Housing for an Implantable Medical Device

Information

  • Patent Application
  • 20090171420
  • Publication Number
    20090171420
  • Date Filed
    December 23, 2008
    16 years ago
  • Date Published
    July 02, 2009
    15 years ago
Abstract
An implantable medical device having a concave ceramic housing component; a concave metal housing component attached to the ceramic housing component to form a hermetically sealed enclosure; and an electronic trans-housing magnetic flux component disposed within the enclosure. Another aspect of the invention provides an implantable medical device having a ceramic housing component; a metal housing component; a circumferential sealing member attached to a periphery of the ceramic housing component and to a periphery of the metal housing component to form a hermetically sealed enclosure; and an electronic trans-housing magnetic flux component disposed within the enclosure. Still another aspect of the invention provides an implantable medical device with a first metal housing component; a second metal housing component, the second metal housing component forming an opening; a ceramic housing component disposed in the opening, the first metal housing component, the second metal housing component and the ceramic housing component cooperating to form a hermetically sealed enclosure; and an electronic trans-housing magnetic flux component disposed within the enclosure.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


BACKGROUND OF THE INVENTION

The present invention relates to an electronic medical device for implanting into a living body, and more particularly to the structure and method of manufacture of the device's outer housing for the purposes of enhancing the device's transcutaneous electromagnetic coupling to extracorporeal systems for the transfer of energy and/or information via telemetry. Such implantable devices include, without limitation, pacemakers; defibrillators; drug delivery pumps; cochlear implants; brain activity monitoring/stimulation systems (such as for sleep apnea and other sleep disorders, migraine headaches, epilepsy, depression, Alzheimer's, Parkinson's Disease, essential tremor, dementia, bipolar spectrum disorders, attention deficit disorder, stroke, cardiac disease, diabetes, cancer, eating disorders, and the like); implantable diagnostic devices used to monitor a patient's neurological condition, to determine, e.g., the patient's real-time susceptibility to a seizure for a time period.


Many implantable medical electronic devices utilize an internal source of electrical energy to power the device electronics for the purposes of, for example, diagnostics and/or therapy. Additionally, many implantable devices require such a significant amount of power that it is necessary to utilize transcutaneous energy transmission (TET) from an extracorporeal source to an implanted receiver which is connected to a rechargeable battery. To date, one of the more efficient recharging means employs an external transmission coil and an internal receiver coil which are inductively coupled. In this TET approach, the external primary transmission coil is energized with alternating current (AC), producing a time varying magnetic field that passes through the patient's skin and induces a corresponding electromotive force in the internal secondary receiving coil. The voltage induced across the receiving coil may then be rectified and used to power the implanted device and/or charge a battery or other charge storage device. Additionally, many medical electronic devices rely on noninvasive telemetry in order to allow data and control signals to be bi-directionally communicated between the implanted medical device and an external device or system. Such telemetry can be accomplished via a radio frequency (RF) coupled system using a transmitting antenna to a receiving antenna by way of a radiated carrier signal, or by using the power transfer coils for data transmission.


Electronic circuits and systems that are to be implanted in living organisms are hermetically packaged in a biocompatible material for the purposes of protecting the electronic circuitry from body fluids and protecting the organism from infection or other injury caused by the implanted materials. The most commonly used materials for implantable electronic devices are biocompatible metals, glass, and ceramics. Biocompatible metals include, for example without limitation, titanium, a titanium alloy, stainless steel, cobalt-chromium, platinum, niobium, tantalum, and various other possible alloys. Normally, metal enclosures consist of separate metal parts welded together to insure hermeticity. However, implant enclosures made of conductive metal present difficulties with respect to both transcutaneous energy transmission and telemetry. Specifically, the time varying magnetic charging field induces eddy currents within the metal housing and inhibits the magnetic flux as it passes through the case. With respect to RF telemetry from the implanted device to a receiver external to the patient, the metal case acts as a Faraday cage and tends to limit the rate of information transfer between the implanted device and the external system due to circulating eddy currents that absorb energy from the magnetic field and produce a magnetic field that opposes the incident magnetic field. The magnitude of the eddy currents is approximately proportional to the frequency of the AC magnetic field because the magnitude of the voltage induced within the conductive material is proportional to the time rate of change of magnetic flux as described in Faraday's Law, E=−dΦ/dt, where E is the induced voltage and Φ is the magnetic flux impinging on the material. The carrier frequency for telemetry is limited by the amount of eddy current attenuation that the system can tolerate.


It is necessary to transmit significant amounts of power through the device case in order to recharge the device battery in a reasonable period of time. The implanted induction charging system typically uses a two-winding transformer with a non-ferrous (air) core. The energy transfer efficiency is approximately proportional to the number of turns in the transformer windings and the rate of change (frequency) of the alternating current, as follows:






e
2
=M di
1
/dt+L
2
di
2
/dt


Where e2 is the voltage induced across the secondary winding, M is the mutual inductance of the primary and secondary windings, L2 is the inductance of the secondary winding and di1/dt and di2/dt are the time rate of change (frequency) of the primary and secondary currents.


Because the physical size of the implanted device limits the size and, hence, the inductance (L2) of the receiving coil within the device, it is desirable to operate the inductive coupling system at the highest possible frequency in order to obtain the maximum coupling efficiency and energy transfer. Raising the operating frequency, however, increases the eddy current losses, so that the overall induction system efficiency is severely reduced. Additionally, such induced eddy currents create unwanted heat within the implantable enclosure.


A number of approaches have been proposed to address the limitations of induced eddy currents upon a metallic medical device enclosure with respect to TET and telemetry systems:


Ceramic Sleeve with a Metal Header. One approach is to utilize a deep drawn ceramic sleeve forming the majority of the enclosure body. The sleeve has a closed end, an open end for receiving electronic components and a metallic header for closing the open end (see U.S. Pat. No. 4,991,582.) Such a device, when implanted, has ceramic distal, proximal and side walls (relative to the skin) and an extracorporeal charging and/or telemetry device. This approach has, however, primarily been limited to small medical device enclosures (e.g., cochlear implants) due to the weight of the ceramic material. For larger devices such as an implantable pulse generator, the weight of the ceramic sleeve becomes a significant limitation due to the overall weight of the enclosure given the amount of ceramic used, the relatively large density of the ceramic, and the required large wall thickness (see also U.S. Pat. No. 6,411,854).


Polymer Casing. Another approach is to avoid using both metal (problematic due to eddy currents) and ceramic (problematic due to weight) in favor of a biocompatible polymer material for the outer enclosure. This approach attempts to use epoxy to encapsulate the receiving coil, antenna, and a secondary enclosure and provide a hermetically sealed sub-housing for the system electronics. The polymer and/or epoxy material does not, however, provide for a true hermetic seal, as eventually body fluids migrate through the material and degrade the receiving coil and antenna.


External Coil. In order to circumvent the problem of the metal housing material reducing the efficiency of the TET induction system efficiency, some devices have opted to place the receiving induction coil on the outside of the metal housing. This approach, however, increases both the size of the implant, the complexity of the surgical implant process, and the complexity of the device given the necessity for additional hermetic electrical feed-through connections between the secondary coil and the internal electronic circuitry. Additionally, the external coil would still have to be a biocompatible material as with the polymer casing approach above.


Thin Metal Window. U.S. Pat. No. 7,174,212 presents an approach for increasing the efficiency of high speed/high carrier frequency telemetry via the use of (1) a metallic housing having a thin metal telemetry window having a thickness on the order of 0.005 inches and/or (2) a metal alloy (e.g., titanium alloy) window having reduced electrical conductivity parameters. However, as the window material still is made of an electrically conductive material (although reduced in thickness), this solution is non-ideal as an RF telemetry signal and/or a magnetic field will still induce eddy currents thereby reducing the efficiency of the telemetry link.


Machined Grooves in Metal Casing. U.S. Pat. No. 5,913,881 presents an approach for increasing the efficiency of high speed/high carrier frequency telemetry by creating grooved recesses arranged on either or both sides of the implanted housing wall to reduce the overall thickness of the wall and to create discontinuities along the wall surface in order to reduce the conductivity of the metal housing wall, thereby decreasing the induced eddy currents and providing increased telemetry efficiency.


Other hermetic housings for implantable medical devices are described in U.S. Pat. No. 4,785,827 and U.S. Pat. No. 5,876,424.


Improved medical device structures and methods of manufacture are needed to overcome at least the shortcomings stated above.


SUMMARY OF THE INVENTION

Described herein is a hermetically sealed implantable medical device housing having a construction permitting for efficient magnetic coupling and RF telemetry via a non-metal housing free path from the implantable device electronics to the remote charging and telemetry unit while also being relatively light weight. Additionally, this housing design allows for increased manufacturing efficiency and a more mechanically stable/robust housing to mount the internal electronic and mechanical components.


One aspect provides an implantable medical device having a first housing component comprising a first material mated to a second housing component comprising a second material. The first housing component may be a ceramic housing component (formed, e.g., from zirconium oxide, aluminum oxide and/or boron nitride), and the second housing component may be a metal housing component (formed, e.g., from platinum, niobium, titanium, tantalum and/or alloys of these metals) attached to the ceramic housing component to form a hermetically sealed enclosure. An electronic trans-housing magnetic flux component may be disposed within the enclosure. In some embodiments, the electronic trans-housing magnetic flux component includes a telemetry transmission coil, and in some embodiments, the electronic trans-housing magnetic flux component includes an magnetic flux energy receiver coil. Some embodiments also have a metal weld ring brazed onto the ceramic housing component and welded onto the metal housing component. The ceramic housing component may have a wall thickness between about 0.06 inches and about 0.30 inches, and the metal housing component may have a wall thickness between about 0.01 inches and about 0.10 inches. In some embodiments, the implant may also have an electrode connector within the enclosure communicating with an opening in the metal housing component; and a ceramic component surrounding the opening.


Another aspect provides an implantable medical device having a ceramic housing component (formed, e.g., from zirconium oxide, aluminum oxide and/or boron nitride); a metal housing component (formed, e.g., from platinum, niobium, titanium, tantalum and/or alloys of these metals); a circumferential sealing member attached to a periphery of the ceramic housing component and to a periphery of the metal housing component to form a hermetically sealed enclosure; and an electronic trans-housing magnetic flux component disposed within the enclosure. In some embodiments, the electronic trans-housing magnetic flux component includes a telemetry transmission coil, and in some embodiments, the electronic trans-housing magnetic flux component includes an magnetic flux energy receiver coil. The ceramic housing component may have a wall thickness between about 0.06 inches and about 0.30 inches, and the metal housing component may have a wall thickness between about 0.01 inches and about 0.10 inches. In some embodiments, the implant may also have an electrode connector disposed within the metal housing component, the electrode connector having a sealable opening communicating with the enclosure. The electrode connector may be made of ceramic.


Still another aspect provides an implantable medical device having a first metal housing component (formed, e.g., from platinum, niobium, titanium, tantalum and/or alloys of these metals); a second metal housing component, the second metal housing component forming an opening; a ceramic housing component (formed, e.g., from zirconium oxide, aluminum oxide and/or boron nitride) disposed in the opening, the first metal housing component, the second metal housing component and the ceramic housing component cooperating to form a hermetically sealed enclosure; and an electronic trans-housing magnetic flux component disposed within the enclosure. In some embodiments, the electronic trans-housing magnetic flux component includes a telemetry transmission coil, and in some embodiments, the electronic trans-housing magnetic flux component includes an magnetic flux energy receiver coil. The ceramic housing component may have a wall thickness between about 0.06 inches and about 0.30 inches, and the first metal housing component may have a wall thickness between about 0.01 inches and about 0.10 inches. In some embodiments, the implant may also have an electrode connector disposed within the first metal housing component, the electrode connector having a sealable opening communicating with the enclosure. The electrode connector may be made of ceramic.


Still another embodiment provides a clamshell type of housing having a pair of confronting concave components which when mated together form a perimeter parting line. This line forms a plane, which when implanted in the human body lies approximately parallel to the coronal plane. The distal concave component (relative to the patient's skin) is made of a biocompatible metal while the proximal concave component is made of a ceramic thereby allowing magnetic flux to pass through the proximal implant side to the extracorporeal charging device and/or telemetry unit.


In yet another embodiment, a metallic enclosure is constructed having a ceramic window located on the proximal implant side relative to the patient skin and lies approximately parallel to the coronal plane in the human body.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIG. 1 is an exploded perspective view of an implantable medical device according to an embodiment of the invention.



FIG. 2 is an exploded perspective view of an implantable medical device according to another embodiment of the invention.



FIG. 3 is an exploded perspective view of an implantable medical device according to yet another embodiment of the invention.



FIG. 4 shows the implantable medical device of FIGS. 1, 2 or 3 implanted in a patient.



FIG. 5 shows a cross-sectional view of an implanted medical device within a patient relative to the coronal plane of the patient.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 is an exploded perspective view of a hermetically sealed implantable medical device according to one embodiment of the invention. The medical device housing includes ceramic housing component 10 which is made of ceramic material such as, for example without limitation, zirconium oxide, yttrium stabilized zirconium oxide, aluminum oxide, boron nitride, or other suitable material. When implanted, ceramic component 10 is disposed proximate the patient's skin, i.e., it is disposed between the portion of the patient's skin where an extracorporeal charging and/or telecommunication device will be positioned and the implanted trans-housing magnetic flux component(s), such as an implanted telemetry coil or battery charger coil (see e.g., FIG. 5). The ceramic proximal housing component 10 therefore allows magnetic flux associated with inductive charging and/or radio frequency/inductive telemetry to efficiently pass through the hermetically sealed enclosure proximal face without inducing eddy currents.


In some embodiments the ceramic housing component has a wall thickness between about 0.03 inches and about 0.30 inches, and in some particular embodiments between about 0.06 inches and about 0.30 inches.


The implantable medical device also includes metal housing component 80 made of a biocompatible metal (such as platinum, niobium, titanium, tantalum, or an alloys of one or more of these metals) that cooperates with the ceramic housing component 10 to form a hermetic enclosure. In this embodiment, metal housing component 80 is attached to ceramic housing component 10 with weld ring 20 which is brazed onto the ceramic housing component and welded onto the metal housing component using techniques known in the art. Weld ring 20 is made of a biocompatible metal material such as, for example without limitation, platinum, niobium, titanium and tantalum, or any alloy of one or more of these metals. When implanted, metal housing component 80 is oriented distal to the portion of the implanted trans-housing magnetic flux component(s), i.e., not between the portion of the patient's skin where an extracorporeal charging and/or telecommunication device will be positioned and the implanted trans-housing magnetic flux component(s) (see e.g., FIG. 5).


In some embodiments the metal housing component has a wall thickness between about 0.01 inches and about 0.10 inches.


In this embodiment, ceramic plate 90 is brazed within an opening in the metal housing component 80 to allow implanted diagnostic and/or therapeutic electrodes to be connected into the hermetically sealed enclosure. Plate 90 has sealable ferrule connectors 92 through which electrode leads may pass from the enclosure to the exterior of the implant housing. Metal header 100 is used to support and cover the electrode feed-through ferrule connectors 92. Header 100 has one or more openings 102 which are configured to allow electrical leads to pass through the header from the enclosure to the exterior of the housing. When attached, header 100 cooperates with metal housing component 80 to complete the enclosure formed by the housing. Plate 90 may be formed from other biocompatible non-conductive materials as well.


The mechanical and electrical components of the implantable medical device are placed within the enclosure prior to connecting the housing components. In this illustrated embodiment, the medical device components include secondary coil 30 which is used for receiving transcutaneously transferred energy from an extracorporeal primary coil charging device. Exemplary external devices that can be used to transfer energy (and/or data) to the medical device housings described herein can be found in co-pending U.S. patent application Ser. No. 12/180,996, filed Jul. 28, 2008, which is hereby incorporated by reference herein. Coil 30 is shown as a planar winding made from conductive traces on a printed circuit board. Alternative embodiments include discrete wire windings either in a planar geometry or a coil/bobbin geometry. Such discrete wire windings have highly conductive properties and may include silver wire, copper wire, copper magnetic wire, Litz wire, woven wire, gold alloy, or other suitable materials known in the art. Located behind (i.e., distal to) the winding is magnetic flux shield/diverter 40 which serves to provide a lower reluctance magnetic return to the primary coil thereby increasing the transfer of energy as well as shielding implantable electronics 50 from the large magnetic fields. The magnetic material of flux shield 40 generally has a high magnetic permeability, and may be, for example without limitation, ferrite, Metglas® (Metglas Inc, Conway, S.C., U.S.A), Mμ metal (Mμ Shield Co., Manchester, N.H., U.S.A), Wave-X™ (ARC Technologies, Inc. Amesbury, Mass., U.S.A.), or other suitable material. Spacer 35, which in some embodiments in made of plastic, is disposed between coil 30 and magnetic flux shield/diverter 40 and serves to capture coil 30 and flux diverter 40 and maintain their spacing from electronics 50. In some embodiments spacer 35 is an internal frame (or chassis) that mechanically locates/protects several of the internal components. Spacer 35 may additionally facilitate manufacturing by offering a basis for a stand-alone subassembly. For example, charge coil 30, electronic components 50, and/or other components can be mechanically affixed to spacer element 35 prior to installation inside the titanium-ceramic housing).


The medical device implant electronics 50 are located on a board located behind (distal to) the magnetic flux shield/diverter 40. The medical device implant electronics 50 may, e.g., control therapy and/or diagnostic processes of the implant. For example, the implant electronics may include a rectifier and a charging circuit which allows a coupled AC voltage to be converted to a DC voltage in order to charge implantable rechargeable battery 70. The implant electronics may also include telemetry components to allow data and control signals to be bi-directionally communicated between the implanted medical device and an external device or system. This telemetry may be accomplished via an RF-coupled system using a transmitting antenna to a receiving antenna by way of a radiated carrier signal. Such antenna(s) within the implant may be located on the proximal side or below or above the magnetic shield 40 in order to insure the signals are not attenuated by the magnetic shield. An additional advantage of the distal placement of the metal housing component is the fact that this back conducting plate will enhance the projection of the radiating carrier signal towards the extracorporeal telemetry unit.


Behind, or distal to, electronics board 50 is compliant liner 60 which houses rechargeable power source 70. The rechargeable power source can be any of a variety of power sources including a chemically-based battery or a capacitor. Exemplary batteries include, without limitation, Lithium-ion (Li) and Li-polymer batteries which are examples of small and thin batteries. Alternative rechargeable batteries which may be used include, without limitation, lead-acid, Ni-iron, Ni-cadmium, Ni-Metal Hydride, Ni-zinc, Li-iron phosphate, Li-sulfur, Li-Nano Titanate, Zinc bromide, and other rechargeable batteries known in the art.


In this embodiment, when ceramic housing component 10 and metal housing component 80 are mated together by welding distal metal housing 80 to weld ring 20 and brazing weld ring 20 onto ceramic housing 10, the parting line between the two enclosure housings forms a plane. FIG. 5 is a cross-sectional top view showing an exemplary embodiment of implanted medical device 300 in which this plane 302, once the medical device is implanted in the human body, lies approximately parallel to the coronal plane “CP” of the human body. The proximal housing component 304 (e.g., ceramic housing component) faces outward towards the patient skin 308, while the distal housing component 306 (e.g., distal housing component) is distal relative to the proximal housing component. External device 310 is positioned adjacent the skin and can transmit energy (and/or receive data) to implanted medical device 300. In alternative embodiments, the medical device may be implanted within the patient at a location such that the plane formed by the parting line between two housing components is not parallel to the coronal plane. The plane will depend on where the medical device is implanted and for what purpose the medical device is implanted within the patient.


Additionally, the plane formed by the parting line between two housing components is not always generally parallel to the patient's skin. The plane may be offset at an angle from the general plane of the skin, as long as the medical device enclosure is implanted in such an orientation that an external device can transmit power and/or data through the ceramic housing component (and/or receive data therethrough).


This configuration provides for a light weight enclosure because the distal concave enclosure housing 80 is made of thin metal. This configuration also provides an enclosure which allows for the efficient transmission of magnetic flux to the extracorporeal charging device and telemetry unit via the proximal ceramic housing component 10.


Finally, the medical implant housing of this embodiment has additional advantages over a deep drawn ceramic implant housing having a metallic header. For example, this embodiment provides a simplified manufacturing processes as well as a more robust design. As illustrated in FIG. 1, the housing and the electronic and mechanical components are all amenable to top-down assembly processes as compared to the metal header deep drawn ceramic enclosure. Additionally, as the back (i.e., distal) side of the enclosure is metal, electronic and mechanical components can be mounted against the metallic housing component. In the deep drawn ceramic enclosure, on the other hand, all of the mechanical and electronic components are mounted to the metal header which presents a more challenging assembly and creates a long lever in which significant amount of moment of inertia may be created.



FIG. 2 illustrates an alternative embodiment of the medical device housing shown in FIG. 1 that reduces or eliminates the concavity of the housing components. Wide metal band 65 around the outer perimeter of the housing spans the distance between the edge of ceramic housing component 10 and metal housing component 85. Band 65 cooperates with housing components 10, 85 and 100 to form a hermetic enclosure for the implant's components. This embodiment may permit the housing to be lighter due to a reduction in the amount of ceramic used to form the housing.



FIG. 3 illustrates an alternative embodiment which represents a lighter weight device, in which proximal ceramic housing 10 of FIG. 1 is replaced with proximal biocompatible metal housing component 110. A ceramic window 120 is disposed in an opening in the metal housing component 110 which allows for the magnetic flux associated with inductively coupled charging and/or radio frequency telemetry to efficiently pass through the hermetically sealed enclosure proximal face without inducing eddy currents. The ceramic window 120 can be brazed onto the proximal biocompatible metal housing 110 prior to the installation of the implant electronics and hardware 30, 40, 50, 60 and 70. Next, the proximal metal housing component 110, which is coupled to ceramic window 120, and the distal metal housing component 80 are welded together. Many of the other elements of the medical device described in alternative embodiments herein can be incorporated into the embodiment shown in FIG. 3.


When the medical device from FIG. 3 is implanted in a patient, the proximal metal housing and ceramic window assembly are disposed closer to the skin than the distal housing component (as is proximal portion 304 shown in FIG. 5).



FIG. 4 illustrates exemplary implantable medical device 208 located in the patient 200. Electronic lead 206 is attached to the medical device and attached to electrode arrays 204. In this example the electrode arrays 204 are implanted intracranially and the cable(s) 206 is tunneled beneath the skin through the neck to the implanted medical device 208 that is implanted in a subclavicular cavity of the subject. Note however, that FIG. 4 is only shown as an example and the medical device implant is not limited to the subclavicular cavity, as it could be also located intracranially or any other place within the body. Similarly, the medical device is not limited to requiring electrodes placement within the intracranial cavity or requiring such electrodes at all.


An extracorporeal device 210 may be used as described herein to transfer energy and/or information via telemetry to device 208 across the patient's skin. To that end, device 208 is oriented within the patient so that a ceramic housing component is closer to the skin where extracorporeal device is positioned than is a metal housing component.

Claims
  • 1. An implantable medical device comprising: a first ceramic housing component;a second metal housing component coupled to the ceramic housing component to form a hermetically sealed enclosure; andan electronic trans-housing magnetic flux component disposed within the enclosure.
  • 2. The device of claim 1 wherein the electronic trans-housing magnetic flux component comprises a telemetry transmission coil.
  • 3. The device of claim 1 wherein the electronic trans-housing magnetic flux component comprises an magnetic flux energy receiver coil.
  • 4. The device of claim 1 further comprising a metal weld ring brazed onto the ceramic housing component and welded onto the metal housing component.
  • 5. The device of claim 1 wherein the ceramic of the ceramic housing component comprises zirconium oxide, aluminum oxide, or boron nitride.
  • 6. The device of claim 1 wherein the ceramic housing component is formed from zirconium oxide and has a wall thickness between about 0.06 inches and about 0.30 inches.
  • 7. The device of claim 1 wherein the metal of the metal housing component comprises platinum, niobium, titanium, tantalum, or an alloy of two or more of platinum, niobium, titanium, and tantalum.
  • 8. The device of claim 1 wherein the metal housing component is formed from titanium and has a wall thickness between about 0.01 inches and about 0.10 inches.
  • 9. The device of claim 1 further comprising; an electrode connector disposed within the metal housing component, the electrode connector comprising a sealable opening communicating with the enclosure.
  • 10. The device of claim 9 wherein the electrode connector comprises ceramic.
  • 11. The device of claim 1 further comprising a rechargeable power supply coupled to the electronic trans-housing magnetic flux component.
  • 12. An implantable medical device comprising: a ceramic housing component;a metal housing component;a circumferential sealing member coupled to a periphery of the ceramic housing component and to a periphery of the metal housing component to form a hermetically sealed enclosure; andan electronic trans-housing magnetic flux component disposed within the enclosure.
  • 13. The device of claim 12 wherein the electronic trans-housing magnetic flux component comprises a telemetry transmission coil.
  • 14. The device of claim 12 wherein the electronic trans-housing magnetic flux component comprises an magnetic flux energy receiver coil.
  • 15. The device of claim 12 wherein the ceramic of the ceramic housing component comprises zirconium oxide, aluminum oxide, or boron nitride.
  • 16. The device of claim 12 wherein the ceramic housing component is formed from zirconium oxide and has a wall thickness between about 0.06 inches and about 0.30 inches.
  • 17. The device of claim 12 wherein the metal of the metal housing component comprises platinum, niobium, titanium, tantalum, or an alloy of two or more of platinum, niobium, titanium, and tantalum.
  • 18. The device of claim 12 wherein the metal housing component comprises titanium and has a wall thickness between about 0.01 and about 0.10 inches.
  • 19. The device of claim 12 further comprising: an electrode connector disposed within the metal housing component, the electrode connector comprising a sealable opening communicating with the enclosure.
  • 20. The device of claim 19 wherein the electrode connector comprises ceramic.
  • 21. The device of claim 12 further comprising a rechargeable power supply coupled to the electronic trans-housing magnetic flux component.
  • 22. An implantable medical device comprising: a first metal housing component;a second metal housing component, the second metal housing component forming an opening;a ceramic housing component disposed in the opening,the first metal housing component, the second metal housing component and the ceramic housing component cooperating to form a hermetically sealed enclosure; andan electronic trans-housing magnetic flux component disposed within the enclosure.
  • 23. The device of claim 22 wherein the electronic trans-housing magnetic flux component comprises a telemetry transmission coil.
  • 24. The device of claim 22 wherein the electronic trans-housing magnetic flux component comprises a magnetic flux energy receiver coil.
  • 25. The device of claim 22 wherein the ceramic of the ceramic housing component comprises zirconium oxide, aluminum oxide, or boron nitride.
  • 26. The device of claim 22 wherein the ceramic housing component comprises zirconium oxide and has a wall thickness between about 0.06 inches and about 0.30 inches.
  • 27. The device of claim 22 wherein the metal of the first metal housing component comprises platinum, niobium, titanium tantalum, or an alloy of two or more of platinum, niobium, titanium and tantalum.
  • 28. The device of claim 22 wherein the first metal housing component comprises titanium and has a wall thickness between about 0.01 inches and about 0.10 inches.
  • 29. The device of claim 22 further comprising: an electrode connector disposed within the metal housing component, the electrode connector comprising a sealable opening communicating with the enclosure.
  • 30. The device of claim 27 wherein the electrode connector comprises ceramic.
  • 31. A medical device system for implantation into a patient's body, comprising: a first housing component comprising ceramic;a second housing component comprising metal, said first and second housing components coupled to form a hermetically sealed enclosure;a rechargeable power source provided within the sealed enclosure; anda secondary coil coupled to the rechargeable power source, said secondary coil being configured to be magnetically coupled through the first housing component to a primary coil external to the patient's body.
  • 32. The system of claim 31 further comprising a circumferential sealing member coupled to a periphery of the ceramic housing component and to a periphery of the metal housing component.
  • 33. The system of claim 31 further comprising a third housing component comprising metal, said third housing component defining an opening, said first housing component being received in the opening.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/017,504, filed Dec. 28, 2007, which is incorporated in its entirety by reference as if fully set forth herein.

Provisional Applications (1)
Number Date Country
61017504 Dec 2007 US