The present disclosure relates generally to heating, ventilation, and air conditioning (HVAC) systems and methods of their use. In particular, the present disclosure relates to a housing for a forward curved blower.
Heating, ventilation, and air conditioning (HVAC) systems are used to regulate environmental conditions within an enclosed space. Air is cooled via heat transfer with refrigerant flowing through the HVAC system and returned to the enclosed space as cooled conditioned air. HVAC systems include fans or blowers that circulate air between the HVAC system and the enclosed space.
This disclosure provides technical solutions to the problems of previous blower technology used in HVAC systems. For instance, previous HVAC blowers often sacrifice performance to achieve a desired small size to satisfy existing size constraints. This disclosure provides an improved blower for an HVAC system. For example, the housing of the blower may be sized and/or shaped differently to improve performance. For instance, the expansion angle at a curved edge of the housing may change as a function of angular position along the edge. In some cases, different sections of the housing may have an expansion angle that is selected to improve overall blower performance, for example, such that a larger expansion angle is provided in the section that plays the largest role in pressurizing received air. For instance, a first section of the blower housing that plays a limited role in pressurizing received air may have a relatively low expansion angle, while a second section of the housing that plays a larger role in air pressurization has a larger expansion angle to improve performance. This disclosure recognizes that the second section of the blower plays an important role in converting rotational velocity of a blower wheel of the blower to increasing pressure of air. Embodiments of the new blower housing of this disclosure provides improved blower performance, including improved efficiency, while maintaining the size of the blower. As such, blowers of this disclosure may be employed not only in new systems but also used to upgrade existing HVAC systems and improve performance.
Certain embodiments may include none, some, or all of the above technical advantages. One or more other technical advantages may be readily apparent to one skilled in the art from the figures, descriptions, and claims included herein.
In an embodiment, a blower for a heating, ventilation and air conditioning (HVAC) system includes an air inlet, an air outlet, a blower wheel with blades, a motor operable to cause the blower wheel to rotate, and a blower housing within which the blower wheel is positioned. The blower housing includes a top panel, a bottom panel, and a connecting panel. The top panel and the bottom panel are connected to the connecting panel. The top panel includes a curved edge extending from a bottom edge of the connecting panel to a top edge of the connecting panel. An expansion angle of the curved edge of the top panel changes as a function of position (e.g., angular position, θ, see
For a more complete understanding of the present disclosure, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:
Embodiments of the present disclosure and its advantages are best understood by referring to
As described above, prior to this disclosure, blowers for HVAC systems sacrificed performance to achieve sizes appropriate for use in the space available for HVAC system installation. The improved blower described in this disclosure provides improved performance while operating within the same or similar size constraints. As described in greater detail with respect to
HVAC System
The HVAC system 100 includes a working-fluid conduit subsystem 102, a compressor unit 104, an expansion device 114, an evaporator 116, the blower 200, one or more thermostats 130, and a controller 132. The working-fluid conduit subsystem 102 facilitates the movement of a refrigerant through a refrigeration cycle such that the refrigerant flows as illustrated by the dashed arrows in
The HVAC system 100 includes a compressor unit 104 with a compressor 106, a condenser 108, and a fan 110. The compressor 106 is coupled to the working-fluid conduit subsystem 102 and compresses (i.e., increases the pressure of) the refrigerant. The compressor 106 may be a single-speed, variable-speed, or multiple stage compressor. The compressor 106 is in signal communication with the controller 132 using wired and/or wireless connection and is controlled by the controller 132. The condenser 108 is located downstream of the compressor 106 and is configured, when the HVAC system 100 is operating in a cooling mode, to remove heat from the refrigerant. The fan 110 is configured to move air 112 across the condenser 108. For example, the fan 110 may be configured to blow outside air through the condenser 108 to help cool the refrigerant flowing therethrough. In the cooling mode, the compressed, cooled refrigerant flows from the condenser 108 toward the expansion device 114.
The expansion device 114 is coupled to the working-fluid conduit subsystem 102 downstream of the condenser 108 and is configured to remove pressure from the refrigerant. The expansion device 114 may be a valve positioned in refrigerant conduit of the working-fluid conduit subsystem 102 that connects the condenser 108 to the evaporator 116. The refrigerant is delivered to the evaporator 116 and receives heat from airflow 118 to produce a conditioned airflow 120 that is delivered by a duct subsystem 122 to the conditioned space. The evaporator 116 is generally any heat exchanger configured to provide heat transfer between air flowing through (or across) the evaporator 116 (i.e., air 118 contacting an outer surface of one or more coils of the evaporator 116) and refrigerant passing through the interior of the evaporator 116, when the HVAC system 100 is operated in the cooling mode. The evaporator 116 is fluidically connected to the compressor 106, such that refrigerant generally flows from the evaporator 116 to the compressor 106.
Return air 124, which may be air returning from the building, air from outside, or some combination, is pulled into a return duct 126. An inlet or suction side of the blower 200 (e.g., corresponding to inlet(s) 208 of
The HVAC system 100 may include one or more of the sensors in wired and/or wireless signal communication with controller 132. In some embodiments, one or more of the sensors may be integrated within components of the HVAC system 100 (e.g., the compressor 106, condenser 108, evaporator 116, blower 200, or the like). Sensors may be positioned and configured to measure properties associated with operation of the HVAC system 100 (e.g., the temperature and/or relative humidity of air at one or more locations within the conditioned space and/or outdoors, e.g., temperature and/or pressure of refrigerant in the HVAC system 100).
The HVAC system 100 includes one or more thermostats 130, for example, located within the conditioned space (e.g. a room or building). The thermostat(s) 130 are generally in signal communication with the controller 132 using any suitable type of wired and/or wireless connection. In some embodiments, one or more functions of the controller 132 may be performed by the thermostat(s) 130. The thermostat(s) 130 allow a user to input a desired temperature or temperature setpoint for the conditioned space and/or for a designated space or zone, such as a room, in the conditioned space. The thermostat(s) generally include or are in communication with or include a sensor for measuring an indoor air temperature. The controller 132 may use information from the thermostat 130 such as a temperature setpoint and/or indoor air temperature for controlling the compressor 106, the blower 200, and the fan 110.
The controller 132 includes a processor 134, memory 136, and input/output (I/O) interface 138. The processor 134 includes one or more processors operably coupled to the memory 136. The processor 134 is any electronic circuitry including, but not limited to, state machines, one or more central processing unit (CPU) chips, logic units, cores (e.g. a multi-core processor), field-programmable gate array (FPGAs), application specific integrated circuits (ASICs), or digital signal processors (DSPs) that communicatively couples to memory 136 and controls the operation of HVAC system 100. The processor 134 may be a programmable logic device, a microcontroller, a microprocessor, or any suitable combination of the preceding. The processor 134 is communicatively coupled to and in signal communication with the memory 136. The one or more processors are configured to process data and may be implemented in hardware or software. For example, the processor 134 may be 8-bit, 16-bit, 32-bit, 64-bit or of any other suitable architecture. The processor 134 may include an arithmetic logic unit (ALU) for performing arithmetic and logic operations, processor registers that supply operands to the ALU and store the results of ALU operations, and a control unit that fetches instructions from memory 136 and executes them by directing the coordinated operations of the ALU, registers, and other components. The processor 134 may include other hardware and software that operates to process information, control the HVAC system 100, including the blower 200. The processor 134 is not limited to a single processing device and may encompass multiple processing devices. Similarly, the controller 132 is not limited to a single controller but may encompass multiple controllers.
The memory 136 includes one or more disks, tape drives, or solid-state drives, and may be used as an over-flow data storage device, to store programs when such programs are selected for execution, and to store instructions and data that are read during program execution. The memory 136 may be volatile or non-volatile and may include ROM, RAM, ternary content-addressable memory (TCAM), dynamic random-access memory (DRAM), and static random-access memory (SRAM). The memory 136 is operable (e.g., or configured) to store information used by the controller 132, such as instructions 140, which includes any logic, code, rules for operating the HVAC system 100, including the blower 200 and performing the function described in this disclosure.
The I/O interface 138 is configured to communicate data and signals with other devices. For example, the I/O interface 138 may be configured to communicate electrical signals with components of the HVAC system 100 including the compressor 106, fan 110, expansion device 114, blower 200, and thermostat(s) 130. The I/O interface 138 may be configured to communicate with other devices and systems. The I/O interface 138 may provide and/or receive, for example, compressor speed signals blower speed signals, temperature signals, relative humidity signals, thermostat calls, temperature setpoints, environmental conditions, and an operating mode status for the HVAC system 100 and send electrical signals to the components of the HVAC system 100. The I/O interface 138 may send a signal to the motor 204 of the blower 200, causing the motor 204 to rotate the blower wheel 206 at a given rate (see
Example Blower
The top panel 212a and bottom panel 212b are sheets of material shaped as illustrated in
The top panel 212a and bottom panel 212b each have a curved edge 220a,b and a straight edge 222a,b. The bottom panel 212b may have a shape that is similar to that of the top panel 212a. For example, the bottom panel 212b may have a shape that is a mirror image of the top panel 212a (i.e., where the mirror plane is parallel to straight edges 222a,b). As described in greater detail with respect to
The connecting panel 214 is a curved piece in the approximate shape of a curved rectangle. The connecting panel 214 has two straight edges 224, 226 and two curved edges 228a,b. First curved edge 228a runs parallel to second curved edge 228b of the connecting panel 214. To form the housing 202, curved edge 228a of the connecting panel 214 is attached (e.g., welded together, attached with bolts or any other appropriate fastener) to the curved edge 220a of the top panel 212a, and curved edge 228b of the connecting panel 214 is attached to the curved edge 220b of the bottom panel 212b. The straight edges 222a,b, 224, 226 form an opening in the housing 202. The cutoff plate 216 may define a lower edge 230 of the outlet 210 of the blower 200. The dimensions of this opening may be decreased to the desired size of outlet 210 by positioning the cutoff plate 216 in the housing 202, which defines the bottom edge 230 of the outlet 210, as illustrated in
The outlet 210 has a height 308, which is the distance from the lower edge 230 of the outlet 210 (e.g., from cutoff plate 216) to upper edge 224 of the connecting panel 214. A width of the outlet 210 corresponds to about the width of the connecting panel 214. A cutoff plate angle 312 (β) is the angle at which a cutoff radius 310 (Rc) aligns with the cutoff plate 216 (i.e., at the lower edge 230 of the outlet 210 of the blower 200). As an example, the cutoff plate angle 312 may be between 45° and 90°. In some embodiments, the cutoff plate angle is about 78°. The cutoff radius 310 is the distance from the center of the blower wheel 206 to the lower edge 230 (e.g., cutoff plate 216) of the housing 200 (see
In the new blower 200 and blower housing 202 of this disclosure, the arc length 304 (e.g., or the expansion angle 356 of
In some embodiment, the arc length 304 may be defined by a linear correlation of the form R=mθ+c, where R is the arc length 304, m is a value that changes as a function of angular position 302 (see TABLE 1 below), θ is angular position 302, and c is a constant value.
In some embodiment, the arc length 304 may be defined as a function of an expansion angle of the curved edges 220a,b of the housing 202.
where R0 is a constant distance value (e.g., radius 306 of
The first section 400 (Section A of
The second section 402 (Section B of
The third section 404 (Section C of
The outlet section 406 extends from top point 340 to the end of the curved edge 220a,b of the housing 202, corresponding to edge portion 322b. The expansion angle 356 in the outlet section 406 may be the same as or smaller than that of the third section 404. For example, edge portion 322b in the outlet section 406 may be relatively straight. This may allow the blower 200 to fit within available space (e.g., within duct 126 of
While several embodiments have been provided in the present disclosure, it should be understood that the disclosed systems and methods might be embodied in many other specific forms without departing from the spirit or scope of the present disclosure. The present examples are to be considered as illustrative and not restrictive, and the intention is not to be limited to the details given herein. For example, the various elements or components may be combined or integrated in another system or certain features may be omitted, or not implemented.
In addition, techniques, systems, subsystems, and methods described and illustrated in the various embodiments as discrete or separate may be combined or integrated with other systems, modules, techniques, or methods without departing from the scope of the present disclosure. Other items shown or discussed as coupled or directly coupled or communicating with each other may be indirectly coupled or communicating through some interface, device, or intermediate component whether electrically, mechanically, or otherwise. Other examples of changes, substitutions, and alterations are ascertainable by one skilled in the art and could be made without departing from the spirit and scope disclosed herein.
To aid the Patent Office, and any readers of any patent issued on this application in interpreting the claims appended hereto, applicants note that they do not intend any of the appended claims to invoke 35 U.S.C. § 112(f) as it exists on the date of filing hereof unless the words “means for” or “step for” are explicitly used in the particular claim.
Number | Name | Date | Kind |
---|---|---|---|
6439839 | Song | Aug 2002 | B1 |
9745983 | Pihet | Aug 2017 | B2 |
20210199125 | Teramoto | Jul 2021 | A1 |
Entry |
---|
Extended European Search Report, Application No. 22197765.5, dated Feb. 23, 2023. |
Number | Date | Country | |
---|---|---|---|
20230128902 A1 | Apr 2023 | US |