1. Technical Field
The present disclosure relates to housings of electronic devices, especially to a housing having an antenna formed thereon and a method for making the housing.
2. Description of Related Art
Electronic devices, such as mobile phones, personal digital assistants (PDAs) and laptop computers are widely used. Most of these electronic devices have antenna modules for receiving and sending wireless signals. A typical antenna includes a thin metal radiator element mounted to a support member, and attached to a housing. However, the radiator element is usually exposed from the housing, and may be easily damaged and has a limited receiving effect. In addition, the radiator element and the support member occupy precious space.
Therefore, there is room for improvement within the art.
Many aspects of the embodiments can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the exemplary housing and the method for making the housing. Moreover, in the drawings like reference numerals designate corresponding parts throughout the several views. Wherever possible, the same reference numbers are used throughout the drawings to refer to the same or like elements of an embodiment.
The disclosure is illustrated by way of example and not by way of limitation in the accompanying drawings. It should be noted that references to “an” or “one” embodiment in this disclosure are not necessarily to the same embodiment, and such references can include the meaning of “at least one” embodiment where the context permits.
Referring to
The antenna radiator 13 includes a primary layer and a plating layer. The primary layer is made of plating plastic, which can be made of acrylonitrile butadiene styrene copolymer (ABC) or polypropylene (PP) or polycarbonate (PC) or polyurethane (TPU). The primary layer is formed on the base 11. The plating layer is formed on the primary layer. In this exemplary embodiment, the plating layer includes a copper layer, a nickel layer and a gold layer in that order. The copper layer is plated on the primary layer. The nickel layer is a transition layer and can increase the bonding force between the copper layer and the gold layer. The gold layer is plated on the nickel layer. Since the gold has high antioxidant properties, the gold layer can effectively protect the nickel layer and the copper layer.
The decoration layer 15 is formed on the base 11, and is buried on the antenna radiator 13. In this exemplary embodiment, the decoration is made of Silicon Nitrogen (Si—N) layer. The Si—N layer is formed on the base 11 by physical vapor deposition (PVD).
A method for making the housing 10 of the embodiment includes the following steps:
Referring to
Referring to
Referring to
A vacuum sputtering process may be used to form the decoration layer 15 by a vacuum sputtering device 20. Referring to
Magnetron sputtering of the decoration layer 15 uses argon gas as sputtering gas. Argon gas has a flow rate of about 100 sccm to about 200 sccm. The temperature of magnetron sputtering is at about 100° C. to about 150° C., the power of the silicon target is in a range of about 2 kw to about 8 kw, a negative bias voltage of about −50 V to about −100 V is applied to the substrate and the duty cycle is about 30% to about 50%. The vacuum sputtering of the base takes about 90 minutes to about 180 minutes, the Si—N layer has a thickness at a range of about 0.5 μm to about 1 μm.
The antenna radiator 13 is sandwiched between the base 11 and the decoration layer 15 so that the antenna radiator 13 is protected from being damaged. In addition, the antenna radiator 13 can be directly attached to the housing 10, thus, the working efficiency is increased.
It is believed that the present embodiments and their advantages will be understood from the foregoing description, and it will be apparent that various changes may be made thereto without departing from the spirit and scope of the disclosure or sacrificing all of its material advantages, the examples hereinbefore described merely being preferred or exemplary embodiments of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201110162367.X | Jun 2011 | CN | national |