo that is received and measured by the sensor to determine the distance to an object.
Similarly, radar actively transmits electromagnetic waves in predetermined directions that are reflected and scattered when they contact an object. The radar measures the reflected pulses to determine the range to an object (again, by the calculated time interval between the transmission and reception of the pulse) and other target characteristics based upon the characteristics of the returned pulse.
Another example of a proximity sensing modality, in step 118, includes non-contact thermal detection that is based on inferences of temperature made from measurements of thermal radiation. Passive infrared sensors detect the proximity of humans and animals by detecting a change in infrared thermal heat patterns in the field of view of the sensor. The thermal proximity sensor implements a pair of pyroelectric elements that generate signals that correlate to changes in temperature. Differences in the signal output of the two pyroelectric elements indicate movement by a heat-bearing object, such as a human. Similar to the optical sensor described above, the arrangement of multiple passive infrared sensing elements may limit false triggering. Additionally, temperature information may limit false alarms. For example, the average consumer's temperature is likely to be different from the consumer's pet dog.
To increase the overall effectiveness of the proximity sensing, a hybrid proximity sensor is contemplated that combines features of two or more of the proximity sensing modalities described above. Additional types of proximity sensing that may be integrated into the hybrid proximity sensor include, but are not limited to, Doppler effect sensing, eddy-current sensing, inductive sensing and magnetic sensing.
Upon sensing a presence, the controller 50 in communication with the proximity sensor 68 may signal the light source (e.g. LED 69) to visually indicate the sensed presence at step 120. As described above, the light source may actively emit light or a pattern of beating lights when a presence is sensed.
The controller 50 may step through additional logic to determine if the door-opening mechanism 70 should be actuated to automatically open the door 18. At step 122, the controller 50 may determine if the sensed presence is detected within a predetermined range. The determination may further include determining if the sensed presence is too far away from the door 18 at step 124 or if the sensed presence is too close to the door 18 at step 126. Included in the determination that the sensed presence is too close to the door 18 is the determination that the presence is in physical contact with the door 18.
If the controller 50 determines that the sensed presence is within the predetermined range, the controller 50, at step 128, may determine if the presence is sensed for a predetermined duration of time. The determination may further include the step 130 of determining if the sensed presence has been sensed for a minimum time.
If the controller 50 determines that the sensed presence is within the predetermined range at step 122 for the predetermined time at step 128, then the controller 50 at step 132 may signal the actuation of the door-opening mechanism 70. The door 18 may then be released, moving from the closed position to an open position.
As described above, the door of a household appliance may be selectively opened by a consumer who is out of contact with the door or any aspect of the household appliance. The embodiments described enable hands-free access to the treating chamber of the appliance. Furthermore, the configuration of proximity sensors described above, in concert with the control logic for exploiting the proximity sensor outputs, enable a robust opening procedure that may mitigate false or undesirable triggering of the door-opening mechanism.
While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation. Reasonable variation and modification are possible within the scope of the forgoing disclosure and drawings without departing from the spirit of the invention which is defined in the appended claims.
This application is a divisional of U.S. application No. 14/102,743, filed Dec. 11, 2013, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 14102743 | Dec 2013 | US |
Child | 15287104 | US |