The invention resides in the field of mechanical engineering and precision engineering and can be used advantageously in particular in the medical field.
In particular in the field of medicine, high demands are placed upon housings for functional elements which are used for example in invasive or micro-invasive operations. Such housings must often be very small just as the corresponding functional elements in order as far as possible not to cause damage during introduction into the body of a patient or to require small incisions. Micro-invasive operations are thus possible in order to assist for example bodily functions, such as blood circulation, i.e. the pumping capacity of the heart, or similar.
In particular for micropumps which can be operated in the body of the patient, pump housings which can be introduced into the body with the respective pump via a blood vessel are known. For this purpose, often both the pump blades of the pump and the pump housing are deformable between a compressed state for movement through a body vessel and an expanded state in which the pump is operated according to plan.
Various approaches to this are known from the literature, as to how components of this type can be compressed or expanded in the body in a controlled manner. It is known for example to use so-called shape memory materials which can be brought into various shapes for example by temperature changes. However, it should be noted in conjunction with the use of shape memory materials that these often have non-linear mechanical properties which are partially difficult to control and in addition are cost-intensive.
A solution is known from the patent document DE 10 2004 054 714 A1, in which both the impeller of a micropump and the housing thereof is expanded by a relative axial displacement of the pump drive shaft relative to a catheter. As a result, the housing is folded between the compressed and the expanded state.
From WO 00/2003103745 A2, a system in which the pump housing likewise is radially expanded by an axial relative movement of two components relative to each other is known.
DE 10 2004 054714 A1 teaches a blood pump with a flexible housing in the form of a hose that is supported by elastic sticks directed parallel to a rotor axis and extending each from the proximal end of the housing nearly to its distal end.
US 2008/0132748 shows a blood pump with a rotor that is moving in a rib cage housing formed by bendable ribs. The length of the ribs is comparable to the length of the housing. The ribs exhibit an arcuate shape and in the extended state of the housing it has an ellipsoidal or prolate-spheroid form.
WO 94/05347 describes a blood pump with a rotor that is placed in a housing that is provided with a lattice of bars in order to shield the rotor. The bars have the form of one-piece filaments extending in the longitudinal axis of the rotor. This filament cage can be expanded by displacement of the ends of the filaments.
Against the background of the state of the art, the object underlying the invention is to produce a housing which can be compressed or expanded with as simple means as possible, the constructional complexity requiring to be minimised. Nevertheless, the housing should have the stability required for operation.
The object is achieved according to the invention by the features of patent claim 1.
The invention relates to a housing for a functional element, in particular for use in the medical field in naturally occurring vessels in the body, the housing wall of which has a slack, flexible, tensionable membrane with a plurality of formed parts secured thereon which support the membrane in the tensioned state thereof by forming one or more groups of formed parts wherein the parts of each group support one another in the tensioned state of the membrane.
The separately formed parts allow for folding and compressing of the housing in all directions without substantial resistance forces.
For this purpose, the parts of a group may be in touching contact to other parts of the same group, when the membrane is in its tensioned state. The parts may abut against each other, engage one in the other or overlap each other. In the non-tensioned state of the membrane, they may or may not touch other parts of the same group.
All the components are advantageously configured for this purpose from biocompatible materials. The formed parts may be individually attached to the housing as separate bodies.
Advantageously, at least one group of formed parts forms a rib-like linear structure in the tensioned state of the membrane. The one or more rib-like structures may have straight or circular or semicircular form or arc form. These rib-like or arc-like structures may be directed parallel to a longitudinal axis of the housing.
The parts of at least one group may as well build a two-dimensional shield form that covers a part of the surface of the housing.
The corresponding formed parts are advantageously stable in shape and rigid and can be configured as injection moulded parts, in particular made of plastic material, and are essentially bar- or plate-shaped.
Furthermore, the invention can advantageously be configured in that at least one of the formed parts has a support surface which abuts against the membrane in the tensioned state.
Also a plurality of formed parts in the tensioned state can abut against the membrane flatly in an adjacent manner, in particular on the inside thereof, in order to form a covering of the membrane which supports the latter and does not impede a fluid flow within the housing.
The formed parts can advantageously be connected exclusively to the membrane, i.e. have no connection to a further component in the interior of the housing. The positioning of the housing with respect to a functional element, in particular a pump, can then be achieved by support arms which are described further on.
The formed parts can be connected rigidly by their entire support surface which abuts against the membrane or be connected also only to a part of the support surface, in particular to a delimiting edge of the support surface.
The connection of the formed parts to the membrane can be produced for example as an adhesive joint.
In the tensioned state of the membrane, the formed parts abutting against the inside of the housing/of the membrane can essentially cover the membrane and also abut against each other.
The membrane is consequently reinforced and protected effectively from damage from the inside.
The formed parts can partially overlap each other and as it were lie one above the other in the manner of scales or in the manner of shingles. Hence a particularly good support and gap-free covering of the membrane is ensured.
The formed parts can also partially engage one in the other in order to be mutually supported and positioned.
Hence the formed parts in the tensioned state of the housing can form an inherently stable support body which supports the membrane from inside.
The invention relates in addition also to a device having a housing according to the above-described type and having a functional element, the device having a fluid pump which produces an excess pressure in the housing which leads to tensioning of the membrane.
Hence the moveability of the slack, flexible membrane and the moveability of the formed parts in the non-tensioned state of the membrane is used for the purpose of tensioning the membrane by means of an excess pressure in the housing without a notable counter-force and for stabilising and supporting said membrane by means of the abutting formed parts in the tensioned state. If necessary, when starting up the pump if this is disposed in the housing, it must be accepted that the pump blades of the pump rub on parts of the housing until the housing is expanded according to plan by the excess pressure building up and a pump gap is configured between blade tip and housing.
If the pump is switched off again, then the housing collapses and can be retracted together with the functional element through the naturally occurring vessel in the body or an artificial vessel—e.g. a lock.
In contrast to other concepts for compressible and expandable housings, the compression movement of the housing, after stopping the pump, encounters no noteworthy elastic counter-force which would make the compression process difficult. The described behaviour when retracting into an artificial vessel and during transport through this vessel turns out to be particularly advantageous since little force need be expended hereby for the translatory movement through the vessel.
The expansion or compression of the housing, if a functional element different from a pump is disposed in the latter, can also be achieved in that the housing is subjected to pressure with an externally disposed fluid pump or the pressure is reduced for collapsing.
A typical application for the invention is the production with a blood pump so that, during operation, the pump conveys blood and hence builds up an internal pressure which expands the housing for example in a ventricle as desired.
If a fluid pump is located in the housing, then advantageously a suction opening and a catheter connection are provided. The suction opening can have for example a suction cage which, on the one hand, retains coagulated blood components away from the pump and, on the other hand, protects the naturally occurring bodily tissue outside the housing from injury by the pump blades if a rotor pump is used.
If the housing is used for a blood pump that works without a rotor and instead has a pulsatile pumping element, for example in the form of a cushion with variable volume, then the formed parts may support the membrane of the housing and at the same time, the parts are not endangered by the movement of a rotor while the housing is extending. Therefore, the housing may advantageously be used as housing of a pump with a drive element that comprises a cushion with variable volume. Usually, this pump concept requires appropriate valves in the openings of the housing that are controllable by a control unit.
Support arms advantageously serve to position and centre the housing relative to a functional element located in the latter, in particular a pump rotor. These can extend for example radially from the housing up to the functional element or possibly up to a drive shaft or a component mounted on the latter and be supported there on at least one formed part and/or be secured on the membrane.
In the case where the radially inner end of the support arms is fixed in the axial direction, an axial movement of the housing results in the course of the compression/expansion movement at the same time if the support arms are not flexible or not provided with at least one bending joint.
The support arms can advantageously engage in the expanded state of the housing, the corresponding locking devices being intended to be configured such that bending of the support arms is effected as soon as the excess pressure in the pump housing falls below a specific threshold value.
Hence the support arms in the expanded state of the housing exert an additional support effect.
Even if each support arm is provided with a plurality of joints, these can engage in a stable manner at a corresponding angle which corresponds to the desired state in the expanded state of the housing until the housing collapses due to the lowering of the excess pressure. Then the support arms can bend to compress the housing.
The support arms can also form a suction cage at the same time in the inlet region of the housing in which a fluid is suctioned in.
Apart from a housing of the described type or a device with such a housing, the invention relates in addition also to a method for the production of a housing in which formed parts are secured firstly on a flat membrane and thereafter the membrane is rolled up and fitted together to form a hose.
In this way, the formed parts can be secured easily on the membrane in an automated method, for example by glueing, without spatial problems impeding this process. The housing is thereafter produced from the flat membrane as a hose which can advantageously taper conically at one of its ends to form a catheter connection. At the opposite end of the hose, support arms can be provided in order to form a suction cage.
In the following, the invention is shown in a drawing with reference to an embodiment and subsequently explained.
There are thereby shown
In a longitudinal section,
A functional element 5 with a housing 8 is located at the end of the catheter 1, the functional element 5 comprising a blood pump with an impeller and the housing 8 having a suction cage 6 on its end.
A shaft 4 which extends up to the pump 5 and actuates the impeller there with the pump blades is provided within the catheter 1.
The housing 8 is shown in an at least partially expanded state which it assumes after introduction into the ventricle and the pump being set in operation.
The housing and the pump are described subsequently in more detail with reference to the remaining Figures.
In
The housing 8 has a conically tapered part 8d which is connected to the catheter 1 and which has, in the region in front of the catheter, at least one opening 10 via which the liquid can flow out. This is represented by the arrows 11 for a plurality of openings. Hence the transport of the fluid from a location of lower pressure—in the ventricle—to a location in which the pressure is increased locally by the energy input of the pump—can be produced above the aortic sinus (sinus aortae). The aortic valve (valva aortae) situated in front of the opening 10 acts as valve and prevents the fluid from flowing back into the ventricle 7.
The housing 8 is constructed essentially cylindrically at least in the expanded state (at the bottom) and comprises, in its outer region, a membrane which is fitted on its inside with formed parts. The formed parts are dealt with further on in more detail.
The support arms 12, 13 are folded in in the compressed state in the longitudinal direction of the shaft 4 and are located at an acute angle to the latter.
If the pump impeller 9 is set in operation so that the pump begins to rotate, then a flow is produced in that liquid from the surroundings of the housing 8 is suctioned into the opening 14 through a suction cage 15 and is accelerated towards the catheter 1. In the pump housing 8, an excess pressure relative to the surroundings which expands the pump housing 8 radially is hence produced. To the same degree as the pump housing 8 expands radially, the pump blades of the pump can be deployed and consequently the power of the pump can be increased.
In the lower part of
In this state, the supports arms 12, 13 can engage for example at their articulation point 16 at a rigid angle so that they support the expanded state of the housing 8.
In the course of the expansion of the pump housing 8, also an axial movement/compression of the housing 8 by the amount ΔX takes place due to the spreading of the support arms 12, 13, as is indicated in
A similar pump housing 8 as in
These joints 19 effect a more flexible adaptation of the support arms 17, 18 to the degree of expansion of the housing 8 and lead to the axial compression/displacement of the housing 8 during the tensioning being reduced or eliminated.
Also the articulated support arms 17, 18 can engage in a specific position so that, even in this constellation, an additional supporting of the expanded housing is possible. The engaged position can be overcome during collapse of the housing 8 by applying a specific threshold force.
In addition, the constellation of
In
In
In the representation of
In
As a result of this type of production, a housing according to the invention can be produced particularly easily and economically. The membrane can thereby be produced as a slack, flexible foil, elastically or non-elastically, and the formed parts 8b, 8c can be produced typically as plastic material injection moulded parts. The shingle- or scale-like positioning in the region of the formed parts 8b, 8c situated one above the other makes possible an advantageous compensation for the process-induced deviations in length and position of the formed parts. Greater production tolerances can be accepted and hence production costs can be lowered. An at least partially automated production is made possible.
The housing according to the invention hence makes possible simple expandability with low costs and low constructional complexity without external force expenditure, simply by producing a fluid pressure in the housing. This can be produced particularly easily when used with a pump. Even during compression of the housing, practically no counter-forces are produced so that the housing possible with a catheter and possibly with a lock can be removed again easily from the body of a patient.
This application is a divisional application claiming priority to U.S. patent application Ser. No. 13/146,452 filed on Oct. 11, 2011.
Number | Name | Date | Kind |
---|---|---|---|
3510229 | Smith et al. | May 1970 | A |
3568659 | Karnegis | Mar 1971 | A |
3802551 | Somers | Apr 1974 | A |
3812812 | Hurwitz | May 1974 | A |
4014317 | Bruno | Mar 1977 | A |
4207028 | Ridder | Jun 1980 | A |
4559951 | Dahl et al. | Dec 1985 | A |
4563181 | Wijayarathna et al. | Jan 1986 | A |
4679558 | Kensey et al. | Jul 1987 | A |
4686982 | Nash | Aug 1987 | A |
4747821 | Kensey et al. | May 1988 | A |
4749376 | Kensey et al. | Jun 1988 | A |
4753221 | Kensey et al. | Jun 1988 | A |
4801243 | Norton | Jan 1989 | A |
4817613 | Jaraczewski et al. | Apr 1989 | A |
4919647 | Nash | Apr 1990 | A |
4957504 | Chardack | Sep 1990 | A |
4969865 | Hwang et al. | Nov 1990 | A |
4995857 | Arnold | Feb 1991 | A |
5011469 | Buckberg et al. | Apr 1991 | A |
5040944 | Cook | Aug 1991 | A |
5042984 | Kensey et al. | Aug 1991 | A |
5052404 | Hodgson | Oct 1991 | A |
5061256 | Wampler | Oct 1991 | A |
5092844 | Schwartz et al. | Mar 1992 | A |
5097849 | Kensey et al. | Mar 1992 | A |
5108411 | McKenzie | Apr 1992 | A |
5112292 | Hwang et al. | May 1992 | A |
5113872 | Jahrmarkt et al. | May 1992 | A |
5117838 | Palmer et al. | Jun 1992 | A |
5118264 | Smith | Jun 1992 | A |
5145333 | Smith | Sep 1992 | A |
5163910 | Schwartz et al. | Nov 1992 | A |
5169378 | Figuera | Dec 1992 | A |
5183384 | Trumbly | Feb 1993 | A |
5191888 | Palmer et al. | Mar 1993 | A |
5201679 | Velte, Jr. et al. | Apr 1993 | A |
5275580 | Yamazaki | Jan 1994 | A |
5373619 | Fleischhacker et al. | Dec 1994 | A |
5376114 | Jarvik | Dec 1994 | A |
5501574 | Raible | Mar 1996 | A |
5531789 | Yamazaki et al. | Jul 1996 | A |
5701911 | Sasamine et al. | Dec 1997 | A |
5755784 | Jarvik | May 1998 | A |
5776190 | Jarvik | Jul 1998 | A |
5813405 | Montano, Jr. et al. | Sep 1998 | A |
5820571 | Erades et al. | Oct 1998 | A |
5851174 | Jarvik et al. | Dec 1998 | A |
5882329 | Patterson et al. | Mar 1999 | A |
5888241 | Jarvik | Mar 1999 | A |
5938672 | Nash | Aug 1999 | A |
6030397 | Monetti et al. | Feb 2000 | A |
6129704 | Forman et al. | Oct 2000 | A |
6152693 | Olsen et al. | Nov 2000 | A |
6168624 | Sudai | Jan 2001 | B1 |
6254359 | Aber | Jul 2001 | B1 |
6302910 | Yamazaki et al. | Oct 2001 | B1 |
6308632 | Shaffer | Oct 2001 | B1 |
6336939 | Yamazaki et al. | Jan 2002 | B1 |
6346120 | Yamazaki et al. | Feb 2002 | B1 |
6387125 | Yamazaki et al. | May 2002 | B1 |
6503224 | Forman et al. | Jan 2003 | B1 |
6506025 | Gharib | Jan 2003 | B1 |
6508787 | Erbel et al. | Jan 2003 | B2 |
6517315 | Belady | Feb 2003 | B2 |
6527521 | Noda | Mar 2003 | B2 |
6533716 | Schmitz-Rode et al. | Mar 2003 | B1 |
6537030 | Garrison | Mar 2003 | B1 |
6537315 | Yamazaki et al. | Mar 2003 | B2 |
6592612 | Samson et al. | Jul 2003 | B1 |
6652548 | Evans et al. | Nov 2003 | B2 |
6719791 | Nusser et al. | Apr 2004 | B1 |
6860713 | Hoover | Mar 2005 | B2 |
6945977 | Demarais et al. | Sep 2005 | B2 |
6981942 | Khaw et al. | Jan 2006 | B2 |
7022100 | Aboul-Hosn et al. | Apr 2006 | B1 |
7027875 | Siess et al. | Apr 2006 | B2 |
7074018 | Chang | Jul 2006 | B2 |
7179273 | Palmer et al. | Feb 2007 | B1 |
7393181 | McBride et al. | Jul 2008 | B2 |
7467929 | Nusser et al. | Dec 2008 | B2 |
7731675 | Aboul-Hosn et al. | Jun 2010 | B2 |
7927068 | Mcbride et al. | Apr 2011 | B2 |
7934909 | Nuesser et al. | May 2011 | B2 |
20020123661 | Verkerke et al. | Sep 2002 | A1 |
20030135086 | Khaw et al. | Jul 2003 | A1 |
20030231959 | Snider | Dec 2003 | A1 |
20040044266 | Siess et al. | Mar 2004 | A1 |
20040046466 | Siess et al. | Mar 2004 | A1 |
20040093074 | Hildebrand et al. | May 2004 | A1 |
20040215222 | Krivoruchko | Oct 2004 | A1 |
20040215228 | Simpson et al. | Oct 2004 | A1 |
20060008349 | Khaw | Jan 2006 | A1 |
20060062672 | McBride et al. | Mar 2006 | A1 |
20060195004 | Jarvik | Aug 2006 | A1 |
20080132747 | Shifflette | Jun 2008 | A1 |
20080262584 | Bottomley et al. | Oct 2008 | A1 |
20080306327 | Shifflette | Dec 2008 | A1 |
20090060743 | McBride et al. | Mar 2009 | A1 |
20090093764 | Pfeffer et al. | Apr 2009 | A1 |
20090093796 | Pfeffer et al. | Apr 2009 | A1 |
20100041939 | Siess | Feb 2010 | A1 |
20100268017 | Siess | Oct 2010 | A1 |
20110238172 | Akdis | Sep 2011 | A1 |
20110275884 | Scheckel | Nov 2011 | A1 |
20120039711 | Roehn | Feb 2012 | A1 |
20120041254 | Scheckel | Feb 2012 | A1 |
20120046648 | Scheckel | Feb 2012 | A1 |
20120093628 | Liebing | Apr 2012 | A1 |
20120101455 | Liebing | Apr 2012 | A1 |
20120142994 | Toellner | Jun 2012 | A1 |
20120184803 | Simon et al. | Jul 2012 | A1 |
20120224970 | Schumacher et al. | Sep 2012 | A1 |
20120234411 | Scheckel | Sep 2012 | A1 |
20120237353 | Schumacher et al. | Sep 2012 | A1 |
20120237357 | Schumacher et al. | Sep 2012 | A1 |
20120264523 | Liebing | Oct 2012 | A1 |
20120265002 | Roehn et al. | Oct 2012 | A1 |
20120294727 | Roehn | Nov 2012 | A1 |
20120301318 | Er | Nov 2012 | A1 |
20120308406 | Schumacher | Dec 2012 | A1 |
20130019968 | Liebing | Jan 2013 | A1 |
20130041202 | Toellner | Feb 2013 | A1 |
20130060077 | Liebing | Mar 2013 | A1 |
20130066139 | Wiessler et al. | Mar 2013 | A1 |
20130085318 | Toellner | Apr 2013 | A1 |
20130177409 | Schumacher et al. | Jul 2013 | A1 |
20130177432 | Toellner | Jul 2013 | A1 |
20130204362 | Toellner | Aug 2013 | A1 |
20130237744 | Pfeffer et al. | Sep 2013 | A1 |
20140039465 | Schulz et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
1008330 | Apr 1977 | CA |
2311977 | Dec 2000 | CA |
2701809 | Apr 2009 | CA |
2701810 | Apr 2009 | CA |
2207296 | Aug 1972 | DE |
2113986 | Sep 1972 | DE |
2233293 | Jan 1973 | DE |
2613696 | Oct 1977 | DE |
4124299 | Jan 1992 | DE |
69103295 | Dec 1994 | DE |
19535781 | Mar 1997 | DE |
19711935 | Apr 1998 | DE |
69407869 | Apr 1998 | DE |
29804046 | Jun 1998 | DE |
69017784 | Apr 2000 | DE |
69427390 | Sep 2001 | DE |
10059714 | May 2002 | DE |
10108810 | Aug 2002 | DE |
10155011 | May 2003 | DE |
69431204 | Aug 2003 | DE |
10336902 | Aug 2004 | DE |
102010011998 | Sep 2010 | DE |
0480102 | Apr 1992 | EP |
0560000 | Sep 1993 | EP |
0629412 | Jan 1998 | EP |
0884064 | Dec 1998 | EP |
0916359 | May 1999 | EP |
1066851 | Jan 2001 | EP |
0914171 | Oct 2001 | EP |
0768091 | Jul 2003 | EP |
0951302 | Sep 2004 | EP |
1114648 | Sep 2005 | EP |
1019117 | Nov 2006 | EP |
1337288 | Mar 2008 | EP |
2218469 | Aug 2010 | EP |
2229965 | Sep 2010 | EP |
2301598 | Mar 2011 | EP |
2308524 | Apr 2011 | EP |
2343091 | Jul 2011 | EP |
2345440 | Jul 2011 | EP |
2366412 | Sep 2011 | EP |
1651290 | Jan 2012 | EP |
2497521 | Sep 2012 | EP |
2606919 | Jun 2013 | EP |
2606920 | Jun 2013 | EP |
2607712 | Jun 2013 | EP |
2239675 | Jul 1991 | GB |
2229899 | Jun 2004 | RU |
9202263 | Feb 1992 | WO |
9302732 | Feb 1993 | WO |
9303786 | Mar 1993 | WO |
9314805 | Aug 1993 | WO |
9401148 | Jan 1994 | WO |
9405347 | Mar 1994 | WO |
9409835 | May 1994 | WO |
9420165 | Sep 1994 | WO |
9523000 | Aug 1995 | WO |
9618358 | Jun 1996 | WO |
9625969 | Aug 1996 | WO |
9744071 | Nov 1997 | WO |
9853864 | Dec 1998 | WO |
9919017 | Apr 1999 | WO |
0027446 | May 2000 | WO |
0043054 | Jul 2000 | WO |
0062842 | Oct 2000 | WO |
0107760 | Feb 2001 | WO |
0107787 | Feb 2001 | WO |
2001083016 | Nov 2001 | WO |
2003057013 | Jul 2003 | WO |
03103745 | Dec 2003 | WO |
2005002646 | Jan 2005 | WO |
2005016416 | Feb 2005 | WO |
2005021078 | Mar 2005 | WO |
2005030316 | Apr 2005 | WO |
2005032620 | Apr 2005 | WO |
2005081681 | Sep 2005 | WO |
2006020942 | Feb 2006 | WO |
2006034158 | Mar 2006 | WO |
2006133209 | Dec 2006 | WO |
2007003351 | Jan 2007 | WO |
2007103390 | Sep 2007 | WO |
2007103464 | Sep 2007 | WO |
2007112033 | Oct 2007 | WO |
2008017289 | Feb 2008 | WO |
2008034068 | Mar 2008 | WO |
2008054699 | May 2008 | WO |
2008106103 | Sep 2008 | WO |
2008116765 | Oct 2008 | WO |
2008124696 | Oct 2008 | WO |
2008137352 | Nov 2008 | WO |
2008137353 | Nov 2008 | WO |
2009015784 | Feb 2009 | WO |
2010133567 | Nov 2010 | WO |
2013034547 | Mar 2013 | WO |
2013092971 | Jun 2013 | WO |
2013093001 | Jun 2013 | WO |
2013093058 | Jun 2013 | WO |
Number | Date | Country | |
---|---|---|---|
20140223724 A1 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13146452 | Oct 2011 | US |
Child | 14265542 | US |