The invention relates to a household cooling appliance comprising an ice maker unit for making ice, wherein the ice maker unit comprises an ice maker unit, in which the ice is stored.
Household cooling devices for storing and preserving food, which comprise an ice maker unit, are known. For determining a filling level of ice in a container of the ice maker unit complex methods are known, in which by means of optical detection this filling level is determined. Besides the complexity of such design this is also prone to errors, in particular due to the possible motions or changes in the position of the container, which can also be the result of the filling level.
It is the task of the present invention to provide a household cooling appliance, in which the capturing of quantity of ice in the container of the ice maker unit can be effected precisely and as simply as possible.
This task is solved by a household cooling appliance according to the features of claim 1.
One aspect of the invention relates to a household cooling appliance comprising an ice maker unit for making ice. The ice maker unit comprises a container, in which the ice is storable. The household cooling appliance comprises a weight detection unit for capturing the weight of the container. The household cooling appliance comprises an evaluation unit which is configured for determining a filling level of the container with ice depending on the weight.
Further features of the invention derive from the claims, the figures, and the description of the figures. The features and feature combinations previously named in the description as well as the features and feature combinations named in the following in the description of the figures and/or shown in the figures alone can be used only in the respective indicated combination, but also in other combinations, without leaving the scope of the invention. Thus, also embodiments of the invention are to be considered as comprised and disclosed, which are not explicitly shown and explained in the figures, however derive through separated feature combinations from the explained embodiments and can be generated therefrom. Also embodiments and feature combinations are to be considered as disclosed, which thus do not have all features of an originally formulated independent claim. Moreover, embodiments and feature combinations are to be considered as disclosed, in particular by the embodiments set out in the above, which go beyond the feature combinations set out in the back-references of the claims or deviate therefrom.
Embodiments of the invention are explained in more detail in the following on the basis of schematic drawings. These show in:
In the figures identical and functionally identical elements are equipped with the same reference signs.
Wth indications “top”, “bottom”, “front”, “rear”, “horizontal”, “vertical”, “depth direction”, “width direction”, “height direction” etc. the positions and orientations given for intended use and intended arrangement of the ice maker bowl or the appliance are indicated.
In
The shown household cooling appliance 1 comprises an outer housing 2. In the outer housing 2 a first receiving space for food is configured, which here is a cooling compartment 3. The household cooling appliance 1 moreover comprises a second receiving space for food that is separate from the first receiving space and here is a freezer compartment 4. As can be seen, in the embodiment shown here the cooling compartment 3 and the freezer compartment 4 are arranged one above the other in the height direction (y direction) of the household cooling appliance 1. The freezer compartment 4, which is arranged further down, is closable by a door 5. The door 5 in the shown embodiment is a front wall of a drawer, which can be shifted linearly in the depth direction (z direction) of the household cooling appliance 1. The cooling compartment 3 is closable on the front side by two separate doors 6 and 7, which are shown in
The household cooling appliance 1 moreover comprises a dispenser unit 10, which is configured for dispensing ice form elements or crushed ice. The dispenser unit moreover can optionally be configured for dispensing a beverage.
The dispenser unit 10 comprises an ice maker unit 8. The ice maker unit 8 in the shown embodiment is arranged internally situated in the cooling compartment 3. This means that whilst the ice maker unit 8 is configured and arranged to be thermally insulated against the cooling compartment 3, however only accessible and reachable via the feeding aperture of the cooling compartment 3. Thus, the ice maker unit 8 can be made accessible only when at least the door 6 is opened.
The dispenser unit 10 in addition to the ice maker unit 8 also has an output unit 9. The output unit 9 here is for instance configured to be integrated in the door 6. On an outer side of the door 6 facing away from the cooling compartment 3, which then is also a front side, a niche is formed, into which a receiving container can be placed and into which then via the output unit 9 the ice form elements or the crushed ice can be output.
The ice maker unit 8 and the output unit 9 are integral part of the named dispenser unit 10.
The ice maker unit 8 comprises an ice tray, which represents an ice form element vessel and which is not shown in
In the embodiment according to
By the weight of the ice, which arrives in the container 11, a pivot movement of one end 11a downwards is made, in particular due to the design of the rotation bearing 13. Thereby the force effect upon the rotation bearing 13 through the container 11 with the inserted ice is created individually and thereby due to the stationary bearing place 14 and the movable bearing place 15 specific force effects are effected, which are determined. In particular here determining by means of specific sensors can be envisaged so that the weight of the container with the ice contained therein can be effected very precisely. In this embodiment, too, such a sensor could be at least one strain gauge. This can in particular be changed by the rotation of the container 11, in order to then be able to determine therefrom the weight.
The household cooling compartment 1 moreover may also comprise an evaluation unit 16, which is configured for determining a filling state of the container 11 with ice depending on the detected weight. Since in particular the weight of the empty container 11 is known, the weight of the ice alone without the container 11 can be determined for instance by simple subtraction of the weight values. Depending thereon and with regard to the known size of the ice form elements, as they are output from the ice form element vessel, then moreover in particular with the known value of the volume of the container 11 the filling state can be assumed.
By such design thus very simply and still very precisely the determining of the filling state can be facilitated, whereby the individual filling quantity can be determined very precisely. On the other hand an overfilling of the container 11 can safely be avoided.
In the embodiment according to
In
Also several such strain gauges 17 can be configured, in particular next to each other. The strain gauge 17, however, can also be arranged at a different place, for instance in a bottom area of the container 11.
In
In
Generally, the evaluation unit is configured for determining the weight of the ice in the container. A further aspect envisages that the weight detection unit comprises at least one strain gauge. The strain gauge can be orientated vertically or orientated horizontally.
One further aspect of the invention relates to a design, in which the weight detection unit is component of a rotation bearing, wherein the rotation bearing is integral part of the household cooling appliance. Wth the rotation bearing the container is mounted rotatably. In particular by a triggering of the weight detection unit in a rotation movement of the container by means of the rotation bearing the weight of the container can be determined. In an advantageous embodiment the rotation bearing comprises at least one fixed bearing and at least one movable bearing.
In an alternative embodiment the weight detection unit comprises at least one piezo foil. This is arranged in particular on a bottom of the container. It can be arranged on the outer side of the bottom or on an inner side of the bottom. In particular the piezo foil is configured to cover the entire surface on the respective side of the container.