Housing for an electricity charging station and method for producing same

Information

  • Patent Grant
  • 10916953
  • Patent Number
    10,916,953
  • Date Filed
    Tuesday, July 3, 2018
    6 years ago
  • Date Issued
    Tuesday, February 9, 2021
    3 years ago
Abstract
A housing for an electricity charging station includes a base frame having a mounting rack, a cover connected to the base frame, two doors hinged on the base frame, a base connected to the base frame, two faceplates inserted into the base and two cable panels embedded in the base. A corresponding electricity charging station and a corresponding method for producing or assembling such a housing.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to German Patent Application No. DE 10 2017 115 702.6, filed Jul. 12, 2017, which is incorporated by reference herein in its entirety.


FIELD OF THE INVENTION

The present invention relates to a housing for an electricity charging station. The present invention furthermore relates to a corresponding electricity charging station and a corresponding method for producing or assembling such a housing.


BACKGROUND OF THE INVENTION

In electrical engineering, any stationary device or electrical system which serves for supplying energy to mobile, battery-operated units, machines or motor vehicles by way of simple setting or insertion without it being necessary for the energy store—for example the traction battery of an electric automobile—to be removed is referred to as a charging station. Charging stations for electric automobiles are also sometimes referred to as “electricity charging stations” and can comprise a plurality of charging points.


Known here in particular are direct-current fast charging/high-performance charging (HPC) systems in accordance with IEC 61851-23, such as the so-called combined charging system (CCS), which is widespread in Europe. In the case of direct-current charging of the generic type, direct current is fed from the charging column directly into the vehicle and, for this purpose, is provided by way of a powerful rectifier from the power supply system or by way of large buffer accumulators at solar charging stations. Buffer accumulators can also be connected locally in the power supply system of the system operator in order to stabilize the power supply system. In the vehicle, there is generally an OBC (on-board charger) control device. Said on-board charger control device communicates with the charging column and the battery management control device.


The power electronics system is usually located in this case in the charging column. Since the direct-current connections of the charging column are connected directly to corresponding connections of the traction battery, it is possible for high charging currents to be transmitted with little loss, this allowing short charging times but also generating a considerable amount of waste heat.


Known in particular are charging columns having an integrated power electronics system and cooling unit up to 50 kW. These charging columns are less than 600 mm deep, with corresponding cabinet installations higher than 1.8 m. The prior art further comprises air-cooled systems.


DE102014112799A1, which is incorporated by reference herein, discloses a charging station having a power connection, connection means, control apparatus between the power connection and the connection means, a rectangular control module comprising the control apparatus, and at least one rectangular functional module for fulfilling a further function of the charging station.


EP 2377208 A2, which is incorporated by reference herein, relates to a modular electricity charging station system for electric vehicles fundamentally consisting of three parts: a docking station, a master module and a user module, wherein the docking station itself does not contain an electronics system but contains exclusively a terminal section for feeding power and grounding and compartments for accommodating the master module and the user module together with corresponding connectors for the charging current and electronics system. A method for absorbing energy by means of a cell phone is also claimed.


EP1850445B1, which is incorporated by reference herein, proposes a battery charging point having a battery charging device, a fire prevention safety box in which the battery charging device is arranged, a fire alarm for identifying the development of a fire in the safety box, and an isolating switch, which connects the battery charging device to the battery and which is actuated by the monitoring device in such a way that it isolates the battery charging device from the battery in the event of a fire.


JP2015013614A, JP5485850B2, GB2471279A, JP2002319777A, and JP2000004512A, each of which is incorporated by reference herein in its entirety, discuss further housing designs for electricity charging stations and charging park components.


SUMMARY OF THE INVENTION

Described herein is a housing for an electricity charging station, a corresponding electricity charging station and a corresponding production method in accordance with the independent claims.


One advantage of this solution is its suitability for housing a wide variety of components in the external region of electricity charging stations while observing any local building regulations and avoiding the development of noise during the charging process.


A housing according to aspects of the invention in this case provides the components housed therein with protection from the weather to at least IP 54, vandalism, theft and excessive operating temperatures. With a break-in protection class of RC2, for example, the cooling unit, the power electronics system, the cooling unit and the power electronics system together and optional energy stores or isolating transformers are safeguarded in this way.


Finally, by way of its modular housing design that is based on the ever identical base body and that has external dimensions corresponding to the housing, for example each 1.2 m wide and deep at a height of 1.3 m, a corresponding configuration of the invention permits the transport of two housings fitted with components on a truck bed surface next to one another to the installation location. In this case, one front door per housing half provides the technician with optimum installation options, while a pleasing visual appearance and air inlets and outlets that are optimized in terms of noise and power prove to be advantageous for the end user.


Further advantageous configurations of the invention are specified in the dependent patent claims.





BRIEF DESCRIPTION OF THE DRAWING

Exemplary embodiments of the invention are illustrated in the drawings and are described in more detail below.



FIG. 1 shows the view of a first housing from the front left.



FIG. 2 shows the view of the first housing from the back left.



FIG. 3 shows the view of the first housing from the front right.



FIG. 4 shows an exploded illustration of the first housing.



FIG. 5 shows the first housing fitted with a power unit.



FIG. 6 shows the view of a second housing from the front left.



FIG. 7 shows the view of the second housing from the back left.



FIG. 8 shows the view of the second housing from the front right.



FIG. 9 shows an exploded illustration of the second housing.



FIG. 10 shows the second housing fitted with a cooling unit.



FIG. 11 shows the view of a third housing from the back left.



FIG. 12 shows an exploded illustration of the third housing.



FIG. 13 shows the third housing fitted with a power unit and a cooling unit.



FIG. 14 shows a fourth housing fitted with a transformer.



FIG. 15 depicts a flow chart of the claimed method of producing a housing.





DETAILED DESCRIPTION OF THE INVENTION

A common feature of the illustrated embodiments is an inner base frame having a mounting rack, which, in accordance with the so-called 19-inch rack standardized in EIA 310-D, IEC 60297 and DIN 41494 SC48D, has a width of 48.26 cm for the purpose of receiving inserts and securing sensor systems and actuator systems. The base frame divides the housing into two installation spaces.


A partition for separating the installation spaces, two front doors, a cover functioning as a roof and a base plate with faceplates and cable panels are also provided accordingly. The remaining differences of the individual variants are now examined in detail with reference to exemplary configurations.



FIGS. 1 to 5 illustrate a first housing (10) configured to accommodate two power units (41) (one shown), said first housing having two side walls (18) without grates and one closed rear wall (19).



FIGS. 6 to 10 show a second housing (20) provided to accommodate two cooling units (42) (one shown), the side walls (28) and rear wall (29) of said second housing having grates for appropriate air passages.



FIGS. 11, 12 and 13 illustrate a third housing (30) set up for simultaneously accommodating a power unit (41) and a cooling unit (42). In this case, approximately half of the rear wall (39) is grated; accordingly, the left side wall (38) in FIG. 12 is embodied as permeable to air but the right side wall (38) in accordance with the illustration is embodied as closed.


Finally, FIG. 14 shows the alternative potential use of a housing (50) for a low-voltage isolating transformer (43) with optional air or liquid cooling system. It goes without saying that a corresponding housing (10, 20, 30, 50) may be used, for example, for an energy store without departing from the scope of the invention.


The maintenance concept provided by the doors (14, 24, 34) that are accessible from the front in this case makes it necessary to mount the cover (13, 23, 33) from the inside by hinging on the rear side and screw connection on the front side.


Aspect 1: A housing (10, 20, 30, 50) for an electricity charging station, characterized by the following features:

    • a base frame (11, 21, 31) having a mounting rack (12, 22, 32),
    • a cover (13, 23, 33) connected to the base frame (11, 21, 31),
    • two doors (14, 24, 34) hinged on the base frame (11, 21, 31),
    • a base (15, 25, 35) connected to the base frame (11, 21, 31),
    • two faceplates (16, 26, 36) inserted into the base (15, 25, 35) and
    • two cable panels (17, 27, 37) embedded in the base (15, 25, 35).


Aspect 2: The housing (10, 20, 30, 50) as recited in aspect 1, characterized by the following features:

    • two closed side walls (18, 28, 38) and
    • one closed rear wall (19, 29, 39).


Aspect 3: The housing (10, 20, 30, 50) as recited in aspect 1, characterized by the following features:

    • two air-permeable side walls (18, 28, 38) and
    • one air-permeable rear wall (19, 29, 39).


Aspect 4: The housing (10, 20, 30, 50) as recited in aspect 1, characterized by the following features:

    • one closed side wall (18, 28, 38),
    • one air-permeable side wall (18, 28, 38),
    • one partly closed, partly air-permeable rear wall (19, 29, 39) and
    • one partition (40).


Aspect 5: The electricity charging station, characterized by the following features:

    • a housing (10, 20, 30, 50) as recited in aspect 2 and
    • a power unit (41) arranged in the housing (10, 20, 30, 50).


Aspect 6: The electricity charging station, characterized by the following features:

    • a housing (10, 20, 30, 50) as recited in aspect 3 and
    • a cooling unit (42) arranged in the housing (10, 20, 30, 50).


Aspect 7: The electricity charging station, characterized by the following features:

    • a housing (10, 20, 30, 50) as recited in aspect 4,
    • a power unit (41) installed in the mounting rack (12, 22, 32) and
    • a cooling unit (42) installed in the mounting rack (12, 22, 32).


Aspect 8: The electricity charging station, characterized by the following features:

    • a housing (10, 20, 30, 50) as recited in one of aspects 1 to 4 and
    • a low-voltage isolating transformer (43) with optional air or liquid cooling system installed in the mounting rack (12, 22, 32).


Aspect 9: A method for producing a housing (10, 20, 30, 50) as recited in one of aspects 1 to 4,

    • characterized by the following features:
      • the cover (13, 23, 33) is hinged on the rear wall (19, 29, 39) and
      • the base frame (11, 21, 31) is screwed to the cover (13, 23, 33) from the inside.

Claims
  • 1. A housing for an electricity charging station, said housing comprising: a base frame having a mounting rack,a cover connected to a top side of the base frame,two side walls, wherein a first side wall of the two side walls is fully closed and not air-permeable and a second side wall of the two side walls is air-permeable,two doors hinged on a front side of the base frame,a rear wall having a first portion that is fully closed and not air-permeable, a second portion that is air-permeable, and a central boundary separating the first portion and the second portion,a base connected to a bottom side of the base frame,a hollow interior space,a vertical partition dividing the hollow interior space into two installation spaces, and each installation space is at least partially enclosed by one of the two doors, the vertical partition corresponding in location to the central boundary of the rear wall, andthe vertical partition extending in a vertical direction between the base and the cover, arranged in a horizontal direction between the side walls, and extending in a depth direction into the hollow interior space,wherein a first installation space of the two installation spaces is bounded by the first side wall and the first portion of the rear wall to either limit or prevent the flow of air through the first installation space, and a second installation space of the two installation spaces is bounded by the second side wall and the second portion of the rear wall to permit the flow of air through the second installation space, andeither a power unit or a cooling unit arranged in one of the installation spaces and installed on the mounting rack.
  • 2. The electricity charging station comprising: the housing as claimed in claim 1, andwherein the power unit is arranged in the first installation space of the housing.
  • 3. The electricity charging station comprising: the housing as claimed in claim 1, andwherein the cooling unit is arranged in the second installation space of the housing.
  • 4. The electricity charging station comprising: the housing as claimed in claim 1,wherein the power unit is installed in the mounting rack and arranged in the first installation space of the housing, andwherein the cooling unit is installed in the mounting rack and arranged in the second installation space of the housing.
  • 5. The electricity charging station comprising: the housing as claimed in claim 1, andwherein the power unit is a low-voltage isolating transformer installed in the mounting rack and arranged in the first installation space of the housing.
  • 6. The housing as claimed in claim 1, further comprising two cable panels embedded in the base.
  • 7. The housing as claimed in claim 1, wherein the vertical partition is oriented parallel to at least one of the sidewalls.
  • 8. The housing as claimed in claim 1, further comprising two faceplates inserted into the front and rear sides of the base, the faceplate on the front side being positioned beneath the doors.
  • 9. The housing as claimed in claim 8, wherein one of the faceplates is mounted beneath the doors, and the other faceplate is mounted beneath a wall of the base frame that is positioned opposite the doors.
  • 10. The housing as claimed in claim 8, wherein each faceplate extends across an entire width of the housing.
  • 11. A housing for an electricity charging station, said housing comprising: a base frame having a mounting rack,a cover connected to a top side of the base frame,two doors hinged on a front side of the base frame, anda base connected to a bottom side of the base frame,wherein the housing is of modular construction and is configurable in multiple configurations,wherein, in a first configuration of the housing, the housing further comprises (i) two closed side walls respectively connected to right and left side of the base frame, and (ii) a closed rear wall connected to a rear side of the base frame, wherein each of the closed side walls and the closed rear wall are closed and do not permit the passage of air therethrough,wherein, in a second configuration of the housing, the housing further comprises (i) two air-permeable side walls respectively connected to the right and left side of the base frame, and (ii) an air-permeable rear wall connected to the rear side of the base frame, wherein each of the air-permeable side walls and the air-permeable rear wall permit the passage of air therethrough,wherein, in a third configuration of the housing, the housing further comprises (i) a rear wall connected to the rear side of the base frame and having a first portion that is fully closed and not air-permeable, a second portion that is air-permeable, and a central boundary separating the first portion and the second portion, and (ii) two side walls respectively connected to the right and left side of the base frame, wherein a first side wall of the two side walls is fully closed and not air-permeable and a second side wall of the two side walls is air-permeable, wherein the first side wall is positioned on the same side of the central boundary as the first portion of the rear wall and the second side wall is positioned on the same side of the central boundary as the second portion of the rear wall.
Priority Claims (1)
Number Date Country Kind
10 2017 115 702 Jul 2017 DE national
US Referenced Citations (162)
Number Name Date Kind
4772999 Fiorina Sep 1988 A
4859008 Eyre Aug 1989 A
4994940 Thouvenin Feb 1991 A
5001602 Suffi Mar 1991 A
5373912 Haiki Dec 1994 A
5847537 Parmley, Sr. Dec 1998 A
5939858 Dodd Aug 1999 A
5975371 Webb Nov 1999 A
6218796 Kozlowski Apr 2001 B1
6541705 McGrath Apr 2003 B1
6651446 Woods Nov 2003 B1
6877551 Stoller Apr 2005 B2
6877827 Holighaus Apr 2005 B2
7230836 Miller Jun 2007 B2
7233731 Solheid Jun 2007 B2
7269030 Miller Sep 2007 B2
7293666 Mattlin Nov 2007 B2
7310234 Miller Dec 2007 B2
7369741 Reagan May 2008 B2
7400816 Reagan Jul 2008 B2
7457503 Solheid Nov 2008 B2
7471869 Reagan Dec 2008 B2
7525799 Lai Apr 2009 B2
7532482 Miller May 2009 B2
7536868 Ward May 2009 B1
7809232 Reagan Oct 2010 B2
7809235 Reagan Oct 2010 B2
7844159 Solheid Nov 2010 B2
7844161 Reagan Nov 2010 B2
7873255 Reagan Jan 2011 B2
7995894 Solheid Aug 2011 B2
8033406 Mattlin Oct 2011 B2
8100271 Conrardy Jan 2012 B2
8210490 Mattlin Jul 2012 B2
8285103 Reagan Oct 2012 B2
8320110 Chen Nov 2012 B2
8353492 Mattlin Jan 2013 B2
8374476 Reagan Feb 2013 B2
8401357 Solheid Mar 2013 B2
8432692 Peng Apr 2013 B2
8463449 Sanders Jun 2013 B2
8519859 Forristal Aug 2013 B2
8528872 Mattlin Sep 2013 B2
8621877 Tuszkiewicz Jan 2014 B2
8625288 Liu Jan 2014 B1
8721010 Conrardy May 2014 B2
8811791 Solheid Aug 2014 B2
8982554 Stewart Mar 2015 B2
9112205 Conrardy Aug 2015 B2
9130385 Chen Sep 2015 B2
9146372 Reagan Sep 2015 B2
9146373 Reagan Sep 2015 B2
9250408 Solheid Feb 2016 B2
9301408 Conrardy Mar 2016 B2
9304276 Solheid Apr 2016 B2
9312525 Conrardy Apr 2016 B2
9335505 Reagan May 2016 B2
9541724 Solheid Jan 2017 B2
9570940 Hysell Feb 2017 B2
9600045 Sanders Mar 2017 B2
9609769 Kingston Mar 2017 B2
9739970 Reagan Aug 2017 B2
9755200 Conrardy Sep 2017 B2
9819158 Tremaine Nov 2017 B2
9837804 Tremaine Dec 2017 B2
10151896 Solheid Dec 2018 B2
10312484 Conrardy Jun 2019 B2
10371915 Solheid Aug 2019 B2
10393980 Reagan Aug 2019 B2
10412853 Dombrowski Sep 2019 B2
10436998 Solheid Oct 2019 B2
10527401 Gotz Jan 2020 B2
10527809 Solheid Jan 2020 B2
20010029710 Notohardjono Oct 2001 A1
20010036399 Notohardjono Nov 2001 A1
20040007348 Stoller Jan 2004 A1
20040007951 Holighaus Jan 2004 A1
20040080244 Lowther, Jr. Apr 2004 A1
20040240161 Miller Dec 2004 A1
20050002633 Solheid Jan 2005 A1
20050128722 Miller Jun 2005 A1
20050133238 Miller Jun 2005 A1
20060008231 Reagan Jan 2006 A1
20060102575 Mattlin May 2006 A1
20060172685 O'Brien Aug 2006 A1
20060265853 Povolny Nov 2006 A1
20060268533 Miller Nov 2006 A1
20070178369 Conrardy Aug 2007 A1
20070210686 Adducci Sep 2007 A1
20070278915 Conrardy Dec 2007 A1
20080008436 Reagan Jan 2008 A1
20080008437 Reagan Jan 2008 A1
20080013910 Reagan Jan 2008 A1
20080062654 Mattlin Mar 2008 A1
20080075411 Solheid Mar 2008 A1
20080151496 Lai Jun 2008 A1
20080290836 Tsai Nov 2008 A1
20090074372 Solheid Mar 2009 A1
20090267564 Gerber Oct 2009 A1
20090285540 Reagan Nov 2009 A1
20090290843 Reagan Nov 2009 A1
20090297111 Reagan Dec 2009 A1
20100124392 Reagan May 2010 A1
20110019966 Reagan Jan 2011 A1
20110033164 Solheid Feb 2011 A1
20110246014 Sauper Oct 2011 A1
20110262098 Solheid Oct 2011 A1
20110291565 Hysell Dec 2011 A1
20110291852 Forristal Dec 2011 A1
20110297351 Vosper Dec 2011 A1
20120025683 Mattlin Feb 2012 A1
20120050984 Peng Mar 2012 A1
20120087074 Chen Apr 2012 A1
20120112611 Chen May 2012 A1
20120113570 Yang May 2012 A1
20120117785 Conrardy May 2012 A1
20120248954 Mattlin Oct 2012 A1
20130008862 Conrardy Jan 2013 A1
20130069588 Oda Mar 2013 A1
20130140972 Mattlin Jun 2013 A1
20130162055 Reber Jun 2013 A1
20130175993 Chen Jul 2013 A1
20130251325 Solheid Sep 2013 A1
20140050451 Reagan Feb 2014 A1
20140177164 Stewart Jun 2014 A1
20140229398 Conrardy Aug 2014 A1
20140354126 DeLorean Dec 2014 A1
20150030301 Solheid Jan 2015 A1
20150093091 Reagan Apr 2015 A1
20150162580 Conrardy Jun 2015 A1
20150216298 DeLorean Aug 2015 A1
20150338592 Solheid Nov 2015 A1
20150338600 Reagan Nov 2015 A1
20160160530 Shen Jun 2016 A1
20160190528 Conrardy Jun 2016 A1
20160209613 Solheid Jul 2016 A1
20160211687 Wang Jul 2016 A1
20160216467 Reagan Jul 2016 A1
20160241002 Tremaine Aug 2016 A1
20160241007 Tremaine Aug 2016 A1
20170027079 Dombrowski Jan 2017 A1
20170146758 Solheid May 2017 A1
20180011271 Reagan Jan 2018 A1
20180077822 Sloan Mar 2018 A1
20180249830 Jeon Sep 2018 A1
20180251932 Jeon Sep 2018 A1
20180255923 Kim Sep 2018 A1
20180258579 Kim Sep 2018 A1
20180372972 Solheid Dec 2018 A1
20180372973 Solheid Dec 2018 A1
20190016219 Gro Jan 2019 A1
20190016220 Kohler Jan 2019 A1
20190016222 Reber Jan 2019 A1
20190016224 Hahre Jan 2019 A1
20190016225 Zies Jan 2019 A1
20190017801 Gotz Jan 2019 A1
20190020002 Metzger Jan 2019 A1
20190020190 Metzger Jan 2019 A1
20190064460 Solheid Feb 2019 A1
20190064461 Solheid Feb 2019 A1
20190135362 Fournier May 2019 A1
20200026014 Reagan Jan 2020 A1
Foreign Referenced Citations (12)
Number Date Country
106451096 Feb 2017 CN
102014112799 Mar 2016 DE
1850445 Oct 2007 EP
1976083 Oct 2008 EP
2377208 Oct 2011 EP
2471279 Dec 2010 GB
2000004512 Jan 2000 JP
2002319777 Oct 2002 JP
2006140242 Jun 2006 JP
5485850 May 2014 JP
2015013614 Jan 2015 JP
WO-2012124296 Sep 2012 WO
Related Publications (1)
Number Date Country
20190020206 A1 Jan 2019 US