The present invention relates to a motor for a hydrostatic transition. More particularly, the present invention relates to a housing for the motor and the incorporation of relief valves into the housing for diverting high pressure fluid away from the motor componentry.
Riding lawn mowers and similar vehicles are generally driven by hydrostatic transmissions. Specifically, such vehicles use dual path hydraulic transmissions. Each transmission consists of an over-center variable displacement pump and a fixed displacement motor. The input shaft of the pump is coupled with an internal combustion engine and the output shaft of the motor is coupled with a vehicle wheel. Changing the flow rate and direction of the pump flow will cause the change of rotation speed and the direction of rotation of the wheel.
Any shock load, e.g. in the form of an impediment to the rotation of the wheels, can impart a shock load to the entire hydraulic transmission. This shock load, typically in the form of excessive pressure, can deleteriously affect the components to the system. Many prior art designs of hydraulic transmissions do not integrate parts, e.g. relief valves, into the system in order to protect these components.
Some prior art system designs that have incorporated relief valves into the hydraulic transmission have positioned the valve within the pump. This type of design will protect the pump from shock loads but will not protect the other components, e.g. the motor, that first experience the shock. Specifically, if the shaft of the motor experiences any sudden resistance, or load, a surge of pressure initially will travel through the motor, possibly causing damage. The pressure spike may also damage all other componentry between the motor and pump prior to being dissipated within the pump.
Other prior art designs utilize a stand alone component, e.g. an end cover, attached to the motor to house the relief valves. The attachment of the end cover, with relief valves, will dissipate these pressure surges. However the end cover, with incorporated relief valves, adds an unwanted length to the motor. The present invention overcomes the above obstacles by incorporating the relief valves directly in the housing of the motor.
The present invention provides a housing for a motor having fluid passages integrated within. The passages include a first passage for receiving a fluid from outside the motor, a second passage for directing the fluid away from the motor, and at least one other passage from conveying the fluid to a set of components attached to the motor housing. The housing has at least one relief valve positioned within the fluid passages for diverting a portion of the fluid directly from the first passage to the second passage.
A further feature of the noted housing is that it houses a two-pressure zone gerotor motor. Another feature of the noted housing is that the set of components include a gerotor set and a shaft positioned within the housing. Still a further feature of the noted housing has the at least one relief valve being a first relief valve which opens when the pressure within the first passage is greater than a predetermined amount and a second relief valve which opens with the pressure within the second passage is greater than a predetermined amount. Still another feature of the noted housing has both of the first and second relief valves having a poppet and a spring made of one piece.
Another attribute of the present invention includes having a housing for a motor where the housing has fluid passages integrated within. The passages include a first passage for receiving fluid from outside the motor, a second passage for directing fluid away from the motor and at least one other passage for conveying fluid to a set of components attached to the motor housing. The housing contains at least one relief valve in fluid communication with the first and second passages for directing a portion of fluid from the first passage to the second passage without fluidly communicating with the at least one other passage. A further attribute of the noted housing has the at least one other passage receiving a shaft.
Still another attribute of the noted housing has the at least one relief valve including a first relief valve positioned within a first bore in fluid communication with the first passage and a second relief valve positioned within a second bore in fluid communication with the second passage. A further attribute of the noted housing is the housing is for a two-pressure zone gerotor motor. Another attribute has the at least one valve including a first valve positioned within a bore in fluid communication with the first passage. Still another attribute has the at least one valve including a valve positioned within a bore in fluid communication with the second passage.
Still a further feature of the present invention includes a hydrostatic transmission having a motor and a pump wherein the motor has a housing with an attached shaft and an attached gerotor set. The housing incorporates at least one pressure relief valve for directing a portion of a fluid from a first passage directly to a second passage.
Another feature of the present invention includes a hydrostatic transmission having a motor and a pump wherein the motor has a housing with an attached shaft and an attached gerotor set. The housing incorporates at least one pressure relief valve for directing a portion of a fluid received from a first passage away from the gerotor set.
Still yet another attribute of the present invention includes a fixed displacement motor for a hydrostatic transmission. The motor has a housing with a first port, a second port, a first longitudinal end and a second longitudinal end. The motor has a shaft, received within the housing, with a first end extending through the housing first longitudinal end. The motor has a wear plate adjacently affixed to the housing and a gerotor set adjacently affixed to the wear plate. The motor further has a manifold adjacently affixed to the gerotor set, a commutator assembly adjacently affixed to the manifold, and an end cap adjacently affixed to the commutator assembly. The housing has a first relief valve positioned within a first bore in fluid communication with the first port and a second relief valve positioned within a second bore in fluid communication with the second port. The first valve opens when hydraulic pressure within the first port reaches a predetermined amount and directs hydraulic fluid from the first port to the second port bypassing the gerotor set. The second valve opens when hydraulic pressure within the second port reaches a predetermined amount and directs hydraulic fluid from the second port directly to the first port bypassing the gerotor set.
Further features of the present invention will become apparent to those skilled in the art upon reviewing the following specification and attached drawings.
Hydrostatic transmissions commonly are used with riding lawn mowers and similar vehicles. Such vehicles can be propelled by dual path hydraulic transmissions. Each transmission consists of an over-center variable displacement pump and a fixed displacement motor. The input shaft of the pump is coupled with an internal combustion engine and the output shaft of the motor is coupled with a vehicle wheel. A change in the flow rate and direction of the pump fluid flow will cause a change of rotation speed and direction of rotation of the vehicle wheel. When the movement of the vehicle wheel is impeded, a load is transferred to the motor shaft. When the shaft of the motor initially experiences this load (or resistance), excessive pressure (in the form of pressure spikes) is sensed within the motor and throughout the system. As is well known in the art, excessive pressure can damage not only the first component that experiences the spike but also other componentry within the system. Therefore systems incorporate shock valves that prevent the spikes from reaching the componentry that can be damaged.
Referring to
Referring to
In order to demonstrate the function of shock valves 25, 26, the flow of pressurized fluid through housing 20 will be explained. Referring to
The fluid pressure within the motor will be reduced during the diversion of a portion of the fluid past valve 25 through passage 28. When the fluid pressure is reduced to less than the cracking pressure of valve 25, the entire fluid flow is directed towards housing bore 22 in order to turn shaft 57. By diverting a portion of the high pressurized fluid away from bore 22, damage to componentry of motor is avoided.
In order to reverse the rotation of shaft 57, for counterclockwise rotation, hydraulic fluid from the pump is now reversed. Referring to
Since the inlet and outlet of each shock valve 25, 26 is linked to both sides of the transmission, flow will bypass motor 10 when either shock valve 25, 26 is opened under excessive load. The design of motor housing 20 has cavities for at least one shock valve. More specifically, if the forward direction is the predominant use for the motor, then only one shock valve would be necessary. Likewise, if the reverse direction is the predominant use for the motor, then only one shock valve would be necessary. If both directions, i.e. forward and reverse, are being utilized then the motor housing design would incorporate two shock valves for both directions. Due to the unique two-pressure zone design of motor 10, the outlet of each valve 25, 26 is always linked to the low-pressure side of the motor. Thus, a percentage of flow bypasses motor 10 when it is under a shock load and prevents damage to the motor from these pressure surges. Thus, it will extend the endurance life of the whole transmission. As also can be seen from the above description, the present invention does not utilize a separate component (as prior art designs do) for housing shock/relief valves. Rather valves 25, 26 are housed entirely within housing 20, thus minimizing the size of motor 10.
The principles, preferred embodiments and modes of operation of the present invention have been described in the foregoing specification. The invention which is intended to be protected herein should not, however, be construed as limited to the particular form described as it is to be regarded as illustrative rather than restrictive. Variations and changes may be made by those skilled in the art without departing from the scope and spirit of the invention as set forth in the appended claims.
The present application claims the benefit of the filing date of U.S. Provisional Application Ser. No. 60/513,828; filed Oct. 23, 2003, the disclosure of which is expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1621495 | Conradson | Mar 1927 | A |
1886205 | Lyfod | Nov 1932 | A |
2607295 | Drucker | Aug 1952 | A |
2875779 | Campbell | Mar 1959 | A |
3286645 | Albers | Nov 1966 | A |
3712758 | Lech et al. | Jan 1973 | A |
3880554 | Termansen et al. | Apr 1975 | A |
4199305 | Pareja | Apr 1980 | A |
4443161 | Masuda et al. | Apr 1984 | A |
4519755 | Hanson | May 1985 | A |
5630399 | Nomura et al. | May 1997 | A |
5782615 | Noah et al. | Jul 1998 | A |
6095765 | Khalifa | Aug 2000 | A |
6162024 | Bruzek | Dec 2000 | A |
6382593 | deCler et al. | May 2002 | B1 |
6513546 | Katsura | Feb 2003 | B2 |
6783339 | Dong et al. | Aug 2004 | B2 |
20020100507 | Hauser et al. | Aug 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20050088041 A1 | Apr 2005 | US |
Number | Date | Country | |
---|---|---|---|
60513828 | Oct 2003 | US |