The present disclosure relates generally to centrifugal compressors and turbines of gas turbine engines and, more particularly, to housings disposed around impellers of such centrifugal fluid machines.
A centrifugal fluid machine, such as a centrifugal compressor, generally includes an impeller which rotates within a housing disposed around the impeller. The impeller includes a hub mounted to a drive shaft so as to be rotated therewith. Vanes (i.e., blades) of the impeller extend from the hub and are typically arranged to redirect an axially-directed inbound gas flow radially outwardly. The housing is disposed as close as possible to tips of the blades such as to minimize tip clearance and thereby maximize an amount of a fluid being worked on by the impeller. Stresses may however be imparted on the housing, such as a result of the pressure of the fluid flowing through the impeller. These stresses can locally vary the tip clearance, which can impair efficiency of the machine. Such stresses may be higher at an exit of the impeller, where the pressure is greatest. Improvements are therefore sought.
In one aspect, there is provided a centrifugal compressor for a gas turbine engine, comprising: an impeller having blades extending from a hub to blade tips, the impeller having an inlet and an outlet; and a housing disposed around the impeller, the impeller rotatable relative to the housing about a central axis, the housing including: a shroud annularly extending around the blade tips of the impeller and extending in a streamwise direction between a first end proximate the inlet of the impeller and a second end proximate the outlet of the impeller, the shroud having a gaspath side facing the impeller and a rear side opposed to the gaspath side; a structural member supporting the shroud, the structural member having an outer end securable to a casing of the gas turbine engine, an inner end of the structural member intersecting the rear side of the shroud at a location between the first end and the second end; and a reinforced region at the location where the structural member and the rear side of the shroud intersect, a thickness of the reinforced region in a direction normal to the gaspath side being greater than a nominal thickness of the shroud outside the reinforced region, the reinforced region defining a curved surface extending from a first location on the structural member to a second location on the rear side of the shroud, the second location being disposed between the structural member and the second end of the shroud, a portion of the curved surface having a radius that increases from a first radius to a second radius at the second location.
The centrifugal compressor as defined above and herein may further include, in whole or in part, and in any combination, one or more of the following features.
In some embodiments, the portion of the curved surface is a second zone of the curved surface, the curved surface having a first zone extending from the first location to the second zone, the first zone having a constant radius.
In some embodiments, the shroud has a radially-outer portion extending from a projection of the structural member on the gaspath side to the second end, the radially-outer portion having a radial height from the projection to the second end along a radial direction relative to the central axis, a radius of the first zone ranging from 10% to 40% of the radial height.
In some embodiments, the first radius ranges from 17% to 35% of the radial height.
In some embodiments, the portion of the curved surface merges into the shroud toward the second end of the shroud.
In some embodiments, the thickness of the shroud is maximal at the first location of the reinforced region and decreases to the nominal thickness toward the second end of the shroud.
In some embodiments, the thickness continuously and monotonically decreases from the first location to the second location.
In some embodiments, the thickness reaches the nominal thickness between the inner end of the structural member and the second end.
In some embodiments, the second location is closer to the second end than to the inner end of the structural member.
In some embodiments, the shroud has a radially-outer portion extending radially outwardly from a projection of the structural member on the gaspath side to the second end, the radially-outer portion having a radial height from the projection to the second end along a radial direction relative to the central axis, the second location being at least 20% of the radial height from the projection.
In some embodiments, an intersection between the structural member and the rear side of the shroud is located proximate a knee of the shroud, the knee corresponding to a point where a radial component of a vector normal to the gaspath side of the shroud is equal to an axial component of the vector.
In some embodiments, the intersection is located at from 30% to 70% of a length of the shroud from the first end, the length of the shroud extending from the first end to the second end along the gaspath side.
In another aspect, there is provided an impeller housing for an impeller of a centrifugal compressor of a gas turbine engine, comprising: a shroud annularly extending around a central axis, the shroud having a gaspath side facing the central axis and an opposed rear side, the shroud having a first end proximate an inlet of the impeller and a second end proximate an outlet of the compressor; a structural member supporting the shroud, the structural member having an outer end securable to a casing of the gas turbine engine, an inner end of the structural member intersecting the rear side of the shroud at a location between the first end and the second end; and a reinforced region at the location where the structural member and the rear side of the shroud intersect, a thickness of the reinforced region in a direction normal to the gaspath side greater than a nominal thickness of the shroud outside the reinforced region, the reinforced region extending from a first location on the structural member to a second location on the rear side of the shroud, the second location between the structural member and the second end, a ratio of a radial distance (D3) relative to the central axis from the second end to the second location to a radial height (H1) of a portion of the shroud that extends radially outwardly beyond the inner end of the structural member being at most 0.8.
The an impeller housing for an impeller of a centrifugal compressor as defined above and herein may further include, in whole or in part, and in any combination, one or more of the following features.
In some embodiments, a radius of the reinforced region ranges from 10% to 40% of the radial height.
In some embodiments, the first radius ranges from 17% to 35% of the radial height.
In some embodiments, the portion extends from a projection of the structural member on the gaspath side of the shroud to the second end.
In some embodiments, a thickness of the shroud taken in a direction normal to the gaspath side is maximal at the first location and decreases to a nominal thickness toward the second end of the shroud.
In some embodiments, the thickness continuously and monotonically decreases from the first location to the second location.
In some embodiments, an intersection between the structural member and the rear side of the shroud is located proximate a knee of the shroud, the knee corresponding to a point where a radial component of a vector normal to the gaspath side of the shroud is equal to an axial component of the vector.
In some embodiments, the intersection is located at from 30% to 70% of a length of the shroud from the first end, the length of the shroud extending from the first end to the second end along the gaspath side.
Reference is now made to the accompanying figures in which:
The following disclosure relates generally to gas turbine engines, and more particularly to centrifugal fluid machines, such as compressor and turbines, that may be present in a compressor section and/or a turbine section of a gas turbine engine. In some embodiments, the assemblies and methods disclosed herein promote better performance of gas turbine engines, such as by improving flow conditions in the compressor section and/or turbine section in some operating conditions, improving the operable range of the compressor/turbine, and reducing energy losses.
It should be noted that the terms “upstream” and “downstream” used herein refer to the direction of an air/gas flow passing through an annular gaspath 20 of the gas turbine engine 10. It should also be noted that the term “axial”, “radial”, “angular” and “circumferential” are used with respect to a central axis 11 of the annular gaspath 20, which may also be a central axis of gas turbine engine 10. The gas turbine engine 10 is depicted as a reverse-flow engine in which the air flows in the annular gaspath 20 from a rear of the gas turbine engine 10 to a front of the gas turbine engine 10 relative to a direction of travel T of the gas turbine engine 10. This is opposite than a through-flow engine in which the air flows within the annular gaspath 20 in a direction opposite the direction of travel T, from the front of the engine towards the rear of the gas turbine engine 10. The principles of the present disclosure may apply to reverse-flow and through-flow engines and to any other gas turbine engines, such as a turbofan engine and a turboprop engine.
Referring to
The shape of the shroud 31 defines the impeller tip clearance. The tip clearance is meant to be as small as possible to maximize an amount of air entering the compressor that is being compressed. A clearance of zero would be ideal. However, in reality, there are part growths and movements that occur during engine operation as well as manufacturing tolerances that make this difficult to achieve. Care should be taken to ensure that the blades 26b never rub against the shroud 31 since such a rubbing action may cause a detriment to the engine performance and component life. Reducing the impeller shroud deflection may be a key design requirement in order to minimize tip clearance as discussed below.
Still referring to
The shroud 31 includes a gaspath side 31a and an opposed rear side 31b, also referred to as cavity side facing away from the annular gaspath 20. An opening, such an aperture or a slot 31c (
In use, pressure of the air flowing through the centrifugal compressor 24 increases as the air moves radially outwardly away from the central axis 11 and toward the outlet 24b of the centrifugal compressor 24. As pressure increases, more force is applied on the gaspath side 31a of the shroud 31. This may deform the shroud 31 thereby increasing the radial gap between the shroud 31 at the gaspath side 31a and the tips 26d of the blades 26b. This may impair efficiency of an impeller. This may be caused by a portion of the shroud 31 being cantilevered from the structural member 32. The present shroud 31 has features that will be described herein below that may at least partially alleviate this phenomenon. Namely, the housing 30 has a reinforced region shown schematically at 34 in
Referring now to
Referring more particularly to
The reinforced region 34 is located between the structural member 32 and the outlet end 31e of the shroud 31. The reinforced region 34 is meant to increase a stiffness of a radially-outer portion of the shroud 31 that extends radially outwardly beyond the intersection with the structural member 32 and that is cantilevered. In the embodiment shown, the reinforced region 34 is located at the intersection since a moment of force exerted by air pressure on the shroud 31 is the greatest at the intersection. The reinforced region 34 merges into the rear side 31b of the shroud 31. That is, the shroud 31 has a nominal thickness T that corresponds to a thickness of the shroud 31 without and/or outside the reinforced region 34. The nominal thickness T may be taken in a direction normal to the gaspath side 31a of the shroud 31. In one particular embodiment, a thickness of the shroud 31 near the inlet end 31d may correspond to the nominal thickness T. In another embodiment, the thickness of the shroud at a location about midpoint between the inlet end 31d and the structural member 32 may correspond to the nominal thickness T. Regardless, the reinforced region 34 locally increases a thickness of the shroud 31 beyond the nominal thickness T—i.e. the thickness of the reinforced region 34 is greater than the nominal thickness T of the shroud 31.
In the embodiment shown, the intersection between the structural member 32 and the shroud 31 is closer to the outlet end 31e than to the inlet end 31d of the shroud 31. A ratio of a distance D1 between the outlet end 31e and the intersection location P3 between the structural member 32 and the shroud 31 along the gaspath side 31a of the shroud 31 to a length L1 of the shroud 31 from the inlet end 31d to the outlet end 31e along the gaspath side 31a ranges from 0.30 to 0.90, preferably from 0.50 to 0.80, preferably 0.70. In other words, the intersection may be located at from 30% to 70% of the length L1 of the shroud 31 from the inlet end 31d.
Referring more particularly to
The first zone Z1 has a radius when seen on a plane containing the central axis 11 and intersecting the reinforced region 34. The radius of the reinforced region 34 at the first zone Z1 may be constant. The radius of the reinforced region 34 changes throughout the second zone Z2. That is, the second zone Z2 has a first radius at the intersection between the first and second zones Z1, Z2. The first radius Z1 corresponding to the constant radius of the first zone Z1. The second zone Z2 has a second radius where it merges back to the shroud 31. The second radius is located at an end of the second zone Z2, which corresponds to the second location P2. The second radius corresponds to a radius of the shroud 31 where the thickness of the shroud 31 becomes the nominal thickness T. If the rear side 31b of the shroud 31 is straight at the second location P2, the radius is infinite. In the context of the present disclosure, the expression “radius” is meant to imply the radius of curvature of a curve when taken on a plane containing the central axis 11 and intersecting the reinforced region 34.
The second zone Z2 may define a Euler's curve, also know as a clothoid, where a radius changes continuously along a length of the second zone Z2 toward the outlet end 31e. The radius of the reinforced region Z2 may change (e.g., increase) continuously and monotonically from the first zone Z1 toward the outlet end 31e along the second zone Z2. The thickness of the shroud 31 at the reinforced region 34 may continuously and monotonically decrease from the first location P1 to the second location P2. The second zone Z2 is used as a transition zone to blend the reinforced region 34 back into the shroud 31. The reinforced region 34 may be tangent to the rear side 31b of the shroud 31. The reinforced region 34 therefore locally increases a thickness of the shroud 31 beyond the nominal thickness T. This thickness decreases to the nominal thickness T in a direction extending away from the intersection toward the outlet end 31e. The thickness of the shroud 31 may therefore be maximal at the first zone Z1.
Still referring more particularly to
A ratio of a distance D2 from the intersection location P3 to the second location P2 to the radial height H1 of the portion of the shroud 31 that extends radially outwardly beyond the intersection is at least about 0.25 and at most 1, preferably at least about 0.3 and, in some cases, from 0.30 to 0.60. Stated differently, a ratio of a radial distance D3 relative to the central axis 11 from the outlet end 31e of the shroud 31 to the second location P2 to the radial height H1 is at most 0.8, preferably at most 0.75. In the embodiment shown, the first zone Z1 has a constant radius that may range from 10% to 40%, preferably from 17% to 35% of the radial height H1 of the portion of the shroud 31 that extends radially outwardly beyond the intersection.
In the embodiment shown, the shroud 31 includes a protrusion 31f at the outlet end 31e. In the present embodiment, the protrusion 31f is annular and extends all around the central axis 11. As shown, the protrusion 31f extends from the rear side 31b of the shroud 31 and away from the gaspath side 31a. The protrusion 31f may therefore be outside the annular gaspath 20 (
Referring now to
The housing 130 includes a reinforced region 134 at the intersection between the structural member 32 and the shroud 31. The reinforced region 134 extends from the first location P1 on the structural member 32 to the second location P2 on the rear side 31b of the shroud 31. In the embodiment shown, the reinforced region 134 has a constant radius from the first location P1 to the second location P2. The radius of the reinforced region 134 may be from 10% to 40%, preferably from 17% to 35% of the radial height H1 of the portion of the shroud 31 that extends radially outwardly beyond the intersection. A ratio of a distance D2 from the intersection location P3 to the second location P2 to the radial height H1 of the portion of the shroud 31 that extends radially outwardly beyond the intersection is at least about 0.20 and at most 1, preferably from 0.30 to 0.60.
As shown in
The impeller housing 30 may be manufactured by multiple machining steps. The part may be turned to create a rough shape as well as several final surfaces. Holes and slots may then milled be into the part. As a relatively large part, weight reduction can be achieved by thinning of various regions but, this must not result in deflections that compromise the impeller shroud's tip clearance. The shroud 31 of the present disclosure includes a reinforced region 34, 134 that allows to locally reinforce the shroud so that it may withstand the forces imparted thereto by air flowing through the centrifugal compressor, but by limiting added weight to the shroud 31. That is, in locations where the highest deflections are expected, such as the outlet end 31e of the impeller housing 30, a gradual tapering of material at the impeller housing knee may be implemented. This gradual tapering may reduce the deflection of the shroud 31 compared to a configuration without the reinforced region. Thickening and thinning of the impeller housing may allow the fine tuning of the housing properties such as dynamic response, part deflections and weight reduction.
In the context of the present disclosure, the expression “about” implies a variation by plus or minus 10% of a value. For instance, about 10 includes values from 9 to 11.
The embodiments described in this document provide non-limiting examples of possible implementations of the present technology. Upon review of the present disclosure, a person of ordinary skill in the art will recognize that changes may be made to the embodiments described herein without departing from the scope of the present technology. For example, features of the shrouds disclosed in the present disclosure may be applied to a shroud of a centrifugal turbine. Yet further modifications could be implemented by a person of ordinary skill in the art in view of the present disclosure, which modifications would be within the scope of the present technology.
Number | Name | Date | Kind |
---|---|---|---|
4264271 | Libertini | Apr 1981 | A |
5555721 | Bourneuf et al. | Sep 1996 | A |
20130202428 | Renard | Aug 2013 | A1 |
20170248155 | Parker | Aug 2017 | A1 |
20190383304 | Aker | Dec 2019 | A1 |
Number | Date | Country |
---|---|---|
2987874 | Sep 2013 | FR |
Entry |
---|
Taylor et al., “The variable-radius notch: Two new methods for reducing stress concentration”, Dec. 30, 2010, Engineering Failure Analysis, vol. 18 (Year: 2010). |
Number | Date | Country | |
---|---|---|---|
20220268285 A1 | Aug 2022 | US |