Conventionally, a portable electronic device has a housing that encases the various electrical components of the portable electronic device. Often, the portable electronic device has a display arrangement that includes various layers. The various layers usually include at least a display technology layer, and may additionally include a sensing arrangement (e.g., touch sensors or touch screen) and/or a cover window disposed over the display technology layer. The cover window can be a plastic or glass cover that provides a protective outer surface that protects the display technology layer. The cover window can form part of an outer surface for the housing of the portable electronic device. Conventionally, supporting or securing the cover window to other portions of the housing tends to impede usage of a peripheral area of the cover window.
Nevertheless, as portable electronic device continue to be made smaller, thinner and/or more powerful, there remains a continuing need to provide improved techniques and structures for supporting cover windows of portable electronic device housings.
The invention pertains to an electronic device having a housing structure that is configured to receive at least one glass cover. The glass cover serves to cover a display assembly provided within the electronic device. The glass cover can be secured to the housing structure so as to facilitate providing a narrow border between an active display area and an outer edge of the housing structure. The enclosure for the electronic device can be thin yet be sufficiently strong to be suitable for use in electronic devices, such as portable electronic devices.
The invention can be implemented in numerous ways, including as a method, system, device, or apparatus. Several embodiments of the invention are discussed below.
As a portable electronic device, one embodiment can, for example, include at least an electronic device housing including a bottom surface and side surfaces, and a glass cover for a top surface for the electronic device enclosure. In addition, a display screen assembly having a top surface and a bottom surface can be provided within the electronic device housing, with the top surface of the display screen assembly being secured to a bottom surface of the glass cover. The portable electronic device can also include at least one peripheral internal support structure secured to a peripheral region of the bottom surface of the display screen assembly.
As a method for assembling an electronic device having a product housing, one embodiment can, for example, include at least: obtaining a glass member having a top surface and a bottom surface, the top surface providing an outer surface for substantially all of at least one surface of the electronic device; attaching a top surface of a display screen assembly to the bottom surface of the glass member; attaching at least one peripheral support structure to a peripheral region of a bottom surface of the display screen assembly, wherein the glass member, the display screen assembly and the at least one peripheral support structure forms a resulting display assembly; and thereafter securing the resulting display assembly to the product housing at least the at least one peripheral support structure.
As a portable electronic device, one embodiment can, for example, include at least an electronic device housing including a bottom surface and side surfaces, and a glass cover for a top surface for the electronic device enclosure. In addition, a touch screen assembly having a top surface and a bottom surface can be provided internal to the electronic device housing, with the top surface of the touch screen assembly being secured to a bottom surface of the glass cover. The touch screen assembly can include a plurality of technology layers, including at least a first technology layer and a second technology layer. The portable electronic device can also include at least one mounting bracket secured to the touch screen assembly.
Other aspects and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
The invention will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
Embodiments are described herein in the context of a housing for an electronic device. The housing can make use of an outer member, which can be formed of glass. The outer member can be aligned, protected and/or secured with respect to other portions of the housing for the electronic device. The electronic device can be portable and in some cases handheld.
According to one aspect, the invention pertains to an electronic device having a housing structure that is configured to receive at least one glass cover. The glass cover serves to cover a display assembly provided within the electronic device. The glass cover can be secured to the housing structure so as to facilitate providing a narrow border between an active display area and an outer edge of the housing structure. The enclosure for the electronic device can be thin yet be sufficiently strong to be suitable for use in electronic devices, such as portable electronic devices.
The following detailed description is illustrative only, and is not intended to be in any way limiting. Other embodiments will readily suggest themselves to skilled persons having the benefit of this disclosure. Reference will now be made in detail to implementations as illustrated in the accompanying drawings. The same reference indicators will generally be used throughout the drawings and the following detailed description to refer to the same or like parts. It should be appreciated that the drawings are generally not drawn to scale, and at least some features of the drawings have been exaggerated for ease of illustration.
Embodiments of the invention can relate to apparatus, systems and methods for forming a housing having a thin glass member for an electronic device. In one example, the glass member may be an outer surface of an electronic device. The glass member may for example correspond to a glass cover that helps form part of a display area of an electronic device (i.e., situated in front of a display either as a separate part or integrated within the display). Alternatively or additionally, the glass member may form a part of the housing. For example, it may form an outer surface other than in the display area.
The apparatus, systems and methods for improving strength of thin glass are especially suitable for glass covers, or displays (e.g., LCD displays), assembled in small form factor electronic devices such as handheld electronic devices (e.g., mobile phones, media players, personal digital assistants, remote controls, etc.). The glass can be thin in these small form factor embodiments, such as less than 3 mm, or more particularly between 0.5 and 2.5 mm, or even more particularly between 0.3 and 1.0 mm. The apparatus, systems and methods can also be used for glass covers or displays for other devices including, but not limited to including, relatively larger form factor electronic devices (e.g., portable computers, tablet computers, displays, monitors, televisions, etc.). The glass can also be thin in these larger form factor embodiments, such as less than 5 mm, or more particularly between 0.5 and 3 mm, or even more particularly between 0.3 and 2.0 mm.
Embodiments are discussed below with reference to
The housing formation process 100 can initially obtain 102 a glass member. A top surface of the glass member can represent an outer surface for the housing, and the bottom surface of the glass member is an inner surface that is not exposed. The glass member can serve as a significant outer surface for the housing. For example, the glass member can correspond to a top surface for the housing. Alternatively or additionally, the glass member can correspond to a bottom surface for the housing. The glass member is typically thin, particularly when used with portable electronic devices. In one embodiment, the glass member has a thickness of less than 5 mm, or more particularly less than 1 mm.
After the glass member has been obtained 102, mounting brackets can be attached 104 to a peripheral region on the bottom surface of the glass member. The mounting brackets can be attached to the bottom surface of the glass member using an adhesive. The adhesive can, for example, by provided as a film or layer. Also, the manner by which the adhesive is deposited can vary. In one implementation, the adhesive can be deposited by forming a peripheral pattern of adhesive that can be placed on the bottom surface of the glass member so as to provide adhesive at the regions on the bottom surface of the glass member where the mounting brackets are to be placed. In another implementation, the adhesive can be screen printed on appropriate peripheral portions on the bottom surface of the glass member. In still another embodiment, the adhesive can be applied to the surface of the mounting brackets that is to be secured to the bottom surface of the glass member.
After the mounting brackets have been attached 104, a touch screen assembly can be attached 106 to a central region of the bottom surface of the glass member. The touch screen assembly can include a plurality of touch and display components that are laminated together to implement a touch screen. The touch and display components can, for example, include a display technology layer (e.g., LCD panel), a sensing layer (e.g., touch sensors) and/or a back light component.
The touch screen assembly can be attached 106 using an adhesive. The adhesive can, for example, by provided as film or layer. Also, the manner by which the adhesive is deposited can vary. In one implementation, the adhesive can be deposited by forming a pattern of adhesive (e.g., translucent adhesive) that can be placed on the bottom surface of the glass member so as to provide adhesive at the bottom surface of the glass member where the touch screen assembly is to be placed. The adhesive can additionally or alternatively be deposited on the top surface of the touch screen assembly. In another implementation, the adhesive can be screen printed or sprayed on appropriate portion of the bottom surface of the glass member and/or a top surface of the touch screen assembly.
Next, after the touch screen assembly has been attached 106, a frame can be attached 108 such that the frame is adjacent to the bottom surface of the touch screen assembly. The frame being attached 108 can serve to protect the touch screen assembly from damage and can provide structural stiffness to the housing for the electronic device. The frame can be attached 108 to the mounting brackets or side members of the housing for the electronic device. In one embodiment, the frame can be attached 108 using any of a variety of means, such as adhesive, screws, snaps or welds. In some embodiment, the frame need not be included.
After the frame has been attached 108, the resulting display assembly, including the glass member, the mounting brackets, the touch screen assembly and the frame can be secured to the housing of the electronic device. For example, the resulting display assembly can be secured 110 to the housing of the electronic device by way of the mounting brackets and/or the frame. Following the block 110, the housing formation process 100 can end.
The electronic device housing 200 can include a touch screen assembly 210. The touch screen assembly 210 can include a plurality of touch and display components that are laminated together. The touch and display components can, for example, include a display technology layer (e.g., LCD panel), a sensing layer (e.g., touch sensors) and/or a backlight layer. The touch screen assembly 210 can be secured to a bottom surface of the translucent member 208 by a layer of adhesive 212.
Additionally, the electronic device housing 200 can include mounting brackets 214 that are secured to the peripheral portion of the bottom surface of the translucent member 208 with a layer of adhesive 216. The mounting brackets 214 can be formed of metal (e.g., aluminum, stainless steel, titanium copper) or a polymer. The mounting brackets 214 can be thin such as on the order of 0.1-0.6 mm. In one embodiment, the mounting brackets 214 can include a pair of rails secured to opposite sides of the peripheral portion of the bottom surface of the translucent member 208 with the layer of adhesive 216.
The electronic device housing 200 can also include a frame 218. The frame 218 is provided within the electronic device housing 200 and provided adjacent to a bottom surface of the touch screen assembly 210. In one embodiment, there is a small gap between the frame 218 and the bottom surface on the touch screen assembly 210. The frame 218 can serve to provide stiffness to the electronic device housing 200 and can also provide a surface that protects the touch screen assembly 210. The frame 218 can be secured to the mounting brackets 214 or the side members 204 by any of a variety of techniques (e.g., welding, screws, snaps, adhesive).
An internal space 220 is provided internal to the electronic device housing 200 whereby various electrical components (e.g., including processor, memory, battery and circuit board) can be attached, affixed or placed so as to provide electronic operations for the electronic device.
In general, the various members, parts or assemblies of the electronic device housing 200 can be formed of any of a variety of materials, e.g., glass, polymers or metal. In one embodiment, the translucent member 208 is glass, the mounting brackets 214 and the frame 218 are formed from metal or polymer (e.g., plastic), and the housing 202 is formed from glass, polymer (e.g., plastic) or metal.
In
In
In
In
The electronic device housing 300 can include a touch screen assembly 310. The touch screen assembly 310 can include a plurality of touch and display components that are laminated together. The touch and display components can, for example, include a display technology layer (e.g., LCD panel), a sensing layer (e.g., touch sensors) and/or a backlight layer. The touch screen assembly 310 can be secured to a bottom surface of the translucent member 308 by a layer of adhesive 312.
Additionally, the electronic device housing 300 can include mounting brackets 314 that are secured to the peripheral portion of the bottom surface of the translucent member 308 with a layer of adhesive 316. The mounting brackets 314 can be formed of metal (e.g., aluminum, stainless steel, titanium copper) or a polymer. The mounting brackets 314 can be thin such as on the order of 0.1-0.6 mm. The configuration and placement of the mounting brackets 314 can be the same as the mounting brackets 214 used in
The electronic device housing 300 can also include a frame 318. The frame 318 is provided within the electronic device housing 300 and provided adjacent to a bottom surface of the touch screen assembly 310. In one embodiment, there is a small gap between the frame 318 and the bottom surface on the touch screen assembly 310. In another embodiment, there is no gap between the frame 318 and the bottom surface on the touch screen assembly 310. The frame 318 can serve to provide stiffness to the electronic device housing 300 and can also provide a surface that protects the touch screen assembly 310. The frame 318 can be secured to the mounting brackets 314 or the side members 304 by any of a variety of techniques (e.g., welding, screws, snaps, adhesive). The configuration and placement of the frame 318 can be the same as the frame 218 used in
An internal space 320 is provided internal to the electronic device housing 300 whereby various electrical components (e.g., including processor, memory, battery and circuit board) can be attached, affixed or placed so as to provide electronic operations for the electronic device.
In general, the various members, parts or assemblies of the electronic device housing 300 can be formed of any of a variety of materials, e.g., glass, polymers or metal. In one embodiment, the translucent member 308 is glass, the mounting brackets 314 and the frame 318 are formed from metal or polymer (e.g., plastic), and the housing 302 is formed from glass, polymer (e.g., plastic) or metal.
Additionally, in one embodiment, such as shown in
In
The housing formation process 500 can initially obtain 502 a glass member. A top surface of the glass member can represent an outer surface for the housing, and the bottom surface of the glass member is an inner surface that is not exposed. The glass member can serve as a significant outer surface for the housing. For example, the glass member can correspond to a top surface for the housing. Alternatively or additionally, the glass member can correspond to a bottom surface for the housing. The glass member is typically thin, particularly when used with portable electronic devices. In one embodiment, the glass member has a thickness of less than 5 mm, or more particularly less than 1 mm.
After the glass member has been obtained 502, a frame can be attached 504 to a peripheral region on the bottom surface of the glass member. The frame, once attached 504, can serve to protect the touch screen assembly from damage and can provide structural stiffness to the housing for the electronic device. When attached, the frame is adjacent to the bottom surface of the touch screen assembly. The frame can be attached to the bottom surface of the glass member using an adhesive. The adhesive can, for example, by provided as film layer. Also, the manner by which the adhesive is deposited can vary. In one implementation, the adhesive can be deposited by forming a peripheral pattern of adhesive that can be placed on the bottom surface of the glass member so as to provide adhesive at the regions on the bottom surface of the glass member where the mounting brackets are to be placed. In another implementation, the adhesive can be screen printed on appropriate peripheral portions on the bottom surface of the glass member. In still another embodiment, the adhesive can be applied to the surface of the mounting brackets that is to be secured to the bottom surface of the glass member.
After the frame has been attached 504, a touch screen assembly can be attached 506 to a central region of the bottom surface of the glass member. The touch screen assembly can include a plurality of touch and display components that are laminated together to implement a touch screen. The touch and display components can, for example, include a display technology layer (e.g. LCD panel), a sensing layer (e.g. touch sensors) and/or a back light component.
The touch screen assembly can be attached 506 using an adhesive. The adhesive can, for example, by provided as film or layer. Also, the manner by which the adhesive is deposited can vary. In one implementation, the adhesive can be deposited by forming a pattern of adhesive (e.g. translucent adhesive) that can be placed on the bottom surface of the glass member so as to provide adhesive at the bottom surface of the glass member where the touch screen assembly is to be placed. The adhesive can additionally or alternatively be deposited on the top surface of the touch screen assembly. In another implementation, the adhesive can be screen printed or sprayed on appropriate portion of the bottom surface of the glass member and/or a top surface of the touch screen assembly.
Next, after the touch screen assembly has been attached 506, mounting brackets can be attached 508 to the frame. In one embodiment, the frame can be attached 508 to the frame using any of a variety of means, such as adhesive, screws, snaps or welds.
After the mounting brackets have been attached 508, the resulting display assembly, including the glass member, the mounting brackets, the touch screen assembly and the frame can be secured 550 to the housing of the electronic device. For example, the resulting display assembly can be secured to the housing of the electronic device by way of the mounting brackets and/or the frame. Following the block 550, the housing formation process 500 can end.
The electronic device housing 600 includes a housing 602. The housing 602 include side members 604 and a bottom member 606. A translucent member 608 can be provided as a top surface for the electronic device housing 600. For example, the translucent member 608 can be a glass member, often referred to as a cover glass, or a polymer-based member (e.g. plastic).
The electronic device housing 600 can include a touch screen assembly 610. The touch screen assembly 610 can include a plurality of touch and display components that are laminated together. The touch and display components can, for example, include a display technology layer (e.g. LCD panel), a sensing layer (e.g. touch sensors) and/or a backlight layer. The touch screen assembly 610 can be secured to a bottom surface of the translucent member 608 by a layer of adhesive 612.
Additionally, the electronic device housing 600 can include a frame 614 which can be secured to the peripheral portion of the bottom surface of the translucent member 608 with a layer of adhesive 616. The frame 614 is provided within the electronic device housing 600 and provided adjacent to a bottom surface of the touch screen assembly 610. In one embodiment, there is a small gap between the frame 614 and the bottom surface on the touch screen assembly 610. In another embodiment, there is no gap between the frame 614 and the bottom surface on the touch screen assembly 610. The frame 614 can serve to provide stiffness to the electronic device housing 600 and can also provide a surface that protects the touch screen assembly 610. Additionally, in one embodiment, a top portion of the frame 614 that is secured to the bottom surface of the translucent member 608 with the layer of adhesive 616 can slightly overlap (e.g. horizontally overlapped) with a least one layer of the touch screen assembly 610. For example,
The electronic device housing 600 can include mounting brackets 618. The mounting brackets 618 can be secured to the side members 604. The mounting brackets 618 can be formed of metal (e.g. aluminum, stainless steel, titanium copper) or a polymer. The mounting brackets 618 can be thin such as on the order of 0.1-0.6 mm. The mounting brackets 618 can be secured to the frame 614 as well as to the side members 604 by any of a variety of techniques (e.g. welding, screws, snaps, adhesive).
An internal space 620 is provided internal to the electronic device housing 600 whereby various electrical components (e.g. including processor, memory, battery and circuit board) can be attached, affixed or placed so as to provide electronic operations for the electronic device.
In general, the various members, parts or assemblies of the electronic device housing 600 can be formed of any of a variety of materials, e.g. glass, polymers or metal. In one embodiment, the translucent member 608 is glass, the frame 614 and the mounting brackets 618 are formed from metal or polymer (e.g. plastic), and the housing 602 is formed from glass, polymer (e.g. plastic) or metal.
In
The housing formation process 700 can initially obtain 702 a glass member. A top surface of the glass member can represent an outer surface for the housing, and the bottom surface of the glass member is an inner surface that is not exposed. The glass member can serve as a significant outer surface for the housing. For example, the glass member can correspond to a top surface for the housing. Alternatively or additionally, the glass member can correspond to a bottom surface for the housing. The glass member is typically thin, particularly when used with portable electronic devices. In one embodiment, the glass member has a thickness of less than 5 mm, or more particularly less than 1 mm.
After the glass member has been obtained 702, a display screen assembly can be attached 704 to the bottom surface of the glass member. The display screen assembly can include a plurality of display components that are laminated together to implement a touch screen. The display screen assembly can also include a touch component, which can render the display screen assembly a touch screen assembly. The touch and display components can, for example, include a sensing layer (e.g. touch sensors), a display technology layer (e.g. LCD panel) and/or a back light component.
The display screen assembly can be attached 704 using an adhesive. The adhesive can, for example, by provided as film or layer. Also, the manner by which the adhesive is deposited can vary. In one implementation, the adhesive can be deposited by forming a pattern of adhesive (e.g. translucent adhesive) that can be placed on the bottom surface of the glass member so as to provide adhesive at the bottom surface of the glass member where the display screen assembly is to be placed. The adhesive can additionally or alternatively be deposited on the top surface of the display screen assembly. In another implementation, the adhesive can be screen printed or sprayed on appropriate portion of the bottom surface of the glass member and/or a top surface of the display screen assembly.
Next, mounting brackets can be attached 706 to a peripheral region on the bottom surface of the display screen assembly. The mounting brackets can be attached to the bottom surface of the display screen assembly using an adhesive. The adhesive can, for example, by provided as a film or layer. Also, the manner by which the adhesive is deposited can vary. In one implementation, the adhesive can be deposited by forming a peripheral pattern of adhesive that can be placed on the bottom surface of the glass member so as to provide adhesive at the regions on the bottom surface of the display screen assembly where the mounting brackets are to be placed. In another implementation, the adhesive can be screen printed on appropriate peripheral portions on the bottom surface of the glass member. In still another embodiment, the adhesive can be applied to the surface of the mounting brackets that is to be secured to the bottom surface of the display screen assembly.
After the mounting brackets have been attached 706, a frame can be attached 708 such that the frame is adjacent to the bottom surface of the display screen assembly. The frame being attached 708 can serve to protect the display screen assembly from damage and can provide structural stiffness to the housing for the electronic device. The frame can be attached 708 to the mounting brackets or side members of the housing for the electronic device. In one embodiment, the frame can be attached 708 using any of a variety of means, such as adhesive, screws, snaps or welds. In some embodiment, the frame need not be included.
After the frame has been attached 708, the resulting display assembly, including the glass member, the display screen assembly, the mounting brackets and the frame can be secured to the housing of the electronic device. For example, the resulting display assembly can be secured 710 to the housing of the electronic device by way of the mounting brackets and/or the frame. Following the block 710, the housing formation process 700 can end.
The electronic device housing 800 includes a housing 802. The housing 802 include side member 804s and a bottom member 806. A translucent member 808 can be provided as a top surface for the electronic device housing 800. For example, the translucent member 808 can be a glass member, often referred to as a cover glass, or a polymer-based member (e.g. plastic).
The electronic device housing 800 can include a display screen assembly 810. The display screen assembly 810 can be secured to a bottom surface of the translucent member 808 by a layer of adhesive 812 (e.g. translucent adhesive). The display screen assembly 810 can include one or a plurality of distinct technology components that can be laminated together. In one implementation, the technology components can, for example, include a sensing layer (e.g. touch sensors), a display technology layer (e.g. LCD panel) and/or a backlight layer. In another implementation, the technology components can, for example, include an organic light emitting diode (OLED) panel with or without a sensing layer (e.g. touch sensors).
Additionally, the electronic device housing 800 can include mounting brackets 814 that are secured to the peripheral portion of the bottom surface of the display screen assembly 810 with a layer of adhesive 816. The mounting brackets 814 can be formed of metal (e.g. aluminum, stainless steel, titanium copper) or a polymer. The mounting brackets 814 can be thin such as on the order of 0.1-0.6 mm. In one embodiment, the mounting brackets 814 can include a pair of rails secured to opposite sides of the peripheral portion of the bottom surface of the display screen assembly 810 with the layer of adhesive 816.
An internal space 818 is provided internal to the electronic device housing 800 whereby various electrical components (e.g. including processor, memory, battery and circuit board) can be attached, affixed or placed so as to provide electronic operations for the electronic device.
In general, the various members, parts or assemblies of the electronic device housing 800 can be formed of any of a variety of materials, e.g. glass, polymers or metal. In one embodiment, the translucent member 808 is glass, the mounting brackets 814 are formed from metal or polymer (e.g. plastic), and the housing 802 is formed from glass, polymer (e.g. plastic) or metal.
Advantageously, in the electronic device housings 800, 800′ and 800″, the mounting brackets 814 can be provided within the periphery of the translucent member 808. In some embodiments, the mounting brackets 814 can be provided within the periphery of the display screen assembly 810 or at least one component layer thereof. For example, in
The electronic device housing 900 includes a housing 902. The housing 902 include side member 904s and a bottom member 906. A translucent member 908 can be provided as a top surface for the electronic device housing 900. For example, the translucent member 908 can be a glass member, often referred to as a cover glass, or a polymer-based member (e.g. plastic).
The electronic device housing 900 can include an upper screen portion 910a and a lower screen portion 910b. The upper screen portion 910a and the lower screen portion 910b can together form a display screen assembly 910. Each of the upper and lower screen portions 910a, 910b can include one or more technology components. If there are more than one technology components, the technology components can be laminated together. For example, in one implementation, the upper screen portion 910a can include a Liquid Crystal Display (LCD) panel layer (e.g. TFT LCD) and a touch sensing layer, and the lower screen portion 910b can include a backlight layer.
The upper screen portion 910a can be secured to a bottom surface of the translucent member 908 by a layer of adhesive 912 (e.g. translucent adhesive). Additionally, the electronic device housing 900 can include mounting brackets 914 that are secured to the peripheral portion of the bottom surface of the upper screen portion 910a with a layer of adhesive 916. The mounting brackets 914 can be formed of metal (e.g. aluminum, stainless steel, titanium copper) or a polymer. The mounting brackets 914 can be thin such as on the order of 0.1-0.6 mm. In one embodiment, the mounting brackets 914 can include a pair of rails secured to opposite sides of the peripheral portion of the bottom surface of the upper screen portion 910a with the layer of adhesive 916. In addition, the lower screen portion 910b can be secured to the mounting brackets 914, For example, adhesive or mechanical members (welds, snaps, screws, etc.) can be used to secure the lower screen portion 910b to the mounting brackets 914.
An internal space 918 is provided internal to the electronic device housing 900 whereby various electrical components (e.g. including processor, memory, battery and circuit board) can be attached, affixed or placed so as to provide electronic operations for the electronic device.
In general, the various members, parts or assemblies of the electronic device housing 900 can be formed of any of a variety of materials, e.g. glass, polymers or metal. In one embodiment, the translucent member 908 is glass, the mounting brackets 914 are formed from metal or polymer (e.g. plastic), and the housing 902 is formed from glass, polymer (e.g. plastic) or metal.
Advantageously, in the electronic device housings 900 and 900′, the mounting brackets 914 can be provided within the periphery of the translucent member 908. In some embodiments, the mounting brackets 914 can be provided (completely or partially) within the periphery of the upper screen portion 910a. For example, in
According to other embodiments, additional adhesive can be used to further secure a display screen assembly and/or translucent member (e.g. cover glass) within a housing.
The housing 1102 may have any suitable shape, including, for example, one or more elements that may be combined to form a rectangular structure. The housing 1102 may at least partially enclose an inner volume in which electronic device components may be assembled and retained. The shape of housing 1102 may substantially define boundaries of the inner volume, and may be determined based upon the size and type of components placed within the inner volume.
The housing 1102 may have any suitable size, and the size may be determined based on any suitable criteria. Suitable criteria may include, but are not limited to including, aesthetics or industrial design, structural considerations, components required for a desired functionality, and/or product design. The housing 1102 may have any suitable cross-section, including for example a variable cross-section or a constant cross-section. In some embodiments, the cross-section may be selected based on desired structural properties for housing 1102. For example, the cross-section of housing 1102 may be substantially rectangular, such that the height of housing 1102 is substantially larger than the width of housing 1102. Such a cross-sectional shape may provide structural stiffness in compression and tension, as well as in bending. In some embodiments, the dimensions of housing 1102 cross-section may be determined relative to the dimensions of the components contained by housing 1102.
In some embodiments, housing 1102 may include features 1110. The features 1110 may generally include one or more openings, knobs, extensions, flanges, chamfers, or other features for receiving components or elements of the device. The features 1110 of the housing 1102 extend from any surface of housing 1102, including for example from internal surfaces, e.g. to retain internal components or component layers, or from external surfaces. In particular, the housing 1102 may include a slot or opening (not shown) for receiving a card or tray within the handheld electronic device 1100. The housing 1102 may also include a connector opening (not shown), e.g. for a 30-pin connector, through which a connector may engage one or more conductive pins of the handheld electronic device 1100. The features 1110 included on the housing 1102 may include, but are not limited to, an opening for providing audio to a user, an opening for receiving audio from a user, an opening for a connector (e.g. audio connector or power supply connector), and/or features for retaining and enabling a button such as a volume control or silencing switch.
Additional details on electronic device housings using insert molding for certain components are contained in: (i) U.S. application Ser. No. 12/895,822, filed Sep. 30, 2010, and entitled “Insert Molded Device Housings for Portable Electronic Devices,” which is hereby incorporated herein by reference; and (ii) U.S. application Ser. No. 12/944,671, filed Nov. 11, 2010, and entitled “Insert Molding Around Glass Members for Portable Electronic Devices,” which is hereby incorporated herein by reference.
Although mounting brackets and a frame for a display assembly are discussed above as separate components (which can facilitate assembly), it should be understood that the mounting brackets and frame are structural components that are used in an electronic device. In one embodiment, the mounting brackets and frame are integral. In another embodiment, the mounting brackets and frame are interchangeable.
Although various embodiments discussed herein include a touch screen assembly, various other embodiments may not include touch screen capabilities. In such other embodiments, a display assembly would be used in place of the touch screen assembly. The display assembly includes at least a display technology layer. The display assembly can also include a back light component.
In general, the steps associated with the methods of the present invention may vary widely. Steps may be added, removed, altered, combined, reordered without departing from the spirit or the scope of the present invention.
The various aspects, features, embodiments or implementations of the invention described above may be used alone or in various combinations.
While this specification contains many specifics, these should not be construed as limitations on the scope of the disclosure or of what may be claimed, but rather as descriptions of features specific to particular embodiment of the disclosure. Certain features that are described in the context of separate embodiments may also be implemented in combination. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
While embodiments and applications have been shown and described, it would be apparent to those skilled in the art having the benefit of this disclosure that many more modifications than mentioned above are possible without departing from the inventive concepts herein.
The present application is a continuation of U.S. application Ser. No. 13/246,707, filed Sep. 27, 2011, entitled “HOUSING FOR PORTABLE ELECTRONIC DEVICE WITH REDUCED BORDER REGION,” which claims the benefit of U.S. Provisional Application No. 61/482,513 filed May 4, 2011 of the same title, the contents of which are incorporated herein by reference in their entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2643020 | Dalton | Jun 1953 | A |
3415637 | Glynn | Dec 1968 | A |
3467508 | Loukes et al. | Sep 1969 | A |
3498773 | Grubb et al. | Mar 1970 | A |
3558415 | Rieser et al. | Jan 1971 | A |
3607172 | Poole et al. | Sep 1971 | A |
3619240 | Toussaint et al. | Nov 1971 | A |
3626723 | Plumat | Dec 1971 | A |
3652244 | Plumat | Mar 1972 | A |
3753840 | Plumat | Aug 1973 | A |
3798013 | Hasegawa et al. | Mar 1974 | A |
3843472 | Toussaint et al. | Oct 1974 | A |
3857689 | Koizumi et al. | Dec 1974 | A |
3926605 | Kunkle | Dec 1975 | A |
4015045 | Rinehart | Mar 1977 | A |
4052184 | Anderson | Oct 1977 | A |
4119760 | Rinehart | Oct 1978 | A |
4148082 | Okada et al. | Apr 1979 | A |
4156755 | Rinehart | May 1979 | A |
4165228 | Ebata et al. | Aug 1979 | A |
4212919 | Hoda | Jul 1980 | A |
4218230 | Hogan | Aug 1980 | A |
4346601 | France | Aug 1982 | A |
4353649 | Kishii | Oct 1982 | A |
4425810 | Simon et al. | Jan 1984 | A |
4537820 | Nowobilski et al. | Aug 1985 | A |
4646722 | Silverstein et al. | Mar 1987 | A |
4733973 | Machak et al. | Mar 1988 | A |
4842629 | Clemens et al. | Jun 1989 | A |
4844724 | Sakai et al. | Jul 1989 | A |
4846868 | Aratani | Jul 1989 | A |
4849002 | Rapp | Jul 1989 | A |
4872896 | LaCourse et al. | Oct 1989 | A |
4911743 | Bagby | Mar 1990 | A |
4937129 | Yamazaki | Jun 1990 | A |
4957364 | Chesler | Sep 1990 | A |
4959548 | Kupperman et al. | Sep 1990 | A |
4983197 | Froning et al. | Jan 1991 | A |
4986130 | Engelhaupt et al. | Jan 1991 | A |
5041173 | Shikata et al. | Aug 1991 | A |
5104435 | Oikawa et al. | Apr 1992 | A |
5129934 | Koss | Jul 1992 | A |
5157746 | Tobita et al. | Oct 1992 | A |
5160523 | Honkanen et al. | Nov 1992 | A |
5254149 | Hashemi et al. | Oct 1993 | A |
5269888 | Morasca | Dec 1993 | A |
5281303 | Beguin et al. | Jan 1994 | A |
5369267 | Johnson et al. | Nov 1994 | A |
5411563 | Yeh et al. | May 1995 | A |
5437193 | Schleitweiler et al. | Aug 1995 | A |
5445871 | Murase et al. | Aug 1995 | A |
5483261 | Yasutake | Jan 1996 | A |
5488204 | Mead et al. | Jan 1996 | A |
5525138 | Hashemi et al. | Jun 1996 | A |
5625154 | Matsuhiro et al. | Apr 1997 | A |
5654057 | Kitayama et al. | Aug 1997 | A |
5733622 | Starcke et al. | Mar 1998 | A |
5766493 | Shin | Jun 1998 | A |
5780371 | Rifqi et al. | Jul 1998 | A |
5816225 | Koch et al. | Oct 1998 | A |
5825352 | Bisset et al. | Oct 1998 | A |
5826601 | Muraoka et al. | Oct 1998 | A |
5835079 | Shieh | Nov 1998 | A |
5880411 | Gillespie et al. | Mar 1999 | A |
5930047 | Gunz et al. | Jul 1999 | A |
5953094 | Matsuoka et al. | Sep 1999 | A |
5985014 | Ueda et al. | Nov 1999 | A |
6050870 | Suginoya et al. | Apr 2000 | A |
6114039 | Rifqi | Sep 2000 | A |
6120908 | Papanu et al. | Sep 2000 | A |
6166915 | Lake et al. | Dec 2000 | A |
6188391 | Seely et al. | Feb 2001 | B1 |
6245313 | Suzuki et al. | Jun 2001 | B1 |
6307590 | Yoshida | Oct 2001 | B1 |
6310610 | Beaton et al. | Oct 2001 | B1 |
6323846 | Westerman et al. | Nov 2001 | B1 |
6325704 | Brown et al. | Dec 2001 | B1 |
6327011 | Kim | Dec 2001 | B2 |
6350664 | Haji et al. | Feb 2002 | B1 |
6393180 | Farries et al. | May 2002 | B1 |
6429840 | Sekiguchi | Aug 2002 | B1 |
6437867 | Zeylikovich et al. | Aug 2002 | B2 |
6516634 | Green et al. | Feb 2003 | B1 |
6521862 | Brannon | Feb 2003 | B1 |
6621542 | Aruga | Sep 2003 | B1 |
6690387 | Zimmerman et al. | Feb 2004 | B2 |
6718612 | Bajorek | Apr 2004 | B2 |
6769274 | Cho et al. | Aug 2004 | B2 |
6772610 | Albrand et al. | Aug 2004 | B1 |
6810688 | Duisit et al. | Nov 2004 | B1 |
6936741 | Münnig et al. | Aug 2005 | B2 |
6955971 | Ghyselen et al. | Oct 2005 | B2 |
6996324 | Hiraka et al. | Feb 2006 | B2 |
7012700 | De Groot et al. | Mar 2006 | B2 |
7013709 | Hajduk et al. | Mar 2006 | B2 |
7015894 | Morohoshi | Mar 2006 | B2 |
7070837 | Ross | Jul 2006 | B2 |
7166531 | van den Hoek et al. | Jan 2007 | B1 |
7184064 | Zimmerman et al. | Feb 2007 | B2 |
7461564 | Glaesemann | Dec 2008 | B2 |
7558054 | Prest et al. | Jul 2009 | B1 |
7626807 | Hsu | Dec 2009 | B2 |
7663607 | Hotelling et al. | Feb 2010 | B2 |
7810355 | Feinstein et al. | Oct 2010 | B2 |
7872644 | Hong et al. | Jan 2011 | B2 |
7918019 | Chang et al. | Apr 2011 | B2 |
8110268 | Hegemier et al. | Feb 2012 | B2 |
8111248 | Lee et al. | Feb 2012 | B2 |
8213168 | McClure et al. | Jul 2012 | B2 |
8289466 | Matsuhira et al. | Oct 2012 | B2 |
8312743 | Pun et al. | Nov 2012 | B2 |
8393175 | Kohli et al. | Mar 2013 | B2 |
8551283 | Pakula et al. | Oct 2013 | B2 |
8673163 | Zhong et al. | Mar 2014 | B2 |
8684613 | Weber | Apr 2014 | B2 |
8824140 | Prest et al. | Sep 2014 | B2 |
9778685 | Sanford et al. | Oct 2017 | B2 |
20020035853 | Brown et al. | Mar 2002 | A1 |
20020155302 | Smith et al. | Oct 2002 | A1 |
20020157199 | Piltingsrud | Oct 2002 | A1 |
20030024274 | Cho et al. | Feb 2003 | A1 |
20030057183 | Cho et al. | Mar 2003 | A1 |
20030234771 | Mulligan et al. | Dec 2003 | A1 |
20040041961 | Lee | Mar 2004 | A1 |
20040051944 | Stark | Mar 2004 | A1 |
20040119701 | Mulligan et al. | Jun 2004 | A1 |
20040142118 | Takechi | Jul 2004 | A1 |
20040163414 | Eto et al. | Aug 2004 | A1 |
20050058423 | Brinkmann et al. | Mar 2005 | A1 |
20050105071 | Ishii | May 2005 | A1 |
20050135724 | Helvajian et al. | Jun 2005 | A1 |
20050174525 | Tsuboi et al. | Aug 2005 | A1 |
20050193772 | Davidson | Sep 2005 | A1 |
20050245165 | Harada et al. | Nov 2005 | A1 |
20050285991 | Yamazaki | Dec 2005 | A1 |
20060026521 | Hotelling et al. | Feb 2006 | A1 |
20060055936 | Yun et al. | Mar 2006 | A1 |
20060070694 | Rehfeld et al. | Apr 2006 | A1 |
20060097991 | Hotelling et al. | May 2006 | A1 |
20060197753 | Hotelling | Sep 2006 | A1 |
20060227331 | Vollmer et al. | Oct 2006 | A1 |
20060238695 | Miyamoto | Oct 2006 | A1 |
20060250559 | Bocko et al. | Nov 2006 | A1 |
20060268528 | Zadesky et al. | Nov 2006 | A1 |
20060292822 | Xie | Dec 2006 | A1 |
20070003796 | Isono et al. | Jan 2007 | A1 |
20070013822 | Kawata et al. | Jan 2007 | A1 |
20070029519 | Kikuyama et al. | Feb 2007 | A1 |
20070030436 | Sasabayashi | Feb 2007 | A1 |
20070039353 | Kamiya | Feb 2007 | A1 |
20070046200 | Fu et al. | Mar 2007 | A1 |
20070063876 | Wong | Mar 2007 | A1 |
20070089827 | Funatsu | Apr 2007 | A1 |
20070122542 | Halsey et al. | May 2007 | A1 |
20070132737 | Mulligan et al. | Jun 2007 | A1 |
20070196578 | Karp et al. | Aug 2007 | A1 |
20070236618 | Maag et al. | Oct 2007 | A1 |
20080020919 | Murata | Jan 2008 | A1 |
20080026260 | Kawai | Jan 2008 | A1 |
20080074028 | Ozolins et al. | Mar 2008 | A1 |
20080094716 | Ushiro et al. | Apr 2008 | A1 |
20080135175 | Higuchi | Jun 2008 | A1 |
20080158181 | Hamblin et al. | Jul 2008 | A1 |
20080202167 | Cavallaro et al. | Aug 2008 | A1 |
20080243321 | Walser et al. | Oct 2008 | A1 |
20080261057 | Slobodin | Oct 2008 | A1 |
20080264176 | Bertrand et al. | Oct 2008 | A1 |
20080286548 | Ellison et al. | Nov 2008 | A1 |
20090046240 | Bolton | Feb 2009 | A1 |
20090067141 | Dabov et al. | Mar 2009 | A1 |
20090091551 | Hotelling et al. | Apr 2009 | A1 |
20090096937 | Bauer et al. | Apr 2009 | A1 |
20090153729 | Hiltunen et al. | Jun 2009 | A1 |
20090162703 | Kawai | Jun 2009 | A1 |
20090197048 | Amin et al. | Aug 2009 | A1 |
20090202808 | Glaesemann et al. | Aug 2009 | A1 |
20090220761 | Dejneka et al. | Sep 2009 | A1 |
20090257189 | Wang | Oct 2009 | A1 |
20090257207 | Wang et al. | Oct 2009 | A1 |
20090294420 | Abramov et al. | Dec 2009 | A1 |
20090324899 | Feinstein et al. | Dec 2009 | A1 |
20100009154 | Allan et al. | Jan 2010 | A1 |
20100028607 | Lee et al. | Feb 2010 | A1 |
20100053632 | Alphonse et al. | Mar 2010 | A1 |
20100062284 | Watanabe et al. | Mar 2010 | A1 |
20100119846 | Sawada | May 2010 | A1 |
20100137031 | Griffin et al. | Jun 2010 | A1 |
20100154992 | Feinstein et al. | Jun 2010 | A1 |
20100167059 | Hashimoto et al. | Jul 2010 | A1 |
20100171920 | Nishiyama | Jul 2010 | A1 |
20100179044 | Sellier et al. | Jul 2010 | A1 |
20100206008 | Harvey et al. | Aug 2010 | A1 |
20100215862 | Gomez et al. | Aug 2010 | A1 |
20100216514 | Smoyer et al. | Aug 2010 | A1 |
20100224767 | Kawano et al. | Sep 2010 | A1 |
20100265188 | Chang et al. | Oct 2010 | A1 |
20100279067 | Sabia et al. | Nov 2010 | A1 |
20100285275 | Baca et al. | Nov 2010 | A1 |
20100296027 | Matsuhira et al. | Nov 2010 | A1 |
20100315570 | Mathew et al. | Dec 2010 | A1 |
20100321305 | Chang et al. | Dec 2010 | A1 |
20110003619 | Fujii | Jan 2011 | A1 |
20110012873 | Prest et al. | Jan 2011 | A1 |
20110019123 | Prest et al. | Jan 2011 | A1 |
20110019354 | Prest et al. | Jan 2011 | A1 |
20110030209 | Chang et al. | Feb 2011 | A1 |
20110063550 | Gettemy et al. | Mar 2011 | A1 |
20110067447 | Zadesky et al. | Mar 2011 | A1 |
20110072856 | Davidson et al. | Mar 2011 | A1 |
20110102346 | Orsley et al. | May 2011 | A1 |
20110159321 | Eda et al. | Jun 2011 | A1 |
20110164372 | McClure et al. | Jul 2011 | A1 |
20110186345 | Pakula | Aug 2011 | A1 |
20110199687 | Sellier et al. | Aug 2011 | A1 |
20110248152 | Svajda et al. | Oct 2011 | A1 |
20110255000 | Weber et al. | Oct 2011 | A1 |
20110255250 | Dinh et al. | Oct 2011 | A1 |
20110267833 | Verrat-Debailleul et al. | Nov 2011 | A1 |
20110279383 | Wilson et al. | Nov 2011 | A1 |
20110300908 | Grespan et al. | Dec 2011 | A1 |
20120018323 | Johnson et al. | Jan 2012 | A1 |
20120027399 | Yeates | Feb 2012 | A1 |
20120099113 | de Boer et al. | Apr 2012 | A1 |
20120105400 | Mathew et al. | May 2012 | A1 |
20120118628 | Pakula | May 2012 | A1 |
20120135195 | Glaesemann et al. | May 2012 | A1 |
20120136259 | Milner et al. | May 2012 | A1 |
20120151760 | Steijner | Jun 2012 | A1 |
20120188743 | Wilson et al. | Jul 2012 | A1 |
20120196071 | Cornejo et al. | Aug 2012 | A1 |
20120202040 | Barefoot et al. | Aug 2012 | A1 |
20120236477 | Weber | Sep 2012 | A1 |
20120236526 | Weber | Sep 2012 | A1 |
20120328843 | Cleary et al. | Dec 2012 | A1 |
20130071601 | Bibl et al. | Mar 2013 | A1 |
20130083506 | Wright et al. | Apr 2013 | A1 |
20130182259 | Brezinski et al. | Jul 2013 | A1 |
20140176779 | Weber | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
283630 | Aug 1970 | AT |
1277090 | Dec 2000 | CN |
1322339 | Nov 2001 | CN |
1369449 | Sep 2002 | CN |
1694589 | Nov 2005 | CN |
101025502 | Aug 2007 | CN |
200983051 | Nov 2007 | CN |
101206314 | Jun 2008 | CN |
101267509 | Sep 2008 | CN |
101465892 | Jun 2009 | CN |
101523275 | Sep 2009 | CN |
102117104 | Jul 2011 | CN |
202799425 | Mar 2013 | CN |
102131357 | Mar 2015 | CN |
1496586 | Jun 1969 | DE |
1771268 | Dec 1971 | DE |
3212612 | Oct 1983 | DE |
10322350 | Dec 2004 | DE |
1038663 | Sep 2000 | EP |
1206422 | Nov 2002 | EP |
1592073 | Nov 2005 | EP |
1593658 | Nov 2005 | EP |
2025556 | Feb 2009 | EP |
2036867 | Mar 2009 | EP |
2075237 | Jul 2009 | EP |
2196870 | Jun 2010 | EP |
2233447 | Sep 2010 | EP |
2483216 | Aug 2012 | EP |
2635540 | Sep 2013 | EP |
2797627 | Feb 2001 | FR |
2801302 | May 2001 | FR |
1346747 | Feb 1974 | GB |
S42011599 | Jun 1967 | JP |
S48006925 | Mar 1973 | JP |
S5231757 | Mar 1977 | JP |
S5531944 | Mar 1980 | JP |
S5567529 | May 1980 | JP |
S5595645 | Jul 1980 | JP |
55136979 | Oct 1980 | JP |
S55144450 | Nov 1980 | JP |
S5913638 | Jan 1984 | JP |
S60180846 | Sep 1985 | JP |
S6197147 | May 1986 | JP |
S6122856 | Oct 1986 | JP |
S6360129 | Mar 1988 | JP |
S63222234 | Sep 1988 | JP |
H0532431 | Feb 1993 | JP |
H05249422 | Sep 1993 | JP |
H06242260 | Sep 1994 | JP |
H0750144 | Feb 1995 | JP |
H0973072 | Mar 1997 | JP |
09113880 | May 1997 | JP |
09507206 | Jul 1997 | JP |
H09312245 | Dec 1997 | JP |
2000086261 | Mar 2000 | JP |
2000163031 | Jun 2000 | JP |
2000203895 | Jul 2000 | JP |
2001083887 | Mar 2001 | JP |
2001311937 | Nov 2001 | JP |
2002160932 | Jun 2002 | JP |
2002338283 | Nov 2002 | JP |
2002342033 | Nov 2002 | JP |
2003502257 | Jan 2003 | JP |
2003146705 | May 2003 | JP |
2004094256 | Mar 2004 | JP |
2004259402 | Sep 2004 | JP |
2004339019 | Dec 2004 | JP |
2005140901 | Jun 2005 | JP |
2005156766 | Jun 2005 | JP |
2005162549 | Jun 2005 | JP |
2007086290 | Apr 2007 | JP |
2007099557 | Apr 2007 | JP |
2008001590 | Jan 2008 | JP |
2008007360 | Jan 2008 | JP |
2008040096 | Feb 2008 | JP |
2008063166 | Mar 2008 | JP |
2008064829 | Mar 2008 | JP |
2008066126 | Mar 2008 | JP |
2008151898 | Jul 2008 | JP |
2008192194 | Aug 2008 | JP |
2008195602 | Aug 2008 | JP |
2008216938 | Sep 2008 | JP |
2008306149 | Dec 2008 | JP |
2009122398 | Jun 2009 | JP |
2009163132 | Jul 2009 | JP |
2009167086 | Jul 2009 | JP |
2009230341 | Oct 2009 | JP |
2009234856 | Oct 2009 | JP |
2010060908 | Mar 2010 | JP |
2010064943 | Mar 2010 | JP |
2010116276 | May 2010 | JP |
2010134139 | Jun 2010 | JP |
2010157957 | Jul 2010 | JP |
2010195600 | Sep 2010 | JP |
2010210683 | Sep 2010 | JP |
2010217342 | Sep 2010 | JP |
2010237493 | Oct 2010 | JP |
2010243519 | Oct 2010 | JP |
2011032124 | Feb 2011 | JP |
2011032140 | Feb 2011 | JP |
2011158799 | Aug 2011 | JP |
2011231009 | Nov 2011 | JP |
2011527661 | Nov 2011 | JP |
2013537723 | Oct 2013 | JP |
20060005920 | Jan 2006 | KR |
20100019526 | Feb 2010 | KR |
20110030919 | Mar 2011 | KR |
201007521 | Feb 2010 | TW |
201235744 | Sep 2012 | TW |
9962282 | Dec 1999 | WO |
0047529 | Aug 2000 | WO |
0076924 | Dec 2000 | WO |
0242838 | May 2002 | WO |
2004014109 | Feb 2004 | WO |
2004061806 | Jul 2004 | WO |
2004106253 | Dec 2004 | WO |
2007089054 | Aug 2007 | WO |
2008044694 | Apr 2008 | WO |
2008143999 | Nov 2008 | WO |
2009003029 | Dec 2008 | WO |
2009078406 | Jun 2009 | WO |
2009099615 | Aug 2009 | WO |
2009102326 | Aug 2009 | WO |
2009125133 | Oct 2009 | WO |
2010005578 | Jan 2010 | WO |
2010014163 | Feb 2010 | WO |
2010019829 | Feb 2010 | WO |
2010080988 | Jul 2010 | WO |
2010101961 | Sep 2010 | WO |
2011008433 | Jan 2011 | WO |
2011041484 | Apr 2011 | WO |
2011084184 | Jul 2011 | WO |
2012015960 | Feb 2012 | WO |
2012106280 | Aug 2012 | WO |
2013106242 | Jul 2013 | WO |
Entry |
---|
Japanese Patent Application No. 2017-061751—First Office Action dated Apr. 2, 2018. |
Chemically Strengthened Glass, Wikipedia, Apr. 19, 2009, http://en/wikipedia.org/w /index. php ?title=Chemicallystrengthened glass&oldid=284794988, 1 page. |
Wlikipedia: “!phone 4”, www.wikipedia.org, retrieved Oct. 31, 2011, 15 pages. |
“Toward Making Smart Phone TouchScreens More Glare and Smudge Resistant”, e! Science News, http://eciencenews.com/ articles/2009/08/19toward.making.smart. phone. touch. Screen s.more.glare.and.smudge.resistant, Aug. 19, 2009, 1 page. |
Arun K. V arshneya, Chemical Strengthening of Glass: Lessons Learned and Yet to be Learned, International Journal of Applied Glass Science, 2010, 1, 2, pp. 131-142. |
International Patent Application No. PCT/US2012/056720 International Search Report and Written Opinion dated Dec. 20, 2012. |
Aben “Laboratory of Photoelasticity”, Institute of Cybernetics at TTU, www.ioc.ee/res/photo.html, Oct. 5, 2000. |
Forooghian et al., Investigative Ophthalmology & Visual Science; Oct. 2008, vol. 49, No. 10. |
Ohkuma, “Development of a Manufacturing Process of a Thin, Lightweight LCD Cell”, Department of Cell Process Development, IBM, Japan, Section 13.4. |
Lee et al., “A MultiTouch Three Dimensional TouchSensitive Tablet”, Proceedings of CHI: ACM Conference on Human Factors in Computing Systems, Apr. 1985, pp. 2125. |
Rubine, “The Automatic Recognition of Gestures”, CMUCS91202, Submitted in Partial Fulfillment of the Requirements of the Degree of Doctor of Philosophy in Computer Science at Carnegie Mellon University, Dec. 1991, 285 pages. |
Rubine, “Combining Gestures and Direct Manipulation”, CHI'92, May 1992, pp. 659-660. |
Westerman, “Hand Tracking, Finger Identification and Chrodic Manipulation of a MultiTouch Surface”, A Dissertation Submitted to the Faculty of the University of Delaware in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy in Electrical Engineering, Spring 1999, 364 pages. |
Karlsson et al., “The Technology of Chemical Glass Strengtheninga review”, Apr. 2010, Glass Technology, European Journal of Glass Science and Technology A., vol. 51, No. 2, pp. 4154. |
Machine translation of JP09-073072. |
Japanese Patent Application No. 2014-532037—Office Action dated Nov. 25, 2016. |
Chinese Patent Application No. 201280046745.0—Second Office Action dated Dec. 6, 2016. |
Japanese Patent Application No. 2014-532037—Office Action dated Apr. 3, 2015. |
Japanese Patent Application No. 2014-532037—Final Office Action dated Dec. 7, 2015. |
Australian Patent Application No. 2012316430—Examination Report No. 1, dated Feb. 19, 2015. |
Australian Patent Application No. 2012316430—Examination Report No. 2, dated Jan. 19, 2016. |
Australian patent application No. 2016201026—Examination report No. 1, dated Feb. 9, 2017. |
Chinese Patent Application No. 201280046745.0—First Office Action dated Jun. 1, 2016. |
Korean Patent Application No. 10-2014-7007813—Office Action dated Dec. 29, 2014. |
European Patent Application No. 12777975.9—Office Action dated Jan. 19, 2016. |
Chinese Patent Application No. 201710587978.6—First Office Action dated Jul. 2, 2019. |
Number | Date | Country | |
---|---|---|---|
20170336829 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
61482513 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13246707 | Sep 2011 | US |
Child | 15673354 | US |