The present disclosure relates to the field of housing technology, particularly to a housing, a housing manufacturing method and a mobile terminal.
Currently, the mobile terminal split type housings are mainly divided into three types: nano injection molding products, in-mold injection products, and in-mold die-casting products. The disadvantages of nano injection products lies in that the adhesive forces are not strong enough, so they are easy to crack. The disadvantages of in-mold injection products lies in that the bonding forces of plastic and metal are not enough, so they are easy to be detached. The disadvantages of in-mold die-casting products lies in that the strengths of the bonding positions of the metal and the metal are weak, so they are easy to be broken.
The present disclosure provides a housing, a housing manufacturing method and a mobile terminal, which can effectively enhance the structural stability of the junctions of the various components of the housing, and ensure that the various components of the housing are not easily separated.
A technical solution adopted by the present disclosure is to provide a housing. The housing includes a metal body and a connecting body connected to the metal body, and the metal body is provided with a mating structure at a junction with the connecting body. The mating structure includes at least one selected from the group consisting of a groove-type tension structure, a protrusion-type tension structure, a rib-type tension structure, a rib-in-hole type structure, an groove-in-hole type structure and a through hole type fastening structure.
Another technical solution adopted by the present disclosure is to provide a method of manufacturing a housing. The method includes: providing a metal plate; machining the metal plate to obtain a metal body and a mating structure, wherein the mating structure comprises at least one selected from the group consisting of a groove-type tension structure, a protrusion-type tension structure, a rib-type tension structure, a rib-in-hole type structure, an groove-in-hole type structure and a through hole type fastening structure; placing the metal body into a mold, injecting the material of a connecting body into the mating structure and on an outside of the metal body via an integral molding technique, thus forming the connecting body.
A further technical solution adopted by the present disclosure is to provide a mobile terminal comprising a housing. The housing includes a metal body and a connecting body connected to the metal body, and the metal body is provided with a mating structure at a junction with the connecting body. The mating structure includes at least one selected from the group consisting of a groove-type tension structure, a protrusion-type tension structure, a rib-type tension structure, a rib-in-hole type structure, a groove-in-hole type structure and a through hole type fastening structure.
The beneficial effects of the present disclosure are described as follows: the metal body of the housing according to the present disclosure is provided with a mating structure at a junction with the connecting body, and the mating structure comprises at least one selected from the group consisting of a groove-type tension structure, a protrusion-type tension structure, a rib-type tension structure, a through hole type fastening structure, a rib-in-hole type structure, and an groove-in-hole type structure. In this way, it is possible to achieve the effect of increasing the mechanical contact area between the body and the connecting body, thereby enhancing the structural stability of the junction of the housing and ensuring that the various components of the housing are not easily separated.
To illustrate the technical solutions according to the embodiments of the present disclosure more clearly, the accompanying drawings for describing the embodiments are introduced briefly in the following. Apparently, the accompanying drawings in the following description are only some embodiments of the present disclosure, and persons of ordinary skill in the art can derive other drawings from the accompanying drawings without creative efforts.
The technical solutions of the present disclosure will be clearly and completely described in the following with reference to the accompanying drawings. It is obvious that the embodiments to be described are only a part rather than all of the embodiments of the present disclosure. All other embodiments obtained by persons skilled in the art based on the embodiments of the present disclosure without creative efforts shall fall within the protection scope of the present invention.
A mobile terminal in the embodiments of the present disclosure comprises electronic devices such as a smart mobile phone, a tablet computer, a smart wearable device, a digital audio and video player, an electronic reader, a portable game machine, and an in-vehicle electronic device and the like.
In addition, terms “first”, “second”, “third” are used herein for descriptive purposes only, and are not to be construed as indicating or implying a relative importance of the technical features or as implicitly indicating the number of technical features indicated. Thus, features defined by “first”, “second” or “third” may explicitly or implicitly comprise at least one such feature. In the description of the present disclosure, term “a plurality of” means at least two, such as two, three, etc., unless clearly and specifically defines otherwise. Furthermore, the terms “comprise”, “have” and any variations thereof, are intended to cover non-exclusive inclusions, such that a process, method, system, article, or apparatus that comprises a list of steps or elements are not necessarily limited to those steps or elements, but may optionally comprise other steps or elements not expressly listed or inherent to such process, method, article, or apparatus.
Reference to “embodiment” herein mean that a particular feature, structure, or characteristic described in combination with embodiment can be comprised in at least one embodiment of the present disclosure. The appearances of this phrases in various places in the specification are not necessarily referring to the same embodiments, and are not independent or alternative embodiments that are mutually exclusive with other embodiments.
Please referring to
The mating structure 30 includes at least one selected from the group consisting of a groove-type tension structure 31, a protrusion-type tension structure 32, a rib-type tension structure 33, a rib-in-hole type structure 34, a groove-in-hole type structure 35 and a through hole type fastening structure 36. Optionally, in this embodiment, the mating structure 30 includes each one of the groove-type tension structure 31, the protrusion-type tension structure 32, the rib-type tension structure 33, the rib-in-hole type structure 34, the groove-in-hole type structure 35 and the through hole type fastening structure 36, which are evenly distributed at the junctions of the first body 20a, the second body 20b and the first connecting body 10a, such that the junction structure of the housing is more stable and hard to crack. The number of each mating structure 30 depends on the junction area of the first body 20a, the second body 20b, and the first connecting body 10a, the overall strength of the housing, and the difficulty of manufacturing. The number of each mating structure 30 corresponding to the housing in each case is not listed here.
Please referring to
Please referring to
Please referring to
Please referring to
Please referring to
Further, the housing is provided with holes 40, which may be located at the first body retaining edge 202a and/or the second body retaining edge 202b. The holes 40 includes at least one selected from the group consisting of a speaker ventilation hole, a microphone input hole, a USB jack and an earphone jack. In this embodiment, the holes are located on the first body retaining edge 202a, and include a USB jack 41, a speaker ventilation hole 42, an earphone jack 43, and a microphone input hole 44. Optionally, the rib-in-hole type structure 34 having a rib protrusion in a trapezoidal shape is provided in the hole 41; the groove-in-hole type structure 35 having a groove in a trapezoidal shape is provided in the hole 42; the groove-in-hole type structure 35 having a groove in a rectangular shape is provided in the hole 43, and the rib-in-hole type structure 34 having a rib protrusion in a rectangular shape is provided in the hole 44. In other embodiments, the position or number of the holes, the shapes of the rib-in-hole type structure or the groove-in-hole type structure in the hole may be of other manners, which are not enumerated herein.
Please referring to
In other embodiments, the number of the metal body may also be other numbers, such as 4, 5 or 6, etc., and the number of the connecting body may also be other numbers, such as 3, 4 or 5 etc., and the number of the metal body 20 is one more than the number of the connecting body 10.
Please referring to
In S101, a metal plate is provided.
The material of the metal plate includes any one selected from the group consisting of an aluminum alloy, a magnesium alloy, a stainless steel, a titanium alloy, a copper alloy, and an iron alloy, and different materials have different thermal conductivity and processing properties. Optionally, in this embodiment, the metal body 20 is made of an aluminum alloy, which is excellent in heat conduction, easy to process, moderate in price, and is also easy to perform post-process treatment, such as anodizing and drawing. The thickness is from 0.4 mm to 2 mm, such as 0.4 mm, 0.6 mm, 0.8 mm, 1.0 mm, 1.2 mm, 1.4 mm, 1.6 mm, 1.8 mm or 2.0 mm.
In S102, the metal plate is machined to obtain a metal body and a mating structure.
The metal plate is machined by a CNC machine tool to obtain a metal body and a plurality of mating structures 30. The metal body includes a first body 20a and a second body 20b. The mating structures 30 includes each one selected from the group consisting of a groove-type tension structure 31, a protrusion-type tension structure 32, a rib-type tension structure 33, a rib-in-hole type structure 34, an groove-in-hole type structure 35, and a through hole type fastening structure 36.
In S103, the metal body is placed into a mold, the material of a connecting body is injected into the mating structure and on an outside of the metal body via an integral molding technique, and thus a connecting body is formed.
The first body 20a and the second body 20b are placed into the mold. Optionally, the connecting body is made of a plastic material selected from the group consisting of PPS, PBT, PA-66, and PPA plus glass fiber. The mole is an integral injection mold. The liquid connecting body material is injected into the injection mole. The material of the connecting body enters the mating structure 30 to form a connecting body and other mating structures (not shown) such as corresponding mating structures 34a and 35a and the like. The connecting body connects the first body 20a and the second body 20b into a whole body, and the connecting body includes a first connecting body 10a.
Optionally, the connecting body may also be made of metal material. The metal material includes any one selected from the group consisting of an aluminum alloy, a magnesium alloy, a stainless steel, a titanium alloy, a copper alloy, and an iron alloy. The mole is integral die-casting mole. Then the liquid connecting body material is injected into the die-casting mole. The material of the connecting body enters the mating structure 30 to form a connecting body and other mating structures (not shown) such as corresponding mating structures 34a and 35a and the like. The connecting body connects the first body 20a and the second body 20b into a whole body, and the connecting body includes a first connecting body 10a.
Please referring to
Different from the prior art, the housing of the present disclosure forms a plurality of mating structures at the junction of the body and the connecting body, and the mating structure includes at least one selected from the group consisting of a groove-type tension structure, a protrusion-type tension structure, a rib-type tension structure, a through hole type fastening structure, a rib-in-hole type structure, and an groove-in-hole type structure. In this way, it is possible to achieve the effect of increasing the mechanical contact area of the body and the connecting body, thereby enhancing the structural stability of the junction of the housing and ensuring the various components of the housing are not easily separated.
The above descriptions are only the embodiments of the present disclosure, and thus do not limit the scope of the present disclosure. The equivalent structure or equivalent process transformations made by using the specification and the drawings of the present disclosure, or directly or indirectly applied to other related technical fields, are all comprised in the scope of patent protection of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201710608311.X | Jul 2017 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2017/111010 | 11/15/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/019487 | 1/31/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4323406 | Morello | Apr 1982 | A |
5244746 | Matsui | Sep 1993 | A |
8772650 | Merz | Jul 2014 | B2 |
9894787 | Merz | Feb 2018 | B2 |
9901002 | Jenkins | Feb 2018 | B2 |
10433442 | Merz | Oct 2019 | B2 |
20070290411 | Suter | Dec 2007 | A1 |
20080282528 | Lu | Nov 2008 | A1 |
20120175165 | Merz | Jul 2012 | A1 |
20130318766 | Kiple | Dec 2013 | A1 |
20130319755 | Kiple | Dec 2013 | A1 |
20140311767 | Merz | Oct 2014 | A1 |
20150050453 | Carson, Jr. | Feb 2015 | A1 |
20160207236 | Tsubota | Jul 2016 | A1 |
20160286670 | Wang | Sep 2016 | A1 |
20170136686 | Ueno | May 2017 | A1 |
20170245382 | Jenkins | Aug 2017 | A1 |
20180070465 | Cater | Mar 2018 | A1 |
20190045642 | Prest | Feb 2019 | A1 |
20190246511 | Huang | Aug 2019 | A1 |
20200141259 | Inoue | May 2020 | A1 |
Number | Date | Country |
---|---|---|
204517886 | Jul 2015 | CN |
105847495 | Aug 2016 | CN |
106944797 | Jul 2017 | CN |
Entry |
---|
International Search Report, dated Apr. 19, 2018 for corresponding International Application No. PCT/CN2017/111010 with English translation. |
Written Opinion of the ISA, dated Nov. 23, 2017 for corresponding International Application No. PCT/CN2017/111010. |
Number | Date | Country | |
---|---|---|---|
20190350098 A1 | Nov 2019 | US |