HOUSING ASSEMBLY FOR AN INTEGRATED DISPLAY UNIT

Information

  • Patent Application
  • 20210243906
  • Publication Number
    20210243906
  • Date Filed
    April 26, 2021
    3 years ago
  • Date Published
    August 05, 2021
    3 years ago
Abstract
An electronic display assembly includes a display unit supported by a housing assembly. An upper portion is supported by said housing assembly above, and spaced apart from, the display unit. One or more fans associated with the upper portion move ambient air ingested through one or more intake/exhaust apertures in upper portion housing between an upper cavity and a transition area between the upper portion and the display unit. Ambient air is ingested through one or more intakes at the transition area by one or more fans associated with said display unit and forced though said at least one open loop airflow pathways within said display unit.
Description
TECHNICAL FIELD

Exemplary embodiments relate generally to a system and method for providing a housing assembly for an integrated display unit.


BACKGROUND AND SUMMARY OF THE INVENTION

Electronic displays and associated equipment are increasingly being used in cities and other urban environments, shopping malls, retail outlets, restaurants, sporting venues, universities, educational centers, medical facilities, and other business and public locations for advertising, messaging, wayfinding, public emergency notifications, and the like. Such electronic displays are often placed in partially or completely ruggedized units, to protect the various components of the electronic displays and associated equipment from the environmental elements, vandalism, and the like. Such display units may comprise various electronic components necessary to power, operate, remotely manage content, remote monitoring of the systems health status, and thermally manage the electronic displays and associated equipment.


Such display units are generally placed within a separate outer shell. As aesthetics are important when placing such display units in public locations, the outer shell may comprise a variety of decorative components. The outer shell may be configured for, but not limited to, mounting to the ground, street, sidewalk, existing street lighting poles, exterior or interior walls, flat bed trailers for mobile deployment, or the like. Alternatively, or in addition, as space is often limited in such public locations, the outer shell may be provided in the form of street furniture such as, but not limited to, benches, bus shelters, kiosks, wayfinding units, telephone booths, or the like. In other exemplary embodiments, the outer shell may be configured for suspension from an overhead member, elevated from the ground, or secured in a storefront window to name a few examples.


In many cases, the display unit is designed and manufactured by one individual or entity while the outer shell is designed and manufactured by another individual or entity. In such cases, the display unit designer and manufacturer must work with the outer shell designer and manufacturer to ensure compatibility of the display unit with the outer shell. The processing of making the display unit compatible with the outer shell is time consuming and expensive and often requires design changes and compromises by both parties. Even where the display unit and outer shell designer and manufacturer are one and the same, the display unit is often manufactured as a single, sealed unit and the outer shell is likewise often manufactured as a separate unit configured to receive the display unit. This results in a protective shell (the display unit) placed within a second semi-protective, functional, or aesthetic outer shell. Such an arrangement results in added manufacturing complexity, weight, cost, and the like. Therefore, what is needed is a housing assembly for an integrated display unit.


These disclosures provide a housing assembly for an integrated display unit. The housing assembly may serve as both the outer shell as well as the frame for the display unit. This may reduce complexity, costs, weight, simplify the design, and the like. A first and second side housing member may be configured to receive a first and second horizontal member. The first and second side housing member may extend substantially vertical, spaced apart from one another, and substantially parallel with one another from a bottom horizontal member. The first and second side housing members may form at least a portion of the side walls of the display unit, thereby at least partially, or in some cases fully, sealing the display unit.


The first and second horizontal members may extend between the first and second side housing members. The first and second horizontal members may extend substantially horizontal, spaced apart from one another, and substantially parallel with one another. The first and second horizontal members may form at least a portion of the top and bottom of the display unit, thereby at least partially sealing, or in some cases fully, the display unit. A first and second receiving section may be located near the bottom of the housing assembly and may be configured to receive external supports for mounting to the street, sidewalk, ground, pole, wall, or other surface. The display unit may comprise an open loop pathway for ambient air which thermally interacts with a closed loop pathway for circulating gas.


The first and second side housing members may comprise one or more channels configured to receive corresponding protrusions on the first and second horizontal members. The channels may be configured to permit vertical placement of the first and second horizontal members within the first and second side housing members in a substantially sealed arrangement. Each of the first and second side housing members may comprise a first and second raised edge which permits the snap fitting of decorative cladding or fascia.


The housing assembly may comprise an upper portion for housing additional equipment. The upper portion may comprise a frame which is secured to the display unit and an upper portion housing. The upper portion housing may be configured to receive the additional equipment. One or more of sides of the upper portion housing, such as but not limited to the vertical or horizontal sides, may be comprised of glass or other low loss, low attenuation materials to enable the broadcast and reception of broadband radio frequencies.


A transition area may extend between the display unit and the upper portion. A common open loop intake may ingest ambient air, a first portion of which may travel into an open loop pathway of the display unit and a second portion of which may travel into the upper portion. In other embodiments, the common open loop intake may be provided for both the upper portion and the display unit which may be one in the same.


One or more upper portion intake apertures may be located in the upper portion housing to permit the ingestion of ambient air. For example, without limitation, an open loop aperture may be provided in the upper portion which draws in ambient air for both the upper portion and the display unit. In other exemplary embodiments, a vent may extend along an upper portion of the upper portion housing to permit the exhaustion of ambient air ingested into the upper portion. In such embodiments, one or more fans may be positioned on or near the upper portion intake apertures to encourage or force such ingestion as well as circulation within the upper portion housing and exhaustion from the vent. In other embodiments, the upper portion may be cooled by convection through ambient air passing over the external surfaces of the upper portion.


Further features and advantages of the devices and systems disclosed herein, as well as the structure and operation of various aspects of the present disclosure, are described in detail below with reference to the accompanying figures.





BRIEF DESCRIPTION OF THE DRAWINGS

In addition to the features mentioned above, other aspects of the present invention will be readily apparent from the following descriptions of the drawings and exemplary embodiments, wherein like reference numerals across the several views refer to identical or equivalent features, and wherein:



FIG. 1 is a front perspective view of an exemplary housing assembly and an integrated display unit with certain components removed for clarity;



FIG. 2 is a front perspective view of the housing assembly of FIG. 1 with additional components removed for clarity and also indicating Detail A;



FIG. 3 is a front prospective view of another exemplary housing assembly and integrated display unit with certain components removed for clarity;



FIG. 4 is a detailed front perspective view of the housing assembly with exemplary external cladding installed;



FIG. 5 is a detailed top sectional view of the housing assembly of FIG. 4;



FIG. 6 is a detailed front perspective view of Detail A of FIG. 2;



FIG. 7 is a top view of Detail A of FIG. 6;



FIG. 8 is a front perspective view of the housing assembly with exemplary external cladding and an exemplary upper portion installed also indicating Detail B;



FIG. 9A is a detailed side sectional view of Detail B of FIG. 8;



FIG. 9B is a detailed side sectional view of another exemplary embodiment of Detail B of FIG. 8;



FIG. 10 is a top sectional view of another exemplary housing assembly and an integrated display unit; and



FIG. 11 is a detailed top sectional view of the assembly of FIG. 10.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENT(S)

Various embodiments of the present invention will now be described in detail with reference to the accompanying drawings. In the following description, specific details such as detailed configuration and components are merely provided to assist the overall understanding of these embodiments of the present invention. Therefore, it should be apparent to those skilled in the art that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the present invention. In addition, descriptions of well-known functions and constructions are omitted for clarity and conciseness.


Embodiments of the invention are described herein with reference to illustrations of idealized embodiments (and intermediate structures) of the invention. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments of the invention should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing.



FIG. 1 is a front perspective view of an exemplary housing assembly 10 for an integrated display unit 30. FIG. 1 illustrates some, but not all, components of the display unit 30. The display unit 30 may comprise one or more electronic displays (including associated backlights), fans, electronic components for operating the electronic displays, customer equipment, cameras, microphones, computing devices, environmental sensors, communications equipment, USB charging stations, audio speakers, and the like (hereinafter also referred to generally as “equipment”). In some embodiments, the display unit 30 may comprise a first and second electronic display placed above and below one another. The lower display may be located to meet ADA standards. In some embodiments, the integrated display unit may have electronic displays on one, both, or all sides of the housing assembly 10. The display unit 30 may define a cavity and may comprise one or more storage devices 32 located in said cavity and configured to hold or otherwise secure such components and equipment. Such storage devices 32 may include, server racks, brackets, bins, shelves, posts, mounts, and the like, such as but not limited to, a 1U server rack.


The display unit 30 may comprise an open loop pathway for ambient air. The display unit 30 may further comprise a closed loop pathway for circulating gas. The open loop pathway and the closed loop pathway may be configured to permit thermal interaction of the ambient air in the open loop pathway with the circulating gas in the closed loop pathway. For example, without limitation, such thermal interaction may be provided at a heat exchanger.


Exemplary arrangements, without limitation, of such display units 30 comprising open loop pathways and closed loop pathways are shown and described in U.S. application Ser. No. 12/234,307 filed Sep. 19, 2008, Ser. No. 12/556,029 filed Sep. 9, 2009, and Ser. No. 12/753,298 filed Apr. 2, 2010, the discloses of all of which are hereby incorporated by reference in their entireties. Another exemplary display unit 30 is shown and described in U.S. application Ser. No. 15/886,889 filed on Feb. 2, 2018, which is hereby incorporated by reference in its entirety. Other exemplary display units 30 may be available from Manufacturing Resources International, Inc. of Alpharetta, Ga. (https://mri-inc.net/). The provided examples are not intended to be limiting. Furthermore, these display units 30 may, in some cases, be referred to as Panel Display Modules (“PDM”). The term PDM is not intended to require any particular type, design, or configuration of display unit. Any type of display unit 30 having any number of components in any arrangement is contemplated. FIG. 2 is a front perspective view of the housing assembly 10 with certain components of the display unit 30 removed for clarity. The housing assembly 10 may comprise a first side housing member 20 and a second side housing member 21. The first and second side housing members 20 and 21 may form a portion of the outer surface of the housing assembly 10. In exemplary embodiments, the first and second side housing members 20 and 21 may be spaced apart from one another and extend substantially vertical, though any arrangement is contemplated. The first and second side housing members 20 and 21 may extend substantially parallel with one another, though such is not required. In exemplary embodiments, the first and second side housing members 20 and 21 may form at least a portion of the sidewalls of the display unit 30. The first and second side housing members 20 and 21 may be configured to partially or fully seal the display unit 30.


A bottom horizontal member 22 may extend between the first and second side housing members 20 and 21. In exemplary embodiments, the bottom horizontal member 22 may extend between the distal end of the first and second side housing members 20 and 21. A top horizontal member 23 may likewise extend between the first and second side housing members 20 and 21. In exemplary embodiments, the top horizontal member 23 may extend between a proximal end of the first and second side housing members 20 and 21. The top and bottom horizontal members 23 and 22 may be comprised of metal and may be welded to the first and second side housing members 20 and 21. The top and bottom horizontal members 23 and 22 may be spaced apart from one another and extend substantially parallel to one another, though such is not required.


A first horizontal member 24 and a second horizontal member 25 may each extend between the first and second side housing members 20 and 21. In exemplary embodiments, the first and second horizontal members 24 and 25 are spaced apart from one another and extend substantially horizontal, though any arrangement is contemplated. The first and second horizontal members 24 and 25 may extend substantially parallel with one another, though such is not required. In exemplary embodiments, the first and second horizontal members 24 and 25 may form at least a portion of the upper and lower seal for the display unit 30. The first and second horizontal members 24 and 25 may be configured to partially or fully seal the display unit 30. It is contemplated that at least a portion 31 of the display unit 30 may extend above or below the first and/or second horizontal members 24 and 25.


The first and second side housing member 20 and 21 may replace the side walls of the display unit 30. Similarly, the first and second horizontal member 24 and 25 may replace the top and bottom walls of the display unit 30. Such an arrangement may simplify the design and reduce manufacturing costs and complexity.


The housing assembly 10 may comprise decorative outer features, such as but not limited to, cladding 33 as shown in FIG. 4, for example without limitation. The housing assembly 10 may be configured for mounting to the ground, street, sidewalk, wall, pole, a flatbed truck for mobile deployment, an interior wall, an exterior wall, or any other surface. The housing assembly 10 may, alternatively or in addition, comprise street furniture such as, but not limited to, benches, bus shelters, kiosks, wayfinding units, telephone booths, or the like. In other exemplary embodiments, the housing assembly 10 may be configured for suspension from an overhead member, elevated from the ground, or secured in a storefront window.


In exemplary embodiments, the housing assembly 10, particularly the area located below the second horizontal member 25 and between the first and second side housing members 20 and 21 may define a cavity 40. The cavity 40 may be kept intentionally free of components or equipment, particularly water sensitive electronic equipment. In this way, certain levels of flooding will not damage any such equipment or components.



FIG. 3 is a front prospective view of another exemplary housing assembly 10 with certain components removed for clarity. The housing assembly 10 may be configured to mate with external supports. For example, without limitation, the housing assembly 10 may comprise a first and second receiving section 42 and 44, which may be located on a lower portion of the first and second side housing members 20 and 21, respectively. The first and second receiving sections 42 and 44 may be substantially rectangular in shape, though any shape in contemplated. The first and second receiving sections 42 and 44 may be configured to receive one or more external supports, which may be mounted to the ground, parking lot, sidewalk, or other surface, and may extend therefrom and into the first and second receiving sections 42 and 44 where they may be secured. A first and second angled member 46 and 48 may extend at an angle from the first and second side housing members 20 and 21, respectively, to the first and second receiving sections 42 and 44, respectively. The first and second angled members 46 and 48 may be configured to increase structural stability to the housing assembly 10, particularly lateral stability and rigidity.


In some embodiments, a horizontal support member 50 may extend between the first and second angled members 46 and 48. A second storage device 52 may be located on the horizontal support member 50 any may be configured to receive additional components for operating the electronic displays or other peripherals and/or customer equipment.


The first side housing member 20 and the second side housing member 21 may each comprise a first raised edge 27 and a second raised edge 29. The first and second raised edges 27 and 29 may extend the length of the first and second side housing members 20 and 21, respectively, though such is not required. The first and second raised edges 27 and 29 may extend substantially parallel with one another. The first and second raised edges 27 and 29 may extend along either edge of the first and second side housing members 20 and 21, respectively. The first and second raised edges 27 and 29 may be configured to accept one or more pieces of cladding 33. Such cladding 33 may be snap fit, press fit, or otherwise configured to mate with the first and second raised edges 27 and 29.


It is notable that while several of the embodiments shown herein illustrate display units 30 comprising electronic display oriented in a substantially portrait orientation. However, it is contemplated that one or more of the electronic display in one or more display units 30 may likewise be placed in a landscape orientation.



FIG. 4 is a front perspective view of the housing assembly 10 with exemplary cladding 33 installed. The housing assembly 10 may comprise a front housing portion 17 and a rear housing portion 19. The front housing portion 17 may house a first electronic display and the rear housing portion 19 may house a second electronic display, though such is not required. One or more ambient air intakes 54 may be located within the housing assembly 10. The ambient air intakes 54 may form a part of the open loop pathway and may be configured to ingest ambient air. The front housing portion 17 and the rear housing portion 19 may be mounted to the remainder of the housing assembly 10 in a hinged manner. FIG. 5 is a detailed top sectional view of the housing assembly 10. The cladding 33 may be of any size, shape, and texture. In exemplary embodiments, various types of cladding 33 and decorative features may be interchangeably mounted to the first and second raised edges 27 and 29 such that the external appearance of the housing assembly 10 may be altered as desired.



FIG. 6 is a detailed front perspective view of Detail A in FIG. 2. The first and second side housing members 20 and 21 may each comprise one or more channels 26 configured to receive corresponding protrusions or fasteners in the second horizontal member 25 to join the second horizontal member 25 to the first or second side housing members 20 or 21, respectively. In exemplary embodiments, the channels 26 may extend the entire length of the first or second side housing members 20 and 21, though such is not required. The channels 26 may be configured to permit the vertical placement and movement of the second horizontal member 25 along the first and second side housing members 20 and 21.


The first and second side housing members 20 and 21 may each further comprise one or more additional channels 35. The additional channels 35 may be configured to receive corresponding protrusions or fasteners in the front or rear housing portions 17 and 19, respectively.


The first and second side housing members 20 and 21 may each further comprise a first and a second notch configured to receive a corresponding protrusion 28 in the second horizontal member 25. In exemplary embodiments, the first and second notch are located on the outside of the first or second side housing member 20 or 21. The first and second notch and corresponding protrusion 28 may be configured to secure the second horizontal member 25 at a vertical location along the first or second side housing member 20 or 21. An identical or similar set of first and second notches may be located in an upper portion of the first and second side housing members 20 and 21 and may be configured to receive identical or similar protrusions in the first horizontal member 24. In this way, the first horizontal member 24 may be secured at a position along the first and second side housing members 20 and 21 above the second horizontal member 25.


In exemplary embodiments, the first and second side housing members 20 and 21, including the channels 26, may be formed by extrusion. Similarly, the first and second horizontal members 24 and 25 may likewise be formed by extrusion. Such extrusion may advantageously permit various size housing assemblies 10 to be formed. This may be particularly advantageous for accommodating various size electronic displays. The first and second side housing members 20 and 21 may be comprised of a metal, such as but not limited to, aluminum, steel, titanium, or the like. Alternatively, or in addition, the first and second side housing members 20 and 21 may be comprised of a polymer or the like.



FIG. 7 is a top view of Detail A of FIG. 3. The channels 26, and the additional channels 35, may comprise substantially “C” shaped brackets, though any shape, arrangement, and number of channels 26, and additional channels 35, are contemplated. The channels 26, and the additional channels 35, may be configured to receive corresponding protrusions in the second horizontal member 25. The channels 26, and the additional channels 35, may be further configured to receive any number of components, such as but not limited to, various components of the housing assembly 10 and/or the display unit 30.


While some of the figures herein are illustrated with regards to one of the first or second side housing members 20 or 21 as well as the first or second horizontal member 24 or 25, it is contemplated that the same, or a substantially similar, arrangement may be utilized with respect to any of the aforementioned components.



FIG. 8 is a front perspective view of the housing assembly 10. The housing assembly 10 may comprise an upper portion 110, though particularly as illustrated with respect to FIG. 4, such is not required. FIG. 9A is a detailed side sectional view of Detail B of FIG. 8.


The upper portion 110 may extend above the display unit 30. A frame 112 may extended between and secure the upper portion 110 to the display unit 30. The frame 112 may comprise any number of members. An upper portion housing 114 may define an upper portion cavity 115 which may be sized to receive additional equipment 116, such as but not limited to, antennas, power over ethernet equipment, cellular radio, wireless routers and connectivity equipment, and other network communication devices as well as environmental sensors, air quality monitors, cameras, microphones, computing devices, proximity sensors, speakers, and the like, though such is not required. Various mounting devices may be located inside the upper portion 110 to accommodate the additional equipment 116, though such is not required. For example, without limitation, the upper portion 110 may be included for aesthetic reasons or standardization of manufacturing purposes but may be substantially empty. One or more members of the frame 112 may be hollow so as to accommodate power lines, communication lines, and the like. The power lines, communication lines, and the like may extend to power supplies, communications equipment, or networked equipment located in the display unit 30 or external to the housing assembly 10. In this way, power and communications may travel to and from the display unit 30 and the upper portion 110 as well as to and from sources outside of the housing assembly 10 (e.g., networks, utilities, and the like). In exemplary embodiments, when placed in a closed position, the upper portion 110 may form a substantially watertight enclosure, though such is not required.


One or more sides of the upper portion housing 114 may be mounted to the frame 112 in a hinged fashion so as to selectively permit access to the additional equipment 116. One or more struts, gas springs, prop rods, or the like may extend between the frame 112 and the hinged portions of the upper portion housing 114. Such sides of the upper portion housing 114 may be selectively attached to other sides of the upper portion housing 114 and/or the frame 112 by way of latches, such as but not limited to, magnets, slam latches, or the like. In other exemplary embodiments, one or more panels of the upper portion housing 114 may be slid in various directions, such as but not limited to along rails, in order to permit access to the inside of the upper portion 110.


One or more sides of the upper portion housing may be comprised of glass, such as but not limited to black glass, or other radio permissive material such that broadband radio and other waves emitted from and transmitted to the additional equipment 116 may enter and exit the upper portion housing 114.


In exemplary embodiments, the housing assembly 10 may comprise a transition area 130 located between the upper portion 110 and the display unit 30. The upper portion housing 114 may extend into the transition area 130 to partially enclose the transition area 130. In other exemplary embodiments, a separate transition housing may be used. The transition area 130 may comprise a common open loop intake 134. Open loop fluids, such as ambient air 136 may be ingested through the common open loop intake 134 and may be separated such that a first flow 136A of the ingested ambient air travels into the upper portion 110 and a second flow 1368 of the ingested ambient air travels into the display unit 30. A grid, screen, mesh, filter, or the like may be placed on, over, or near the open loop intake 134, though such is not required.


In exemplary embodiments, a first open loop intake 134 may be located on one side of the housing assembly 10, and a second open loop intake 134 may be located on another side of the housing assembly 10. The frame 112 may extend through the transition area 130 and may separate the ambient air 136 ingested from first open loop intake 134 from the ambient air ingested from the second open loop intake 134, though such is not required.


In some embodiments, one or more upper portion apertures 118 may be located in the upper portion housing 114 to permit the first flow 136A to enter the upper portion 110. One or more fans 120 may be positioned on or near the upper portion apertures 118 to encourage or force such ingestion and exhaustion of ambient as well as circulation of ambient air within the upper portion 110. Alternatively, or in addition, the one or more fans 120 may be located within the upper portion 110 to alternatively or additionally force the ingested ambient air 136A to circulate within the upper portion.


The first flow 136A may be vented from the upper portion 110 by way of an upper portion exhaust 122. The upper portion exhaust 122 may comprise a gap between panels of the upper portion housing 114. In exemplary embodiments, the upper portion exhaust 122 may be located along an upper edge of the upper portion 110.


As illustrated in FIG. 9B, in other exemplary embodiments, the upper portion exhaust 122 may instead be configured to be an upper portion intake 122. A first flow 136C of ambient air may be ingested by way of the upper portion intake 122. The first flow 136C may travel through the upper portion 110 to the display unit 30. In some embodiments, a second flow 136D of ambient air may be ingested into the transition section 130 for circulation within the display unit 30, though such is not required.


In still other exemplary embodiments, the upper portion 110 may be cooled by convection by way of ambient air passing over the external surfaces of the upper portion 110.



FIG. 10 is a top sectional view of another exemplary housing assembly and an integrated display unit and FIG. 11 is a detailed top sectional view of the assembly of FIG. 10. These figures are provided to demonstrate, in a simplified fashion, that a landscape orientated assembly 10 with a landscape-oriented display unit 30. Certain internal components of the display units 30 are obscured in the provided drawings to focus attention on the orientation of the display units 30. It is contemplated that the assembly 10 and the display unit 30 may be provided in a portrait orientation, a landscape orientation, or any other orientation, such as but not limited to, various angles, tilts, or rotations.


Any embodiment of the present invention may include any of the optional or preferred features of the other embodiments of the present invention. The exemplary embodiments herein disclosed are not intended to be exhaustive or to unnecessarily limit the scope of the invention. The exemplary embodiments were chosen and described in order to explain the principles of the present invention so that others skilled in the art may practice the invention. Having shown and described exemplary embodiments of the present invention, those skilled in the art will realize that many variations and modifications may be made to the described invention. Many of those variations and modifications will provide the same result and fall within the spirit of the claimed invention. It is the intention, therefore, to limit the invention only as indicated by the scope of the claims.

Claims
  • 1. An electronic display assembly comprising: a housing assembly;a display unit supported by said housing assembly and comprising an electronic display and one or more open loop airflow pathways;an upper portion supported by said housing assembly at a position above, and spaced apart from, said display unit, said upper portion comprising an upper portion housing enclosing an upper cavity and one or more intake/exhaust apertures in said upper portion housing and configured to provide fluid communication between said upper cavity and an ambient environment;a transition area extending between said upper portion and said display unit, wherein said transition area is in fluid communication with said upper cavity and said one or more open loop airflow pathways;one or more intakes at said transition area configured to provide fluid communication between said transition area and said ambient environment;a first set of one or more fans located and configured to move ingested ambient air between said upper cavity and said transition area when operated; anda second set of one or more fans associated with said display unit and configured to ingest a flow of ambient air through said one or more intakes of said transition area and force at least a portion of said ingested ambient air through said one or more open loop airflow pathways when operated.
  • 2. The electronic display assembly of claim 1 wherein: said first set of one or more fans are configured to ingest a separate flow of ambient air through said one or more intake/exhaust apertures of said upper portion for combination with said flow of ambient air ingested through said one or more intakes of said transition area and travel, in a combined fashion, through said one or more open loop airflow pathways when operated.
  • 3. The electronic display assembly of claim 1 wherein: said first set of one or more fans are configured to force a portion of said flow of ambient air ingested through said one or more intakes of said transition area into said upper cavity for exhaustion through said one or more intake/exhaust apertures of said upper portion when operated.
  • 4. An electronic display assembly comprising: a housing assembly comprising structural members;a display unit supported by said structural members and comprising an electronic display and one or more open loop airflow pathways;an upper portion supported by said structural members at a position above, and spaced apart from, said display unit, said upper portion comprising an upper cavity and an upper portion intake/exhaust;a transition area extending between said upper portion and said display unit and in fluid communication with said upper cavity and said one or more open loop airflow pathways, wherein at least one of said structural members extends through said transition area to said upper portion to support said upper portion;one or more intakes located at said transition area;a first set of one or more fans associated with said upper cavity and configured to move ambient air between said the upper cavity, said upper portion intake/exhaust, and said transition area when operated; anda second set of one or more fans associated with said display unit and configured to force ambient air through said one or more open loop airflow pathways when operated.
  • 5. The electronic display assembly of claim 4 wherein: said first set of one or more fans are configured to ingest a first flow ambient air through said upper portion intake/exhaust, through said upper cavity, and into said transition area when operated; andsaid second set of one or more fans are configured to ingest a second flow of ambient air through said one or more intakes of said transition area and combine said second flow of ambient air with said first flow of ambient air and force said combined flow through said one or more open loop airflow pathways of said display unit when operated.
  • 6. The electronic display assembly of claim 4 wherein: said second set of one or more fans are configured to ingest a flow of ambient air through said one or more intakes of said transition area and force a first portion of said ingested flow through said one or more open loop airflow pathways of said display unit; andsaid first set of one or more fans are configured to force a second portion of said ingested flow into said upper cavity and exhaust said second portion of said ingested flow through said upper portion intake/exhaust when operated.
  • 7. The electronic display assembly of claim 4 further comprising: one or more apertures in a lower surface of said upper portion to provide said fluid communication between said upper cavity and said transition area.
  • 8. The electronic display assembly of claim 7 wherein: said first set of one or more fans are mounted within said upper cavity atop said one or more apertures.
  • 9. The electronic display assembly of claim 4 wherein: said second set of one or more fans are located within said display unit.
  • 10. The electronic display assembly of claim 4 further comprising: one or more pieces of communication equipment located within said upper cavity.
  • 11. The electronic display assembly of claim 10 wherein: said upper portion comprises one or more panels forming said upper portion cavity, wherein at least one of said one or more panels comprise black glass.
  • 12. The electronic display assembly of claim 4 wherein: said display unit comprises a backlight for the electronic display; andat least one of said one or more open loop airflow pathways extends along a rear surface of the backlight.
  • 13. The electronic display assembly of claim 12 wherein: the electronic display comprises a layer of liquid crystals.
  • 14. The electronic display assembly of claim 4 wherein: said one or more intakes of said transition area comprises at least a first intake at a first side of said transition area and a second intake at a second side of said transition area.
  • 15. The electronic display assembly of claim 4 further comprising: a closed loop airflow pathway for circulating gas within the display unit.
  • 16. The electronic display assembly of claim 15 further comprising: a heat exchanger, wherein a first portion of said heat exchanger forms part of said closed loop airflow pathway and a second portion of said heat exchanger forms part of at least one of said one or more open loop airflow pathways.
  • 17. The electronic display assembly of claim 4 wherein: said display unit comprises a second electronic display positioned back-to-back with said electronic display.
  • 18. The electronic display assembly of claim 4 wherein: said electronic display assembly presents a visually unitary external appearance.
  • 19. The electronic display assembly of claim 4 wherein: said housing assembly comprises one or more pieces of external cladding; andat least one of said structural member are configured to accept said external cladding.
  • 20. A method for thermally managing an electronic display assembly, said method comprising the steps of: ingesting, by way of a first set of one or more fans which are associated with said upper portion positioned above, and spaced apart from, a display unit, a first flow of ambient air through an upper portion intake located at the upper portion;ingesting, by way of a second set of one or more fans which are associated with said display unit, a second flow of ambient air through one or more intakes of a transition area located between said upper portion and said display unit;forcing, by way of said first set of one or more fans, said first flow of ambient air through an upper portion cavity within said upper portion and in fluid communication with said upper portion intake into said transition area; andforcing, by way of said second set of one or more fans, a combined airflow comprising said first and second flows of ambient air through at least one open loop airflow pathway within said display unit.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. Non-provisional patent application Ser. No. 16/750,429 filed Jan. 23, 2020, which is a continuation of U.S. Non-provisional patent application Ser. No. 16/352,041 filed Mar. 13, 2019, now U.S. Pat. No. 10,602,626 issued Mar. 24, 2020, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/711,908 filed Jul. 30, 2018, the disclosures of each of which are hereby incorporated by reference as if fully restated herein.

Provisional Applications (1)
Number Date Country
62711908 Jul 2018 US
Continuations (2)
Number Date Country
Parent 16750429 Jan 2020 US
Child 17239747 US
Parent 16352041 Mar 2019 US
Child 16750429 US