The present invention refers to a working method of an improved kind of clothes washing machine generally described in the first pages of the European Pat. Application n. EP 04106014.6 of the same applicant, able of carrying out a method to automatically check the type (nature) of the washload through the measuring of its water absorption values under pre-defined and known conditions.
Said machine is provided with a wash tub, inside which there is arranged and capable of rotating a clothes-holding drum having a substantially horizontal rotation shaft, said washing machine being further provided with means for recirculating the wash liquor and is adapted to optimise the general performance capabilities thereof, i.e. to each time perform a washing programme that enables the best possible results to be achieved under minimization of the usage data of the various process factors employed, i.e. water, washing products and electric power, along with the time needed to complete the washing programme selected.
It is here reminded that all parameters of the washing process, i.e. the washing time and the number of rinses, the temperature, the mechanical action, and so on, must be closely correlated with each other in order to be able to define an optimized washing program, what however has to be selected according to the two “commanding” washload features, i.e.
As a matter of fact, a good knowledgle of the washload, both in the quantity and in the quality, is practically a kind of pre-condition to be fulfilled in view of being able to set a washing programme and cause the washing machine to operate in such a manner as to ensure optimum washing results under minimization of the machine operating requirements in terms of water, washing product and energy usage, as well as time needed to complete the washing process.
The problem of the determination of the washload weight has been already solved by the cited european patent application; the instant patent application regards and solves the problem of the determination of the qualitative features of the washload, automatically performed by the washing machine; such an information, once combined with the information on the washload weight, will allow to define a washing programme which is here referred as an “universal” programme, not in the meaning that it is a fixed or pre-defined programme to be used in any given washload, but a program which as a preliminary operation starts with the measuring of both the washload type and weight, and therefore it automatically adaptes to the features of the same washload, without any further user input.
The advantage or the need of the knowledge of the washload features is well known: please check the patents GB 2 076 648, GB 2 051 413 and also EP 1350881A1 which have been cited by said EP 04106014.6, that has moreover discussed respective their drawbacks, that for sake of conciseness are here again not discussed.
The need of be informed on the washload weight is specifically claimed in the cited EP 04106014.6 at page 19, point 14), rows 27 to 29:
“The so obtained result is rectified on the basis of the information entered by the user concerning the type of fabrics in the washload (specific water absorption properties so as to obtain . . . . ”
See also the block 19 in the relevant
It would therefore be desirable, and is actually a main object of the present invention to provide:
1) a washing method in a front-loading clothes washing machine provided with an arrangement to circulate the washing liquor, which is adapted to automatically measure the washload introduced in the drum on the basis of information to be entered by the user and concerning the type and, therefore, the properties of the clothes in the washload, as well as on the basis of an information on the amount of water absorbed by such washload under pre-established conditions, by processing such data and even by performing interpolations with previously determined experimental data duly stored in the clothes washing machine itself.
2) a washing method able to select the most suitable washing programme based on the water absoption properties, and then to generate the information on the washing load weight and type, which can be used in a combined manner by the same machine in order to automatically implement the washing cycle.
In addition, the methods of the above-noted kind shall be easily implemented using existing, readily available techniques; it shall further be competitively simple in its construction and convenient to use. In particular, it shall be capable of being implemented with only minor modifications to current washing machine designs. Moreover, the features added in accordance with the present invention shall by no means affect the reliability level of the washing machine itself.
According to the present invention, these aims as set forth above are reached in a measurement and working method to be carried out in a kind of clothes washing machine that is provided with such operating and control means as described below by way of non-limiting example with reference to the accompanying drawings, in which:
The methodological approach, which the present invention is substantially based upon, is the following one.
The method according to the present invention applies for instance to a clothes washing machine that comprises a perforated drum 1 rotatably arranged inside a sealed tub 2; a device for letting water from the water supply line into said tub comprises an electromagnetic valve 3 and a conduit 3A connecting said electromagnetic valve with said tub.
Below the tub there is provided a drain manifold 4 connected with the outlet pipe 6 on one side and the sleeve 7 on the opposite intake side, the other end of said sleeve 7 being in turn connected with an opening 8 provided in the bottom of said tub.
In an appropriate position along said sleeve 7 there is further provided a tap for a pressure switch 9 to be connected to.
Since the present invention applies to a clothes washing machine provided with a feature for re-circulating the washing liquor into the drum, there is suitably provided a so-called re-circulation manifold 10 connected via a conduit 11 to known means 13, such as an appropriate nozzle, adapted to direct a jet of water into said drum. Although such nozzle 13 is illustrated as being seemingly arranged inside the drum, other solutions are however possible, in which said means 13 is for example situated on the upper side of the loading door gasket and the water jet issuing therefrom enters the drum and hits the clothes directly, without passing first through the perforations in the walls of the same drum.
Also said re-circulation manifold 10 is provided with an appropriate pump 14 adapted to take in the liquor from the drain manifold and pump it towards said means 13, from which the liquor is then sprayed into the drum.
On the conduit that carries the water from the water supply line, or on said conduit 13A, there is fitted a device 15, which measures the amount of water that is let into the machine on the whole; such device can for instance be a flowmeter of any standard type, or the like, which is associated to processing means adapted to integrate the signal generated by it with the time.
Furthermore, said clothes washing machine is provided with control means 20, connected to said flowmeter and the other operating or functional parts of the machine, wherein said control means are also adapted to receive the start command entered by the user. In addition, said control means are adapted to also receive a command that is representative of the various types and kinds of fabrics that may be included in a washload.
In a clothes washing machine having a drum rotating about a substantially horizontal axis, the amount of water that is absorbed by a single washload at any particular instant is a function of a number of factors, among which the most important ones are:
It is well known in the art that the nature of the fiber composing the washing load significandly affects the water amount that can be absorbed; however,
to remind the matter to the interested reader, the
Particularly said figure shows that the amount of the absorbed water depends in a substancially proportional way on the load weight; the absorbed water depends also on the following conditions, apart the specific physical nature of the fiber under consideration:
Therefore it turns out that if pre-defined test conditions are accomplished, relevant to the measurement of said values of A1 and A0, then the ratio A1/A0, gives a value that wihout doubts identifies the nature of the textile under test.
Then it is advisable to a realize some pre-defined test conditions, and to measure the value of k relevant to a number of types of textiles, in order to find out the relationship between a specific value of k and a respective nature of that textile, or fiber, as per the following exemplary TABLE: (the k values are arbitrary ones)
When the A1/A0 ratio is detected for an item to be washed, then it will be very easy to compare that ratio with the k values given in the following TABLE, which shows the relationship between a plurality of k values previously stored, associated to respective textile natures; said comparison allows the immediate identification of the nature of the actual item to be washed.
In order to use a method which is logical and consistent, the effect of further factors, as the drum rotating speed, the water temperature and the machine geometric and mechanical features, have to be duly taken into account.
All these factors are kept at a definite, constant value both during the preliminary experiments carried out to measure the correlation of the various factors with each other, and during the measurement of the amount of water that is absorbed and the released by the washload under examination.
In this way, the effect of said factors is duly and automatically incorporated in both the determination of the relations existing between said factors and the measurement of the amount of absorbed water. Since these factors are not subject to any modification, their effect on the comparison of the measured data with each other is obviously nil, in the sense that if the amount of released water is found to change, this can only mean that such change is solely ascribable to a change intervened in the nature of the washload under examination since, owing to said other factors being constant, the effect thereof on said change can only be nil.
As far as the level of the water being present in the wash tub is concerned, it should in this connection be noticed, and most clearly stated, that the present invention applies to clothes washing machines that enable the clothes in the washload to be soaked by a jet generated by an appropriate water circulation circuit and a pump associated thereto, which hits the clothes from, for example, a site situated close to the front loading door of the machine, without any need for the water provided for such washing process to actually flow into the drum, and reach the clothes contained therein, by rising from the bottom portion of the tub.
Such circumstance has a twofold advantage: in the first place, the water usage is drastically reduced, owing to reasons that are well-known to and, in any case, most readily understood by all those skilled in the art, so that they shall not be explained here any further.
In the second place, since the tub is not filled with water, but simply collects from the bottom the water that falls thereonto from the drum that is sprayed by said jet throwing water thereinto, this water is conveyed into the sleeve 7, as this shall be explained in greater detail further on. In practice, the tub operates with just a very small amount of water in it, wherein the level of this water lies in any case below the lower edge of the drum Sometimes, and solely for mere reasons of safety, such level of the water may be allowed to lie above the level at which the heating elements are situated.
In practice, this means that the variable relating to the water level in the drum is eliminated, and this reduces the number of the factors that need being considered, with the ultimate result of an improved correlation between the amount of absorbed water and the amount of clothes loaded in the drum.
At this point, the need anyway arises for another method-related aspect to be cleared up: in order to carry out all these measurements and comparisons, it is of course necessary for standard and constant conditions to be defined, under which said measurements are to be made.
Since the amount of water absorbed by the clothes in a washload depends also on the length of time during which the water is allowed to be in contact with said clothes, the measurements are assumed to be carried out in a precisely defined condition, that can be repeated, i.e. when the water absorption reaches a dynamic balance, i.e. steady-state condition, which means that the amount of water being absorbed is equal to the amount of water being released by the fibres under examination in the same time length.
It is here assumed that the procedure to generate the condition of dynamic balance for water soaking be the same procedure as defined in the cited EP 04106014.6, that here is not repeated for sake of brevity and simiplicity.
Once that the absorbed water amount has been recognized in condition of dynamic balance, as explained in points 1) to 13) of the method as described in said EP 04106014.6, the following steps are performed, which by consistency are numbered from 14 on.
It is useful here to precise that the level measurement can take place under different conditions; of course the simplest one is after a predetermined time lenght has elapsed, which must be long enough to allow a water release that is of appreciable amount in order not to compromise the measurement precision, but also not too long in order not to penalize the washing cycle overall lenght; it was observed that an optimum compromise of said release time, after that the level measurement has to be done, is about 1 min.
However it is possible that the release time be measured when some pre-established conditions are met, for instance when the amount of released water tents to stabilize, i.e. when its increase in successive time intervals tents to progressively reduce; such a procedure is more complex and yet may be used without problems, as further procedures able to check the amount of the released water, provided each procedure be exactly the same used to determine the various k coefficient, as previously explained.
The ways of programming the most adequate washing cycle, based on the washload weight and type, are well known in the art, and therefore will not be further explained.
From this moment on, the programme goes on with its sequence of operations in an easily imaginable manner that has no relevance as far as the present invention is concerned, actually.
It can at this point be more readily appreciated that the above-described method can be most perfectly implemented in a clothes washing machine of a generally known kind, and operating based on the wash-liquor re-circulation principle, without any modification or adaptation being required as far as the hardware is concerned, as long as the control unit 20 of the machine is duly provided and set with an appropriate operation programme including also the information and data that have been previously found experimentally in that same type of washing machine.
The instant invention may be advantageously improved by the following embodiement: in the facts it may happen that, if the amount of the released water is large enough, its level may reach and go over the lower edge of the drum, so submerging that portion of the laundry washload staying below that level; this condition obviously deteriorates the measurement precision; such a drawback may be easily overcome if the level measurement is properly corrected, taking into account two effects which are acting in opposite ways, i.e.:
Number | Date | Country | Kind |
---|---|---|---|
05 105 293.4 | Jun 2005 | EP | regional |